LIGHT – REFLECTION AND REFRACTION

Laws of Reflection:

- (i) Angle of incidence is equal to the angle of reflection. ($\angle i = \angle r$)
- (ii) The incident ray, the reflected ray and the normal at the point of incidence, all lie in the same plane.

SPHERICAL MIRRORS

IMAGE FORMATION BY A CONCAVE MIRROR FOR DIFFERENT POSITIONS OF THE OBJECT

Position of the object	Position of the image	Size of the image	Nature of the image
At infinity	At the focus F	Highly diminished, point sized	Real and inverted
Beyond the centre of curvature C	Between F and C	Diminished	Real and inverted
At C	At C	Same size	Real and inverted
Between C and F	Beyond C	Enlarged	Real and inverted
At <i>F</i>	At infinity	Infinitely large or highly enlarged	Real and inverted
Between the pole P of the mirror and focus F	Behind the mirror	Enlarged	Virtual and erect

IMAGE FORMATION BY A CONVEX MIRROR

Position of the object	Position of the image	Size of the image	Nature of the image
At infinity	At the focus F, behind the mirror	Highly diminished point-sized	Virtual and erect
Between infinity and the pole P of the mirror	Between <i>P</i> and <i>F</i> , behind the mirror	Diminished	Virtual and erect

The corresponding ray diagrams are included in annexure 4

Mirror Formula : $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ is called the mirror formula.

Magnification: The ratio of the size of the image to that of the object is called magnification. For a mirror, magnification (m) is given by.

$$m = \frac{-V}{U}$$

Lens formula: $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$

Magnification: $m = \frac{v}{u}$

IMAGE FORMATION BY A CONCAVE LENS

Position of the object	Position of the image	Size of the image	Nature of the image
At infinity	At focus F ₁ point- sized	Highly diminished	Virtual and erect
Between infinity and optical centre O of the lenses	Between focus F ₁ and optical centre	Diminished	Virtual and erect

IMAGE FORMED BY A CONVEX LENS FOR DIFFERENT POSITIONS OF THE OBJECT

Position of the object	Position of the image	Size of the image	Nature of the image
At infinity	At focus F ₂	Highly diminished, point-sized	Real and inverted
Beyond 2F ₁	Between F ₂ and 2F ₂	Diminished	Real and inverted
At 2F ₁	At 2F ₁	Same size	Real and inverted
Between F ₁ and 2F ₁	Beyond 2F ₂	Enlarged	Real and inverted
At focus F ₁	At infinity	Infinitely large or highly enlarged	Real and inverted
Between focus F ₁ and optical centre O	On the same side of the lens as the object	Enlarged	Virtual and erect

IMPORTANT FORMULAE

Mirror formula

$$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$$

where, f = focal length of mirror, u = Distance of the object, v = Distance of the image from pole.

Lens formula

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

where, f = focal length of the lens, v = Distance of the image, u = Distance of the object from optical centre.

Power of lens

$$P = \frac{1}{\text{Focal length (in meters)}} = \frac{100}{\text{Focal length (in cm)}}$$
$$P = \frac{1}{f(m)} = \frac{100}{f(cm)}$$

Magnification by a lens = $\frac{\text{size of the image}}{\text{size of the object}}$

$$m = \frac{h_i}{h_o}$$

Magnification by a lens = $\frac{\text{Distance of the image from the optical centre}}{\text{Distance of the object from the optical centre}}$ or $m = \frac{v}{u}$

REFRACTIVE INDEX

Absolute refractive index (n) of a medium is the ratio of speed of light in vacuum or air
 (c) to the speed of light in the medium (v) i.e.

$$n=\frac{c}{v}$$

- Refraction of light is the phenomenon of change in the path of light in going from one medium to another.
- In going from a rarer to a denser medium, the ray of light bends towards normal and
 in going from a denser to a rarer medium, the ray of light bends away from normal.
- Snell's law of refraction: $\frac{\sin i}{\sin r} = \frac{n_2}{n_1} = {}^{1}n_2$
- No refraction occurs, when
 - (i) light is incident normally on a boundary,
 - (ii) refractive indices of the two media in contact are equal.
- Refractive index = $n_{21} = \frac{\text{speed of light in medium 1}}{\text{speed of light in medium 2}} = \frac{\text{refractive index of medium 2}}{\text{refractive index of medium 1}}$
- $\eta_{23} = \frac{\eta_{21}}{\eta_{31}}$