Chapter 7

Rotations and Addition of Angular
Momenta

In this chapter we deal with rotations, the properties of addition of angular momenta, and the
properties of tensor operators.

7.1 Rotations in Classical Physics

A rotation is defined by an angle of rotation and an axis about which the rotation is performed.
Knowing the rotation matrix R, we can determine how vectors transform under rotations; in
a three-dimensional space, a vector A becomes A’ when rotated: 4’ = RA. For instance, a
rotation over an angle ¢ about the z-axis transforms the components A4, 4y, 4. of the vector
A into A%, A;, AL

" cos¢p sing 0 Ay
Y | = —sing cos¢ 0 A4, (7.1)
A, 0 0 1 A,
or
= R.(¢)A4, (7.2)
where
cos¢ sing 0
R.($p)=| —sing cos¢p 0 |. (7.3)
0 0 1
Similarly, the rotation matrices about the x— and y— axes are given by
1 0 0 cos¢p 0 sing
Ri(p)=1 0 cos¢p sing |, Ry(¢) = 0 1 0 . (7.4)
0 —sing cos¢ —sing 0 cos¢

From classical physics we know that while rotations about the same axis commute, rotations
about different axes do not. From (7.4) we can verify that R, (#) R, (¢) # R, (¢) R, (¢). In fact,
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392 CHAPTER 7. ROTATIONS AND ADDITION OF ANGULAR MOMENTA

using (7.4) we can have

cos ¢ 0 sin¢
R (PR, ($) = —sin® ¢ cos¢ cosgsing |, (7.5)
—cos¢sing —sing cos? ¢
cos ¢ —sin® ¢ cos ¢ sin ¢
R(®R@)=| 0 cos ¢ sing | ; (7.6)

—sing —singcos¢ cos? ¢

hence Ry (¢) Ry (¢) — Ry ($)Rx(9) is given by

0 sin® ¢ sin¢g — cos ¢ sin¢
—sin® ¢ 0 cosgsing —sing | . (7.7)
sing — cos¢sing cos ¢ sing — sing 0

In the case of infinitesimal rotations of angle J about the x— y—, z— axes, and using cosd =~
1 —6%/2 and sin d ~ J, we can reduce (7.7) to

0 & 0
Rc(O)Ry(0) — Ry(DHR:(O) = —=6* 0 0 |, (7.8)
0 0 0
which, when combined with R, (6%) of (7.3),
L 5 0 1 &0
RO=| —s 1-2 0| = R@&=|-# 1 0], (7.9)
2
0 0 1 0 0 1
leads to
1 0 1 00
R:G)Ry () — RyO)Ry () =R —1=| =* 1 0 |—=|( 0 1 0 |. (7.10)
0 0 1 0 0 1

We will show later that this relation can be used to derive the commutation relations between
the components of the angular momentum (7.26).
The rotation matrices R are orthogonal, i.e.,

RRT =RTR =1, (7.11)

where R” is the transpose of the matrix R. In addition, the orthogonal matrices conserve the
magnitude of vectors:
|4 = |4I, (7.12)
since A' = RA yields A2 = A or A’} + A" + A7 = A2 + A2 + A2,
It is easy to show that the matrices of orthogonal rotations form a (nonabelian) group and

that they satisfy this relation
det(R) = 1. (7.13)
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This group is called the special three-dimensional orthogonal group, SO (3), because the rota-
tion group is a special case of a more general group, the group of three-dimensional orthogonal
transformations, O (3), which consist of both rotations and reflections and for which

det(R) = +1. (7.14)

The group SO(3) transforms a vector A into another vector 4’ while conserving the size of its
length.

7.2 Rotations in Quantum Mechanics

In this section we study the relationship between the angular momentum and the rotation op-
erator and then study the properties as well as the representation of the rotation operator. The
connection is analogous to that between the linear momentum operator and translations. We
will see that the angular momentum operator acts as a generator for rotations.

A rotation is specified by an angle and by a unit vector 7 about which the rotation is per-
formed. Knowing the rotation operator R, we can determine how state vectors and operators
transform under rotations; as shown in Chapter 2, a state | w) and an operator A transform
according to

v =Ry, A = RART. (7.15)
The problem reduces then to finding R. We may now consider infinitesimal as well as finite

rotations.

7.2.1 Infinitesimal Rotations

Consider a rotation of the coordinates of a spinless particle over an infinitesimal angle d¢ about
the z-axis. Denoting this rotation by the operator R (d¢), we have

R:0p)w (r,0,9) = w(r,0, ¢ — 59). (7.16)

Taylor expanding the wave function to the first order in d¢, we obtain

0 0
y(r,0,¢ —0o¢) =y (r,0,¢) - 5¢% = (1 - 5¢%) y (.0, ). (7.17)

Comparing (7.16) and (7.17) we see that R. (0¢) is given by

. )
R.(0p) =1—0p—. 7.18
09 =1 = (7.18)
Since the z-component of the orbital angular momentum is
A )
Lzz—ih%, (7.19)

we can rewrite (7.18) as

R.(6¢) =1— %&biz. (7.20)
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We may generalize this relation to a rotation of angle d¢ about an arbitrary axis whose direction
is given by the unit vector 7:

3

)

R(p) =1 — %&;&ﬁ : (7.21)

This is the operator corresponding to an infinitesimal rotation of angle d¢ about 7 for a spinless
system. The orbital angular momentum is thus the generator of infinitesimal spatial rotations.

Rotations and the commutation relations

We can show that the relation (7.10) leads to the commutation relations of angular momentum
[ix, L yl=1i hL.. The operators corresponding to infinitesimal rotations of angle J about the
x and y axes can be inferred from (7.20):

. i5, & ., 5 io. 0.
Re@=1-Fle=—5ly, RO =1-FLy——5L;, (7.22)

where we have extended the expansions to the second power in . On the one hand, the follow-
ing useful relation can be obtained from (7.22):

. iéi 5222 | i&i 5222
DY Fa DY P

R (O) R, (9) — Ry (0) Ry (69)

7 /a R
- - (Lx y—Lny)
&’ . .
_ —?[Lx, Lyl (7.23)

where we have kept only terms up to the second power in J; the terms in ¢ cancel out automat-
ically.
On the other hand, according to (7.10), we have
Ry (O)R,(9) — Ry (D) Ry (9) = R.(*) — 1. (7.24)

Since R.(6%) = 1 — (i0%/h)L . this relations leads to

.52 .
Ry () Ry () — Ry(O)Ry(9) = R(D) — 1 = —’7 .. (7.25)
Finally, equating (7.23) and (7.25), we end up with
[Ly, Ly]=ihL,. (7.26)

Similar calculations for R, (d)R;(d) — R, (d)R,(J) and R; ()R (d) — Ry (J)R;(J) lead to the
other two commutation relations [iy, Zz] = ihﬁx and [iz, ix] = ihﬁy.
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7.2.2 Finite Rotations

The operator R. (¢) corresponding to a rotation (of the coordinates of a spinless particle) over a
finite angle ¢ about the z-axis can be constructed in terms of the infinitesimal rotation operator
(7.20) as follows. We divide the angle ¢ into N infinitesimal angles d¢: ¢ = N d¢p. The
rotation over the finite angle ¢ can thus be viewed as a series of N consecutive infinitesimal
rotations, each over the angle d¢, about the z-axis, applied consecutively one after the other:

. . 5¢ - \V
Ro(¢) = R-(Nog) = (R:(6¢)" = (1 - 17%) . (7.27)
Since d¢p = ¢/ N, and if d¢ is infinitesimally small, we have
N . . N
~ . id. - . i ¢ A
R.(p) = 1 l——Z4.L)=1 1-==17,) , 2
@) Ngnoolg( AN" ) Nl—r>noo( N ) (728)
or
R.(p) = e719L/M, (7.29)

We can generalize this result to infer the rotation operator R, (¢) corresponding to a rotation
over a finite angle ¢ around an axis 7:

Ro(p) = 7191/, (7.30)

where L is the orbital angular momentum. This operator represents the rotation of the coordi-
nates of a spinless particle over an angle ¢ about an axis 7.

The discussion that led to (7.30) was carried out for a spinless system. A more general
study for a system with spin would lead to a relation similar to (7.30):

S~
<»

Ry(p) = 79" (7.31)

where J is the total angular momentum operator; this is known as the rotation operator. For
instance, the rotation operator R, (¢) of a rotation through an angle ¢ about the x-axis is given
by

Re(p) = e~ 105/, (7.32)

A

The properties of R, (¢) are determined by those of the operators J, jy, J;.

Remark
The Hamiltonian of a particle in a central potential, H = p? /(2m) + I7(r), is invariant under
spatial rotations since, as shown in Chapter 6, it commutes with the orbital angular momentum:

[H, L]=0 = [H e_i¢ﬁ'L/h] =0. (7.33)
Due to this symmetry of space isotropy or rotational invariance, the orbital angular momentum

is conserved'. So, in the case of particles moving in central potentials, the orbital angular
momentum is a constant of the motion.

Un classical physics when a system is invariant under rotations, its total angular momentum is also conserved.
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7.2.3 Properties of the Rotation Operator

The rotation operators constitute a representation of the rotation group and satisfy the following
properties:

e The product of any two rotation operators is another rotation operator:
Ry, Ryy = Ry (7.34)
e The associative law holds for rotation operators:
(1%,,11%,,2) Ruy = Ry, (1%,,21%,,3) . (7.35)
e The identity operator (corresponding to no rotation) satisfies the relation
IR, = R,] = R,. (7.36)
From (7.31) we see that for each rotation operator R, there exists an inverse operator
R, !'so that
R.R;'=R'R, =1. (7.37)
The operator R_,, which is equal to ﬁn_ I corresponds to a rotation in the opposite sense
to R,.
In sharp contrast to the translation group? in three dimensions, the rotation group is not com-
mutative (nonabelian). The product of two rotation operators depends on the order in which
they are performed.: A A . A
Ry (@) Ry (0) # Ry (0)Rn, (4); (7.38)

e

this is due to the fact that the commutator [ny - J, 7> - J ] is not zero. In this way, the rotation
group is in general nonabelian.

But if the two rotations were performed about the same axis, the corresponding operators
would commute:

Ry(@) Ry (0) = Ru(0) Ru(¢) = Ru(¢p +0). (7.39)
Note that, since the angular momentum operator Jis Hermitian, equation (7.31) yields

RI(@) = B (¢) = Ru(=g) = #1911, (7.40)

hence the rotation operator (7.31) is unitary:

Rpy=k1¢) = Rk =1 (7.41)

The operator R, (¢) therefore conserves the scalar product of kets, notably the norm of vectors.
For instance, using

Ly Yy =Ra@) L), 1 1) =Ral@) | 1), (7.42)
along with (7.41), we can show that (¥’ | w') = (¥ | w), since

G = U LRI @RA@) L w) = (x| ). (7.43)

2The linear momenta 131 and 13j—which are the generators of translation—commute even when i # j; hence the
translation group is said to be abelian.
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7.2.4 Euler Rotations

It is known from classical mechanics that an arbitrary rotation of a rigid body can be expressed
in terms of three consecutive rotations, called the Euler rotations. In quantum mechanics, in-
stead of expressing the rotation operator R, (¢) = e~#1J/ in terms of a rotation through an
angle ¢ about an arbitrary axis 7, it is more convenient to parameterize it, as in classical me-
chanics, in terms of the three Euler angles (a, B, y) where 0 < a < 27,0 < f < m, and
0 < y < 2z. The Euler rotations transform the space-fixed set of axes xyz into a new set
x'y’z’, having the same origin O, by means of three consecutive counterclockwise rotations:

e First, rotate the space-fixed Oxyz system through an angle a about the z-axis; this rota-
tion transforms the Oxyz system into Ouvz: Oxyz —> Ouvz.

e Second, rotate the uvz system through an angle f about the v-axis; this rotation trans-
forms the Ouwz system into Owvz’: Ouvz — Owvz’.

e Third, rotate the woz’ system through an angle y about the z’-axis; this rotation trans-
forms the Owoz’ system into Ox’y’z": Owvz’ — Ox'y'Z’.

The operators representing these three rotations are given by R. (), R, (f), and R, (y), respec-
tively. Using (7.31) we can represent these three rotations by

R, B,7) = Ro(y)Ry(B)R- () = exp [—iy Jo /h] exp [—ifpJy /h] exp [—iaJ./h]. (7.44)

The form of this operator is rather inconvenient, for it includes rotations about axes belonging
to different systems (i.e., z’, v, and z); this form would be most convenient were we to express
(7.44) as a product of three rotations about the space-fixed axes x, y, z. So let us express R. )
and R, (B) in terms of rotations about the x, y, z axes. Since the first Euler rotation described
above, R. (a), transforms the operator Jy into J,, i.e., J, = R. (a)JyR (—a) by (7.15), we have

Ry(B) = Ro(a) Ry (B)R.(—a) = e 1@/ MemiB v/l /M, (7.45)

Here J;/ is obtained fromAJAZA by the consecutive application of the second and third Euler rota-
tions, J;» = Ry (B)R-(a)J: R:(—a) R, (—p); hence

Ro(y) = Ry(B)R(0) R-(y )R- (—a) Ry (= ). (7.46)
Since R, (=) = R.(a)R,(—B)R.(—a), substituting (7.45) into (7.46) we obtain

Re) = [Rel@ Ry (B Re(—0) | Rele) Ro () Re (=) [ Re@) Ry (=) R0
= R()Ry(B)R-(7) Ry (= B) R (—01)

= eiale/hgmiBdy/h =iy /B GiB Iy /h e [ (7.47)

where we used the fact that R.(—a) R, (a) = e~ i*J=/heiatz/h — 1

Finally, inserting (7.45) and (7.47) into (7.44) and simplifying (i.e., using R.(— a)R (a) =
1 and R (= ﬁ)R (#) = 1), we end up with a product of three rotations about the space-fixed
axes y and z:

R, B,7) = RA(a)Ry(BYR(y) = e~/ /e 1B Iy/h =i J2/h (7.48)
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The inverse transformation of (7.48) is obtained by taking three rotations in reverse order over
the angles (—y, —f, —a):

R™Ya, B, y) = Re(=)) Ry (=B)R-(—a) = RV (a, B, y) = /7 =/heiblheial/h | (7 49)

7.2.5 Representation of the Rotation Operator

The rotation operator R(a B,7) as given by (7.48) implies that its properties are determined
by the algebraic propertles of the angular momentum operators Je, Jy, J.. Since R(a, B,7)
commutes with J, 2 we may look for a representation of R(a, £, y) in the basis spanned by the
eigenvectors of J 72 and J;, i.e., the | j, m) states.

From (7.48), we see tha‘rJ2 commutes with the rotation operator, [J R(a L,7)] = 0;
thus, the total angular momentum is conserved under rotations

PR, Boy) 1 jo m) = Ra. p.y)J? | jo m) = j( + DR(@ Boy) | jo m).  (1.50)

However, the z-component of the angular momentum changes under rotations, unless the axis
of rotation is along the z-axis. That is, when R(a, f5, ) acts on the state | j, m), we end up
with a new state having the same j but with a different value of m:

J

R(a, poy) 1 jo my = D 1 j, m)j, m" | R(a, B,y) | j, m)

w==j
J )
= > DY @Byl m), (7.51)
m==j
where
DY) (@, B.y) = (. m' | R@. B.y) 1 ). m). (7.52)

These are the matrix elements of R(a, p,y) for the | j, m) states; D (a p,y) is the am-
plitude of | j, m’) when | j, m) is rotated. The rotation operator is thus represented by a
(2j +1) x (2j + 1) square matrix in the {| j, m)} basis. The matrix of DY) (a, B, y) is known
as the Wigner D-matrix and its elements Dlgl’)m(a B, v) as the Wigner functions. This matrix
representation is often referred to as the (27 + 1)-dimensional irreducible representation of the
rotation operator R(a, £,7).

Since | j, m) is an eigenstate of J,, it is also an eigenstate of the rotation operator e
because

iaJ;/h
b

N G my =M L om). (7.53)
We may thus rewrite (7.52) as
D) (@, B,y) = 7D (), (7.54)

where

) (B) = (j, m'\e” PR ), (7.55)
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This shows that only the middle rotation operator, e~/ ! " mixes states with different values
of m. Determining the matrix elements Dr(nj,)m (a, p, v) therefore reduces to evaluation of the
quantities d,(nj/zn ).

A general expression of dn(qj;zﬂ (p), called the Wigner formula, is given by the following
explicit expression:

JG+mIG —m)G + ) —m)!
—m' =G +m—k)k+m —m)k!

2j+m—m'—=2k m' —m+2k
X (cos g) (sin g) . (7.56)

The summation over £ is taken such that none of the arguments of factorials in the denominator
are negative.

We should note that, since the D-function D

A () = D=1
- J

) (a, B, y) is a joint eigenfunction of j 2 and

m'm
J-, we have
22 ~() s 2 ~()
J D,y,]/m(aaﬁay)_J(./—'_l)h Dm]/m(a:ﬁay)a (757)
J.DY) (@, B, y) = hmDY) (@, B,7), (7.58)
JeDY) (o, p,7) = /G EMG Fm+ DDY) (@, B, 7). (7.59)

Properties of the D-functions
We now list some of the most useful properties of the rotation matrices. The complex conjugate
of the D-functions can be expressed as

o' | R, poy) | jom)* = Gom | RV (@, B, y) | jo ')
Gm| R Y, By) 1 j, m)

(D@ 8.9

(0]
= Dm]m/(—y, —pB,—a). (7.60)
We can easily show that
I:Drsli/)m(a: ﬁs y):l = (_l)ml_mDE/rz'l/—m(a’ ﬂ’ y) = Dr(rl/r)n/(_y’ _ﬂ’ —0(). (761)

The D-functions satisfy the following unitary relations:

> [Dz({f;)(a»ﬂ» y)]* D@, B y) = s (7.62)

m

> [D,(,{;z(a,ﬁ, y)]* D@, B y) = ki, (7.63)

m
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since

> [DSh@ pop] DR Bor) = DU KR @ Boy) | o G m | RGBS K
= (j KIR™ (o B, 7)) R0, B, 7)1 K
= (i klj k)
= Ok k- (7.64)

From (7.55) we can show that the d-functions satisfy the following relations:
d) (@) = (=170 . d) () = S (7.65)

Since dr{l ', are elements of a unitary real matrix, the matrix d () () must be orthogonal. We
may thus write

a9, = (d,5) " =d D p) (7.66)
and
d9) (B) = (=" dD 8y = (=" "D, (). (7.67)

The unitary matrices DY) form a (2 + 1) dimensional irreducible representation of the SO(3)
group.

7.2.6 Rotation Matrices and the Spherical Harmonics

In the case where the angular momentum operator J is purely orbital (i.e., the values of j are
integer, j = /), there exists a connection between the D-functions and the spherical harmonics
Y1m (8, ¢). The operator Ié(a, 5, 7) when applied to a vector | ) pointing in the direction (0, ¢)
would generate a vector | 7 ') along a new direction (¢, ¢’):

|7y = R(a, B, 7) | P). (7.68)
An expansion in terms of | /, m’) and a multiplication by (/, m | leads to
(L,m |7y =D, mR(a, B, y) | 1, W'}, m' | F), (7.69)
m/
or to .
Y 0.9y =D DY (. f. 7)Y (0. ), (7.70)
m/

since (I, m | ') =Y (0,9 )and (I, m" | F) =Y} (0, 9).
In the case where the vector 7 is along the z-axis, we have § = 0; hence m’ = 0. From

Chapter 5, Y;;,(0, ¢) is given by
. 21 4+ 1
Yy (0,0) = e Om’.0- (7.71)

. . 20 +1
Y (B, o) = D050, f.7)Yi5(0.9) = || = =Dy (@. . ), (7.72)

We can thus reduce (7.70) to
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D@ ) = 5 Vi (B ). (.73)

This means that a rotation through the Euler angles (a, 8, y) of the vector 7, when it is along
the z-axis, produces a vector ¥ / whose azimuthal and polar angles are given by S and «a,
respectively. Similarly, we can show that

4
DYy, poa) =/ =— T im b @ (7.74)

p(0,0,0) = Pi(cos ), (7.75)

where Pj(cos 6) is the Legendre polynomial.

We are now well equipped to derive the theorem for the addition of spherical harmonics.
Let (9, ¢) be the polar coordinates of the vector 7 with respect to the space-fixed x, y, z system
and let (0’, ¢”) be its polar coordinates with respect to the rotated system x’, y’, z’; taking the
complex conjugate of (7.70) we obtain

or to

and

Vi@, 9 = 3 [ DY, @ B 1] Y 0. 9). (7.76)

m/
For the case m = 0, since (from Chapter 5)

2 +1

Yio(0', 9") = Py(cos 0") (7.77)

4
[ 0 (a, B, y)] ‘/21+1 B> 7)s (7.78)
we can reduce (7.76) to

20 +
V2 "B (cos ) —Z T +1 Yo (B, 1) Yo 0, 9), (7.79)

ZYlm/(ﬂ 7)Y 0, ). (7.80)

and since from (7.74)

or to

Py(cos 0') = 21 1

Integrals involving the D-functions
Let w denote the Euler angles; hence

T 2 2
/da):/ sin,b’dﬂ/ da/ dy. (7.81)
0 0 0
Using the relation

) T ) 2r o, 2r .
/ DY) (w)dw = / dY) (B)sin pdp / e gg / =M dy
0 0 0

= 8729;,00m’.09m. 0, (7.82)
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we may write
/ DI (@) DY) (@) do = (—1)" / DY) (@)DY) (@) dw

= 1 [l sin pap

2z L 2z o
X/O e~ im —m)ada/o e ik —k)ydy

872
= Wéj,jﬁm,m/ék, K- (7.83)

Example 7.1
Find the rotation matrices (/2 and D/2) corresponding to j = %
Solution R
On the one hand, since the matrix of J,, for j = % (Chapter 5) is given by

~ h{0 —i 7

Jy = E ( i 0 ) = 50');, (784)

and since the square of the Pauli matrix o), is equal to the unit matrix, o2 = 1, the even and odd

) y
powers of g, are given by

2 10 il _ (0 =i
Uyn:(01 o=l o0 )=

On the other hand, since the rotation operator
Ry(B) = o~ iBIy/h _ o=ifoy/2
can be written as

—ipey2 _ N (=) ﬁ)zn m (=) (£)2n+1 2n+1
=2 G (2 2 Grmlz) o

n=0

a substitution of (7.85) into (7.87) yields

ipoyr _ (1 0\ =n (5D ﬁ)zn &y (£)2n+1
‘ B (0 1 )n; an)! \2 ’Uy;(2n+l)! .
=((1) ?)cos(§)+(? _Ol)sin(§>;
hence
dD () —iBJ,/h dill/z) dil_/zl) cos(f/2) —sin(f/2)
=e y = 22 272 —

dUP g

22 -2

sin(B/2)  cos(f/2)

(7.85)

(7.86)

(7.87)

(7.88)

(7.89)
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Since as shown in (7.54) D,(r{,)m (a, B,7) = e‘i(’"/"‘Jr’"V)d,(r,j;zn (f), we have

—i(a+7)/2 2) —e '@ 2sin(p/2

e cos e sin

DY (a, B, y) = A 472 A . : (7.90)
¢ 2sin(B/2) €@t/ cos(B)2)

7.3 Addition of Angular Momenta

The addition of angular momenta is encountered in all areas of modern physics. Mastering its
techniques is essential for an understanding of the various subatomic phenomena. For instance,
the total angular momentum of the electron in a hydrogen atom consists of two parts, an orbital

part Z, which is due to the orbiting motion of the electron around the proton, and a spin part 3‘,
which is due to the spinning motion of the electron about itself. The properties of the hydrogen
atom cannot be properly discussed without knowing how to add the orbital and spin parts of the
electron’s total angular momentum.

In what follows we are going to present the formalism of angular momentum addition and
then consider some of its most essential applications.

7.3.1 Addition of Two Angular Momenta: General Formalism

In this section we present the general formalism corresponding to the problem of adding two
commuting angular momenta.

Consider two angular momenta J 1 and J 2 which belong to different subspaces 1 and 2; J 1

and J » may refer to two distinct particles or to two different properties of the same particle?.
The latter case may refer to the orbital and spin angular momenta of the same particle. Assum-
ing that the spin—orbit coupling is sufficiently weak, then the space and spin degrees of freedom
of the electron evolve independently of each other.

The components of J 1 and J 2 satisfy the usual commutation relations of angular momen-
tum:

[jlx: jly] = ihjlz, |:jly: jlz] = ihjlx, [jlz, jlx] = ihjl},, (7.91)
[jzx, JAzy:I = iﬁjzz, [jzy, jzz:l = ihjzx, [jzz, jzx:l = ihjzy. (7.92)

Since J 1, and J 2 belong to different spaces, their components commute:

[Jis Ju]=0. G k=x.3.2). (7.93)

3Throughout this section we shall use the labels 1 and 2 to refer to quantities relevant to the two particles or the two
subspaces.
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Now, denoting the joint eigenstates of j% and jlz by | j1, mp) and those of j% and jzz by
| j2, m2), we have

J2 1 m) = jiG+ DR | i, m), (7.94)
Ji | j1, mi) = mik | j1, my), (7.95)
T3 oy ma) = joGia+ DA | o, ma), (7.96)
Do, | ja, ma) = mah | jo, ma). (7.97)

The dimensions of the spaces to which J1and J» belong are given by (21 + 1) and (2j2 + 1),
respectively*. The operators J % and jlz are represented within the {| j;, m1)} basis by square

matrices of dimension (21 + 1) x (2j; + 1), while J % and jzz are representation by square
matrices of dimension (22 + 1) x (2j2 + 1) within the {| j2, m2)} basis.

Consider now the two particles (or two subspaces) 1 and 2 together. The four operators J 2,

J %, .flz, fzz form a complete set of commuting operators; they can thus be jointly diagonalized
by the same states. Denoting their joint eigenstates by | ji, j2; m1, m2), we can write them as
direct products of | j1, m1),and | jo, m3)

| ji, j2; my,ma) =| j1, m1) | j2, m2), (7.98)

because the coordinates of J 1 and J 2 are independent. We can thus rewrite (7.94)—(7.97) as

J) jis o misma) = G+ DR | i, o mi,ma), (7.99)
Ji, Ljt, s muuma) = mik | i, jo; mi,ma), (7.100)
j% | 1, j2s mi,m2) = ja(ja + DR | ji, jo; m1, ma), (7.101)
Jo. | jis jos mi,ma) = mahi | ji, jo; mi,ma). (7.102)

The kets | ji, jo; m1, my) form a complete and orthonormal basis. Using

D 1 g2 mi,ma)j, jos my,ma |=(Z|j1, mi){j1, mi I)(lez, m2){j2, ma I),

mimy mj m3
(7.103)
and since {| ji, m1)} and {| j», m3)} are complete (i.e., Zml | j1, m1){j1, m1 |= 1) and
orthonormal (i.e., (ji, m | j1, m1) = 5j{,j16m/1,m1 and similarly for | j», m3)), we see that
the basis {| j1, jo; m1, m2)} is complete,
Jj1 g2
D D0 iz muma)i, s mi,ma | =1, (7.104)

my=—jimy==jz
and orthonormal,
e, . . . 12 . . .
(J1s Jos my,my | ju1, jos my,ma) = (ji, my | j1, m1){jy, m5 | j2, m2)

= 0t 103, j>Oml, myOmt, ms- (7.105)

“4This is due to the fact that the number of basis vectors spanning the spaces to which J 1 and J 2 belong are equal
to (271 + 1) and (2, + 1), respectively; these vectors are |71, —j1), |j1, —j1 + 1), .- lj1, j1 — 1), 1j1, J1) and
L2, =i2), lj2, =2+ 1), 2, 2 — s 1j2s J2)-
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The basis {| ji, jo; m1, m2)} clearly spans the total space which is made of subspaces 1 and 2.
From (7.98) we see that the dimension N of this space is equal to the product of the dimensions
of the two subspaces spanned by {| ji, m1)}and {| j2, m2)}:

N=@Qji+1)xQh+1). (7.106)

We can now introduce the step operators fl L = JAlx +i fl , and jz L = JAZX + ifzy; their
actions on |/ jo; mymy) are given by

iz |1, jas mi,ma) = A/Gr Fm)Gr £my 4 1) i, j2; mi+ 1,ma),  (7.107)
s | 1, j2s mi,ma) = i/ (o Fma)(a £ ma 4 1) |j1, jo; mi,ma£1).  (7.108)

The problem of adding two angular momenta, J 1 and J 2,
J=Ji+ Ja, (7.109)

consists of ﬁndlng the eigenvalues and eigenvectors of J 2 and J.in terms of the eigenvalues and

eigenvectors of J 2, J? 2 J1 , and Jz Since the matrices of J 1 and J 2 have in general different
dimensions, the addition specified by (7.109) is not an addition of matrices; it is a symbolic
addition. R

By adding (7.91) and (7.92), we can easily ascertain that the components of J satisfy the
commutation relations of angular momentum:

[ B ] =inds [ L] =inde [L L] =i (7.110)

Note that .J %, J %, J 2 J. jointly commute; this can be ascertained from the relation:

P =Py B2+ Jsdry + Do, (7.111)
which leads to L A
[JZ, J%] = []2, ]ﬁ] —0, (7.112)
and to . N .
[ﬁ, jz] - [ﬁ, jz] - [ﬁ, jz] —0. (7.113)

But in spite of the fact that [j 2, J;] = 0, the operators jlz and jzz do not commute separately
with J2: R R

[Jz, jlz] £0, [JZ, J}Z] £0. (7.114)

Now, since J %, J %, J 2, J. form a complete set of commuting operators, they can be diago-

nalized simultaneously by the same states; designating these joint eigenstates by |/, j2; j, m),
we have

T jisjas g m) = j1Gh 4 DR2 | i, jos j, m), (7.115)
I3 jts s Jo m) = jaGo + DA% | j1, jos > m), (7.116)
TN i jos o my = jG + DR | ju, jos j, m), (7.117)
S| J1, jos J, m) = mh | j1, jo; j, m). (7.118)
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For every j, the number m has (2 + 1) allowed values: m = —j, —j +1,...,j — 1, j.

Since ji and j; are usually fixed, we will be using, throughout the rest of this chapter, the
shorthand notation | j, m) to abbreviate | ji, ja; j, m). The set of vectors {| j, m)} form a
complete and orthonormal basis:

J
DD mi ml=1, (7.119)

Jom==j
(Jj's m"| j, m) =10 10w m. (7.120)

The space where the total angular momentum J operates is spanned by the basis {| j, m)};
this space is known as a product space. It is important to know that this space is the same
as the one spanned by {| ji, jo; m1, m3)}; that is, the space which includes both subspaces 1
and 2. So the dimension of the space which is spanned by the basis {| j, m)} is also equal to

=2j1+1) x (2j2 + 1) as specified by (7.106).
The issue now is to find the transformation that connects the bases {| ji, j2; m1, m2)} and

{1 J, m)}.

7.3.1.1 Transformation between Bases: Clebsch—Gordan Coefficients

Let us now return to the addition of j 1 and j 2. This problem consists in essence of obtaining the
eigenvalues of j 2 and JZ and of expressing the states | j, m)interms of | ji, jo; my, m2). We
should mention that | j, m) is the state in which J 72 and J have fixed values, j(j + 1) and m,
but in general not a state in Wthh the values of J 1- and J 2. are fixed; as for | ji, jo; my, ma),

it is the state in which J 1 J 2 J 1z, and J 2, have fixed values.

The {| j1, j2; m1,m2)} and {| j, m)} bases can be connected by means of a transformation
as follows. Inserting the identity operator as a sum over the complete basis | ji, jo; m1, m2),
we can write

J1
| > m) =( > Z | jsdas myma){ji. joi my,my |)|J, m)
m1:—/| mZ__JZ
= > jas miuma | j, m) | j, j2; mi,ma), (7.121)
mimy

where we have used the normalization condition (7.104); since the bases {| ji, j2; m1, m2)}
and {| j, m)} are both normalized, this transformation must be unitary. The coefficients
(1, jo; m1,my | j, m), which depend only on the quantities ji, j», j, m1, ma, and m,
are the matrix elements of the unitary transformation which connects the {| j, m)} and
{| j1, j2; m1, m2)} bases. These coefficients are called the Clebsch—Gordan coefficients.

The problem of angular momentum addition reduces then to finding the Clebsch—Gordan
coefficients (1, jo; mi,mz | j, m). These coefficients are taken to be real by convention;
hence

|Gtz misma |js m) = (j, m | i, jas; mi,ma). | (7.122)

Using (7.104) and (7.120) we can infer the orthonormalization relation for the Clebsch—Gordan
coefficients:

DG m s as mu,ma) G, jas mi,ma | j, m) =8 0w ms (7.123)

mym3
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and since the Clebsch—Gordan coefficients are real, this relation can be rewritten as

D Gz miyma | j's mY i, oz my,ma | j, m) = 8jr, O m, (7.124)

mipmy

which leads to

Z(jl,jz; my,my | j, my*=1. (7.125)

mimy

Likewise, we have

Z Zﬁ,n, my,mhy | j, my(is jos mi,ma | jy m) =St Oty | (7.126)

m=—j

and, in particular,

DD edas mumy | j, m? =1 (7.127)

J om

7.3.1.2 Eigenvalues of J? and J

Let us study how to find the eigenvalues of J )2 and J. in terms of those of J L J 2 J1 , and Jz ;
that is, obtain j and m in terms of ji, j», m1 and m». First, since J = J1 + Jz we have
m = m1+my. Now, to find j in terms of j; and j», we proceed as follows. Since the maximum
values of m| and my are m e = j1 and mopax = j2, we have mpygx = Mimax + Momax =
J1+ j2; butsince [m| < j, then jmax = j1 + j2.

Next, to find the minimum value j,,;,, of j, we need to use the fact that there are a total of
(2j1+1) x (2j2+1) eigenkets | j, m). To each value of j there correspond (2 + 1) eigenstates
| j, m), so we have

./)710.X
> Qi+ =i+ D2a+1), (7.128)
J=Jmin
which leads to (see Example 7.2, page 408, for the proof)
jr%tin = (jl _j2)2 - Jmin = |]1 _j2|~ (7129)

Hence the allowed values of j are located within the range

1=rl<j<i+. (7.130)

This expression can also be inferred from the well-known triangle relation®. So the allowed
values of j proceed in integer steps according to

J=lh—=nLlhg=npl+1, . g+ip—=1, ji+ ). (7.131)

5The length of the sum of two classical vectors, A+ B must be located between the sum and the difference of the
lengths of the two vectors, A + B and |4 — B|, i.e., |4 — B| < |A + B| < A+ B.
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Thus, for every j the allowed values of m are located within the range —j < m < j.
Note that the coefﬁcier}t (jl,Ajz; mi, my | j, m) vanishes unless m| 4+ my = m. This can
be seen as follows: since J; = Ji, + J2,, we have

(1, jo; mi,ma | Jo = Ji, = Jo, | j, m) =0, (7.132)
and since J, | j, m) = mh | j, m), (j1,j2; mi,my | Ji, = mih{j1, jo; mi, ma |, and

(1, j2; m1,ma | Joz = mah{j1, jo; my, ma |, we can write
(m —my —m3) (j1, jo; my,mz | j, m) =0, (7.133)

which shows that (i, jo; m1, my | j, m) is not zero only when m — m; — my = 0.

[t mitmaEm = (ijs mimy|j. m)=0] (7.134)

So, for the Clebsch—Gordan coefficient (ji, jo; m1,my | j, m) not to be zero, we must simul-
taneously have

|m1+mz=m and li—J2 <] Sj1+j2~| (7.135)

These are known as the selection rules for the Clebsch—Gordan coefficients.

Example 7.2
Starting from 37" (2j + 1) = (2j1 + 1)(2j2 + 1), prove (7.129).
Solution

Let us first work on the left-hand side of

jma.’(
> Qi+D=Qh+DQa+D. (7.136)

J=Jmin

Since juax = j1 + Jj2 we can write the left-hand side of this equation as an arithmetic sum
which has (jmax — jmin + 1) = [(J1 + j2 + 1) — jmin] terms:

jmax
> Qi+ = Cijmin + DA Qjmin +3) + Qjmin + 5+ +[201 + j2) + 1] (7.137)
J=Jmin

To calculate this sum, we simply write it in the following two equivalent ways:

S = (2jmin + 1) + (zjmin + 3) + (2jmin + 5) +---+ [2(j1 +j2) + l]n (7~138)
S =[R20Gi+2)+ U+ 1201+2) =1+ 120G1+/2) =31+ + Qjmin +1). (7.139)

Adding these two series term by term, we obtain
28 =2[(Gi+ 2+ D)+ jmin] +2[G1+ 2+ D+ Jminl +- - +2[01 + 2+ 1) + jmin]. (7.140)
Since this expression has (jiax — jmin + 1) = [(j1 + j2 + 1) — jmin] terms, we have

28 =2[(1 + j2 + D)+ jminllG1 + j2 + 1) = jminl; (7.141)
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hence
S=[Gr+2+ D+ jminllUt + 24+ D) = jmind = Gt + 2+ 1* = jpiy. (7.142)
Now, equating this expression with the right-hand side of (7.136), we obtain
Gi+ia+ D —jp,=Ca+DQh+1), (7.143)

which in turn leads to
Jmin = U1 = 2)*. (7.144)

7.3.2 Calculation of the Clebsch—Gordan Coefficients

First, we should point out that the Clebsch—Gordan coefficients corresponding to the two lim-
iting cases where m| = ji, mo = jo, j = j1+ jo,m = j1 + pand m| = —j1, my = —ja,
Jj =J1+ jo,m = —=(j1 + j2) are equal to one:

s 72 JuL 221G+ j2), Gr+2) =1 i, 2 —jL—RIGr+72), —(i+j2)) =1

(7.145)
These results can be inferred from (7.121), since | (j1+/2), (ji+/2)), and |(j1+/2), —(1+j2))
have one element each:

U1+ j2), G+ 2)) = U, J2s Jis j2lGn +72), G+ 2)jt j2s Jis J2)s (7.146)

|J1+72), —Gr+2) = U, j2s —Jj1, —RlGi+52), =G+, j2s =i, —j2), (7.147)

where |(j1 + j2), (1 +j2), |G+ 72), =G +52)s L, j2s Jis Jj2),and |1, ja; —j1, —j2)
are all normalized.

The calculations of the other coefficients are generally more involved than the two limiting
cases mentioned above. For this, we need to derive the recursion relations between the matrix
elements of the unitary transformation between the {| j, m)} and {|j1, j2; m1,m2)} bases,
since, when ji, j» and j are fixed, the various Clebsch—Gordan coefficients are related to one
another by means of recursion relations. To find the recursion relations, we need to evaluate the
matrix elements (ji, jo; m1,my | JAi | j, m) in two different ways. First, allow fi to act to
the right, i.e.,on | j, m):

(s j2s miyma | Ju | j, m) = /(G Fm)G £m + D){j1, jo; mi,ma | j, mE1). (7.148)

Second, make fi = .fli + jzi act to the left®, i.e., on (j1, jo; m1, ma |:

Uts jos mi,ma | Jx | j, m) = a/ Gt £m) Gy Fmy+ D1, ja; mi F1,ma | j, m)
+ 1 Ga £m)Ga Fma+ D1, jo; mi,maF 11, m).  (7.149)

SRecall that (j1, j2: m1, malJix = AT Em1)G1 F m1 + Dijt, jas my F 1,mal.
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Equating (7.148) and (7.149) we obtain the desired recursion relations for the Clebsch—Gordan
coefficients:

VGFmG £m+1) (i, jo; mi,ma | j, mE1)

=JVO1 £m)Gr Fmi + D1, josmi F1,ma | j, m)

+ V(G2 £m2)(2 Fma + D)(j1, jo; my,maF 1| j, m).

(7.150)
These relations, together with the orthonormalization relation (7.125), determine all Clebsch—
Gordan coefficients for any given values of ji, j», and j. To see this, let us substitute m| = j
and m = j into the lower part of (7.150). Since mj can be equal only to m» = j — j; — 1, we
obtain

V2 i G=a =Dl =1 = VG2 —j+ i+ DGa+j —j1)
x (1, j23 1> G = jOljs J)-
(7.151)

Thus, knowing {j1, j2; j1, ( —jDlJj, j), we candetermine (j1, j2; j1, G —j1—DIj, j—1).
In addition, substituting m; = ji, m = j — 1 and mp = j — jj into the upper part of (7.150),
we end up with

V2ji gz juG =701 ) =v2iljs Gi=D,G—=jolJj, j—=1)
+VG2+ i =G =+ i+ DG g ji.G=i =D 1j, j—1).
(7.152)

Thus knowing (j1, j2; ji, G —Jj0) | j, j)and (ji, j2; j1, G —j1—1) | j, j—1), we can
determine (j1, jo; (j1i—1), (j —j1) | j, j —1). Repeated application of the recursion relation
(7.150) will determine all the other Clebsch—Gordan coefficients, provided we know only one
of them: (j1, jo; j1, (G — j1) | J, j). As for the absolute value of this coefficient, it can
be determined from the normalization condition (7.124). Thus, the recursion relation (7.150),
in conjunction with the normalization condition (7.124), determines all the Clebsch—Gordan
coefficients except for a sign. But how does one determine this sign?

The convention, known as the phase convention, is to consider (J1, j2; j1, (G —j1)|j, J) to
be real and positive. This phase convention implies that

(1o Jos miymy | j, m) = (=172, jis ma,my | j, m); (7.153)
hence
DA i — (=1 N=12(f jp: — — -
(1, j23 my,ma | j, m) = (=1y {1, J25 —my, —malj, —m) (7.154)
= (J2, J1; —ma, —milj, —m).

Note that, since all the Clebsch—Gordan coefficients are obtained from a single coefficient
{1, J2; 1, (G — jDIJ, j), and since this coefficient is real, all other Clebsch—Gordan coef-
ficients must also be real numbers.
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Following the same method that led to (7.150) from (ji, jo; mi,mor | J& | j, m), we
can show that a calculation of (ji, jo; m1,my | Ji|j m F 1) leads to the following recursion
relation:

VG Fm+ DG £m) (i, jo; mi,mal| j, m)
=JU1 £m)G1 Fmi+ D1, j2s myF 1, ma|j, mF1)

+ V(2 £m2)(G2 Fma + D) (j1, jo; my,maF 1]j, m F1).

(7.155)

We can use the recursion relations (7.150) and (7.155) to obtain the values of the various

Clebsch—Gordan coefficients. For instance, if we insert m; = ji, my = jo — 1, j = j1 + jo,
and m = j; + j» into the lower sign of (7.150), we obtain

Ui, g2 J Ga = DIGH+ ), Gr+2—1) = ]— (7.156)
J1+ )2

Similarly, a substitution of m| = j1 — 1, my = j2, j = j1 + j2, and m = j| + j» into the lower
sign of (7.150) leads to

Gro gz Gi= D plGr+ )y G4+ o= 1) = [—2— (7.157)
J1+ 2
We can also show that
m
(J, 1, m,0]j, m) = ———, (j,0; m,0] j, m)=1. (7.158)
ViU +1)

Example 7.3

(a) Find the Clebsch—Gordan coefficients associated with the coupling of the spins of the
electron and the proton of a hydrogen atom in its ground state.

(b) Find the transformation matrix which is formed by the Clebsch—Gordan coefficients.
Verify that this matrix is unitary.

Solution
In their ground states the proton and electron have no orbital angular momenta. Thus, the
total angular momentum of the atom is obtained by simply adding the spins of the proton and
electron.

This is a simple example to illustrate the general formalism outlined in this section. Since
J1 = % and j, = %, 7 has two possible values j = 0, 1. When j = 0, there is only a single
state | j, m) =| 0, 0); this is called the spin singlet. On the other hand, there are three possible

values of m = —1, 0, 1 for the case j = 1; this corresponds to a spin triplet state | 1, —1),
[1, 00,11, 1).
From (7.121), we can express the states | j, m) in terms of | %, %; my, my) as follows:
/2 V2o 11

mi=—1/2  my=—1/2
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which, when applied to the two cases j = 0 and j = 1, leads to

111 1 111 1 11 11 11 11
0.0 = (333310 0]3.3 373+ 33 3310 0]3.3 3 3)
(7.160)
11 11 11 11
[1, 1) = <§’§’ 5’5'1’ 1)‘5,5, §§> (7.161)
|1’ O>=<l’l’ l’_l|1’ 0)‘1,1’ 1’ l> l’l; —l,lll, 0)‘1’1’ _l’l>’
2°2°2 2 2722 2 272 272 2°2° 22
(7.162)
=1 = Gogi —50=3 1 =D|5055 —5073). (7.163)
2727 2 2 2°2° 20 2

To calculate the Clebsch—Gordan coefficients involved in (7.160)—(7.163), we are going
to adopt two separate approaches: the first approach uses the recursion relations (7.150) and
(7.155), while the second uses the algebra of angular momentum.

First approach: using the recursion relations
First, to calculate the two coefficients (%, %; :I:%, :F% | 0, 0) involved in (7.160), we need, on
the one hand, to substitute j = 0,m =0, m| = my = % into the upper sign relation of (7.150):

11 11 11 1 1
— = ==, =10, 0)=—(=,—; —,—= |0, 0). 7.164
2755 T35 10, 0=~ 10, 0) (7.164)

< 2’2727 2

On the other hand, the substitution of j = 0 and m = 0 into (7.125) yields
11 11

1 1
— = ==, =10, 00+ (=, =5 =,—= 10, 0> =1 7.165
(2,2 22| )-I-(222 2| ) ( )
Combining (7.164) and (7.165) we end up with
11 1 1 1
(=, =; =,—= 10, 0) = +—. (7.166)
2°2° 2 2 V2

The sign of (%, %; %, —% |0, 0) has to be positive because, according to the phase convention,

the coefficient (j1, j2; j1, ( — j1) | j, j) 1s positive; hence

11 1 1 1
2°2°2 2 V2
As for (%, %; —%, % | 0, 0), its value can be inferred from (7.164) and (7.167):
(l L] l|O 0) = ! (7.168)
27 29 2: 2 s - ﬁ .

Second, the calculation of the coefficients involved in (7.161) to (7.163) goes as follows. The
orthonormalization relation (7.125) leads to

-, —= |1, =1)?> =1, (7.169)
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and since (%, %; %, % | 1, 1) and (%, %; —3,—7 | 1, —1) are both real and positive, we have

1 11 1 1
i - = —===11, =1)=1. (7.170)
2 2°2° 2 2
As for the coefficients (2 é, é, % | 1, 0) and (%, %; —%,% | 1, 0), they can be extracted by
setting j = 1,m =0,m; = 2,m2 = —% and j =1,m=0,m; = —%,mz = %,respectively,

into the lower sign case of (7.155):

11 1 11 11
2(=, =; 1, - = = =11 171
V2(2, 55 =5 | 0)=(5 5 5511 1 (7.171)
11 1 11 11
2(=y=; === 1,00 =(=,=; =, = |1, 1). 7.172
f<2222| )=1{55 5511 (7.172)
Combining (7.170) with (7.171) and (7.172), we find
(1 11 1“0)_(1 1 11“0)_1 a.173)
2’2720 20 T 222t T '

Finally, substituting the Clebsch—Gordan coefficients (7.167), (7.168) into (7.160) and (7.170),
and substituting (7.173) into (7.161) to (7.163), we end up with

|0, 0) = L\l 1' 1 1 ! (7.174)
IRV, P N f 2’22 2/ '

11 11
1 |11 11 1 (11 1 1

1,0 = —|=, =, —=, = — =, = =, —= 7.176

| b > /\/5 2! 27 23 2>+«/§‘23 2, 2! 2>’ ( )
11 1 1

[1, =1) = 33 T3 75 (7.177)

Note that the singlet state |0, 0) is antisymmetric, whereas the triplet states |1, —1), |1, 0),
and |1, 1) are symmetric.

Second approach: using angular momentum algebra

Beginning with j = 1, and since | 1, 1) and | %, %; %, %) are both normalized, equation (7.161)

leads to
(1 . 1|1 1?2 =1. (7.178)
2°2° 272 '
From the phase convention, which states that (ji, j2; 7, (j —j1)|j, J) must be positive, we see

that(2,2, 3>73 L 11, 1) = 1, and hence

L y=|1 1 L1 (7.179)
SR A M A '

Now, to find the Clebsch—Gordan coefficients in | 1, 0), we simply apply J_on|1, 1):

11
J_ 1, 1) J J 7.180
| =(Ji_+ )'2 35 5 2> ( )
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which leads to

11, 0)= |11 11+1 11 1 1 (7.181)
ﬁ2’2’ 2’2 ﬁZ’Z’ 27 2/ '
hence(%,%; —%,ll , 0) = 1/\/_and % % %,—% |1, 0) = l/«/_ Next, applylngJ_ on
(7.181), we get
|1, =1) = P (7.182)
B - 23 27 27 2 M .
Finally, to find | 0, 0), we proceed in two steps: first, since
11 11 111 1
0’ 0) = - = ==, = b -, = =, —=), 7.183
10. 0 =al3.3 22>+‘222 2> (7.183)

where a = (%, %; —%,% | 0, 0) and b = (%, %; %, —% | 0, 0), a combination of (7.181) with
(7.183) leads to

a b
WA ( )
second, since | 0, 0) is normalized, we have
0,010, 0) =a*+5b>=1. (7.185)

Combining (7.184) and (7.185), and since <% 1 %, % | 0, 0) must be positive, we obtain
a = (%, %; —%,% | 0, 0) = —1/«/_ 2and b = % —-170, 0 = 1/«/5. Inserting these
values into (7.183) we obtain

N —
]

11 1|11 1 1
0, 0) -, = —_— =, = =, == ). 7.186
R P B o B S
(b) Writing (7.174) to (7.177) in a matrix form:
0, 0) 0 1/¥V2 —1/¥2 0 13,3 % 3)
1, 1 1 0 0 0 111" _1
AU l2:23 2. ~2) , (7.187)
11, 0) 0 1/vV2 1/¥2 0 4.5 -5 5
11, -1) 0 0 0 1 | 5.5 =1, -3)
we see that the elements of the transformation matrix
0 1/v/2 —1/4/2 0
1 0 0 0
U= 7.188
0 12 1VZ 0| (7.188)
0 0 0 1

which connects the {| j, m)} vectors to their {| ji, jo; m1, m2)} counterparts, are given by the
Clebsch—Gordan coefficients derived above. Inverting (7.187) we obtain

111 o 1 0 o\/[/ o0
155 3= || wv2 o0 vz oo ffnD (7.189)
1355 =3 1) SUV2 0 V2 0L 0
T o o o 1)\ n-n
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From (7.187) and (7.189) we see that the transformation matrix U is unitary; this is expected
since U~! = UT.

7.3.3 Coupling of Orbital and Spin Angular Momenta

We consider here an important application of the formalisrAn of Aangu}ar momenta addition to
the coupling of an orbital and a spin angular momentum: J=L+S. In particular, we want
to find Clebsch—Gordan coefficients associated with this coupling for a spin s = % particle.
In this case we have: j; = [ (integer), m| = my, jo = s = %, and my = my = :l:%. The
allowed values of j as given by (7.130) are located within the interval |/ — %l <j<|l+ %l. If

! = 0 the problem would be obvious: the particle would have only spin and no orbital angular
momentum. But if / > 0 then j can take only two possible values j = [ + % There are

2(I 4+ 1) states {| [ + %,m)} corresponding to the case j =/ + 1/2 and 2/ states {| / — Lomy
corresponding to j =/ — % Let us study in detail each one of these two cases.

Case j =/+1/2
Applying the relation (7.121) to the case where j =/ + %, we have

1 L & 1 1 1
‘l+§>m> = Z Z <l: 59 mj, mjy l+§5 m> l: 57 ml>m2>
my=—Ilmy=—1/2

1 1 1 1 1

= l) = s T A ) ) la ~o [

Z< 2 M 2} +3 m> 2 "M 2>

!

1 1 1 1 1
l = > A l A l, = s~ | 7190
+Z<,2 m12‘+2 m> 2m12> ( )

Using the selection rule m; + my = m or m; = m — my, we can rewrite (7.190) as follows:

) P D SO O PR SO P DR B
P R N R LN B R e R R
+ll' ! lH—l 11' L1 (7.191)
AR R | SRRy A '
We need now to calculate (/, %; m+%,—%|l+%, m) and ([, %; m—%,%|l+%, m). We begin

with the calculation of (/, 3; m + 5, =31/ + 5, m). Substituting j =1+ 1, ji =1, j» = 1,
mp+m= %, my = —% into the upper sign case of (7.155), we obtain

l +3 I+ +1 ll' +1 lI—Fl
nTy )\ My TP
1 1 1 1 1 1
\/(Z+m+2)(l m+2)<l,2,m 7 2‘l+2,m >

(7.192)

or

PRV N P S W (R VR V2 M NS AU A 3 109
RN S R R e yo o L NN A A
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1
> 2
(l,%; m—l—%,—%ll—k%, m — 1>intermsof(l,%; m — %,—%ll—k%, m —2):

1 o1 1 I—m+1/2 [I—=m+3/2
la_; m+_7__l+_:m =
2 27272 I—m+32\I=m+52

1 3 1 1
><<l,—' m— ‘l+—,m—2>. (7.194)

By analogy with (/, 5; m + %, —%Il + %, m) we can express the Clebsch—Gordan coefficient

272 "2

We can continue this procedure until m reaches its lowest values, —/ — %:

1 1 1 1 l—m+1/2 [I—m+3/2
la_; m+_,__l+_,m =
2 27 2 2 [—m+32\\ I —-m+5/2

IEEA R R .
A+1\72 T2 T T2

(7.195)

or

1 1 1 1 I—m+1/2 1 1 1 1
I, =; =, —=\|l+ =, = /——(, = =L, —=\|{l+=, =l—=). (7.196
<2m+2 2‘+2m>V21+1<2 2‘+2 2>( )
2

From (7.125) we can easily obtain <l, —%; -1, —% ‘l + %, - — %> = 1, and since this
coefficient is real we have <l,—%; — Z,—% }l—i—%,—l— %) = 1. Inserting this value into

(7.196) we end up with

1 111 T=m+1/2
<’2’m+2’ 2}+2’m> 2+ 1 (7.197)

Now we turn to the calculation of the second coefficient, (/, %; m — %, %|l + % m), involved
in (7.191). We can perform this calculation in two different ways. The first method consists of
following the same procedure adopted above to find (/, %; m + %, —%Il + %, m). For this, we
need only to substitute j = [ + %,jl =1 = %,ml =m— %,mz = % in the lower sign
case of (7.155) and work our way through. A second, simpler method consists of substituting
(7.197) into (7.191) and then calculating the norm of the resulting equation:

s Ay m— =, =
2141 2 2°2

l=m+1)2 1 11
o 2

1 2
‘1+ -, m> , (7.198)

where we have used the facts that the three kets |/ + %, myand |I,1; m+ %, 3F%> are normal-

s 77
ized. Again, since (/, %; m— %, %|l + %, m) is real, (7.198) leads to

1 NI TTm+in2
LT S N PO S S i Ve 7.199
<’2 " 22‘+2 ’"> A1 (7.199)
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A combination of (7.191), (7.197), and (7.199) yields

P S [ TR V-2 W A R AW [Ea R VA MR ) 11
>IN Ty 2" T T2V axr P2 ")

(7.200)
where the possible values of m are given by
= -/ ! l+1 l+3 / 3’l 1l—|—1 (7.201)
S e L N N A, '

Case j=/—1/2
There are 2/ states, {|/ — %, m)}, corresponding to j = [ — %; these are ‘l — %, -+ %>,

1 3
=4 -1+3).,

1 1 111
I—=m)={l,=; S
‘ 5m> <,25 m+2’ 2‘ 25m>

1 11 1
+<l,—'m—— ‘l——,m>

/| — %, / — %> Using (7.121) we write any state ‘l — %, m> as

ll +1 1
—m = ——
2 272

2’ 2’2 2 2’ 22

1 11
I, = m > (7.202)

The two Clebsch—Gordan coefficients involved in this equation can be calculated by following
the same method that we adopted above for the case j = [ + % Thus, we can ascertain that

1 1 1 [—m+1/2| 1 11
l9_; m+_!__ - A7 . 1 lB_; m__’_ b
2 27 2 2141 2 2°2

|/ — %, m) is given by

1 I+m+1/2
I— =, m)= |——T 12
2 20+ 1

(7.203)
where : 3 3 :
=—l4+—-, =1+ ... ==, [—=. 204
m +2> +2> B 2) 2 (7 O)
We can combine (7.200) and (7.203) into
| I=m+1] 11 I+m+1] 1 11
pal ) [BErEE L1 g L 1)
2 21 +1 2 272 21 +1 2 2°2
(7.205)

Illustration on a particle with / = 1
As an illustration of the formalism worked out above, we consider the particular case of / = 1.
Inserting/ = l andm = 2, &, —1 —% into the upper sign of (7.205), we obtain

2527 2>
33 1 1
- =) = |I,= 1,=), (7.206)
2" 2 2 2
3 1 2 1 1 1 1 1
-, = = \/j 1, ,O,_ + — 1, = 19__ 5 (7207)
2" 2 3 2 2 V302 2
3 1 1 1 1 2 1 1
=) = —|1,=; -1, = +\/j 1, = 0,—%), (7.208)
2 2 J3l 02 2 3 2 2
3 3 1 1
= —=) = |Lz -1, —2). 7.209
‘2 2> | 2 2> ( )
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Similarly, an insertion of / = 1 and m = %, —% into the lower sign of (7.205) yields
1 1 2 1 1 1 1 1
AN A = 5 15_9 17__ - T = la ) 05_ > (7210)
272 3172 2 V312 2
1 1 1 1 1 2 1 1
- —) = —1,=;0,—<)— \/j 1,=; —1,=). (7.211)
27 2 V3102 2 3172 2

Spin—orbit functions

The eigenfunctions of the particle’s total angular momentum J=L+S may be represented
l,m— %> and

by the direct product of the eigenstates of the orbital and spin angular momenta,
%, %) From (7.205) we have

1 [IFm+ 1 N1 1 [1+m+ 1
I+—,m)= &l,nw_ — ——)+ L]
2 20+ 1 2/2> 2 20+ 1

If this particle moves in a central potential, its complete wave function consists of a space part,

1|11
,m——>‘—,—>. (7.212)
2/1272

(rOpln,l,m + %) = Ry ()Y, ma 1o and a spin part, %, i%):
/1¢m+% 1 1 I£m+1 11
lI'n,l,_,‘:lj:%,m = Ru(r) 20 +1 Yl’m+% 2’ _§> + 21 +1 Y”’”_% 2’ §> ’

(7.213)

1 0
Z’_%> = ( 1 ) we
Rnl(r) ivlim+%Yl,m—%(e’ QD) (7214)

v g1 (I”,e, (0): ’
nl,j=lE7,m 20+1 \/l Fm+ %Y, m+%(9> )

Using the spinor representation for the spin part, ‘%, %> = ( (1) ) and

can write (7.213) as follows:

where m is half-integer. The states (7.213) and (7.214) are simultaneous eigenfunctions of
J2, L2, 82, and J. with eigenvalues A2 (j + 1), B2I(I + 1), h%s(s + 1) = 34%/4, and hm,

respectively. The wave functions ¥, , ettt om (r, 0, ) are eigenstates of L-Sas well, since
9obs ) — 2 £l

5 2 1 /2 5 E
L-Snljm) = E( 2—L2—S2)|n1jm>
2
= 7[j(j+1)—l(l+l)—s(s+l)]|nljm). (7.215)

Here j takes only two values, j =/ + %, so we have

EY 2 3 Lin?, =1+ 1
(nljm| L - S|nljm) = [ ]z 2 J 2

—|jG+D) -1+ ==
2 4 ~le+vm?,  j=1-4
(7.216)
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7.3.4 Addition of More Than Two Angular Momenta
The formalism for adding two angular momenta may be generalized to those cases where we
add three or more angular momenta. For instance, to add three mutually commuting angular
momenta j = j 1+ j 2+ j 3, we may follow any of these three methods. (a) Add j 1 and j )
to obtalin jlz = jlf" jz, and then aAdd J312Ato {33: Ji: jlz + j3. (b) édd jz gnd j3 to
form j23 = jz + j3, and then add j23 to jl: J = jl + j23. (c) Add jl and j3 to form
j13 = jl + j3, and then add j13 to jz: j = jz + j13.

Considering the first method and denoting the eigenstates of j % and jlz by | j1, m1), those
of j%, and .fzz by | j», m2), and those of j% and j3z by | j3, m3), we may express the joint

eigenstates |12, j, m) of J?, J%, J%, J?Z, J? and J; in terms of the states
|715 J2, J35 mi,ma,m3) =| ji, my) | j2, m2)lj3, m3) (7.217)

as follows. First, the coupling of J 1 and J 2 leads to
J1 J2
iz, miay = D D o das mima | jiz, midlji, ja; mi, ma), (7.218)
my==ji my==j2

where m12 = my 4+ my and |j1 — j2| < ji2 < |j1 + Jj2|. Then, adding jlz and j3, the state
| /12, j, m) is given by

J12 J3

> D s mima | iz, mid i, 3 miz, msljia, j,mlj, ja, j3 mi, ma, m3),

mip=—j12 my=—j3
(7.219)

with m = myy + m3 and |j12 — j3| < j < |j12 + j3l; the Clebsch—Gordan coefficients
(J1, 25 m1,ma|ji2, mi2) and (j12, j3; mi2, m3|j12,j, m) correspond to the coupling of J
and J > and of J 12 and J 3, respectively. The calculation of these coefficients is similar to that
of two angular momenta. For instance, in Problem 7.4, page 438, we will see how to add three
spins and how to calculate the corresponding Clebsch—Gordan coefficients.

We should note that the addition of J 1, J >, and J 3 in essence consists of constructing the
eigenvectors | j12, j, m) interms of the (21 +1)(2j2+1)(2j3+1) states | ji1, j2, j3; m1, m2, m3).
We may then write

Jiljiz, jom) = h/jG 4+ 1) = m@m £ D jiz, j.m £ 1), (7.220)

Ji 1, 2, 3y miyma,ms) = A1 G + 1) — my(my £ DIji, ja, j3; (m1 £ 1), ma, m3),
(7.221)

oo | rsjos 3 misma,ms) = b ja(ja + 1) — ma(my £ D ju, jo, j3: mu, (my £ 1), m3),
(7.222)

Js | j1s jos jas mi,ma,m3) = b/ j3(js + 1) — m3(ms £ D)1, jo, jz; m1, ma, (m3 £ 1)).
(7.223)

The foregoing method can be generalized to the coupling of more than three angular mo-

menta: J = J 1+ J )+ J 34+ J ~. Each time we couple two angular momenta, we reduce
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the problem to the coupling of (N — 1) angular momenta. For instance, we may start by adding
j 1 and J 2 to generate J 12; we are then left with (N — 1) angular momenta. Second, by adding
J 12 and J 3 to form J 123, we are left with (N — 2) angular momenta. Third, an addition of J 123

and J. 4 leaves us with (N — 3) angular momenta, and so on. We may continue in this way till
we add all given angular momenta.

7.3.5 Rotation Matrices for Coupling Two Angular Momenta

We want to find out how to express the rotation matrlx assomated with an angular momentum

J in terms of the rotation matrices corresponding to J 1 and J » such that J J 1+ J 2. That is,
knowing the rotation matrices dU1) () and dU2) (5), how does one calculate d,(nj;l, (8)?

Since . A
) (B) = (j, m' | Ry(B) | j. m), (7.224)
where
| joom) = " (rojos miuma | jo m) | i, jos my,ma), (7.225)
mimy
| jom'y = D (s jas my,my | s m)jis jos mi, mh), (7.226)
m'ym)

and since the Clebsch—Gordan coefficients are real,

(om' 1= D G jos miumhy |, m') 1 s mh, mb), (7.227)

m'ym)
we can rewrite (7.224) as

d0 B = D> Urjas mima | j, m)ir, o mimhy |, m')

UM 'y
X (j1, jos my, m5IRy(B) | ji, joi my, m2). (7.228)

Since ﬁy(ﬂ) = exp[—ﬁjy/h] = exp[—ﬂjly/h]exp[—ﬂjzy/h], because Jy = .f1y + JAQ},, and
since (j1, jo; my, my| = (j1, m | {jo, my | and | ji, jo; m1,ma) =| j1, m1) | j2, m2), we
have

dD B) = > > ooz miuma | jo ). oz mhmb |, m')

mimy m’lm’z

. i, » . . [, .
x(j1, my | exp [_Eﬂle] | j1, m1){j2, my | exp [—gﬁJzy] | j2, m2),
(7.229)

or

A B) =D D" Gjrojas musma |y m)jn, oz mimiy | j, m)dy) (B (B),

mimy m' m!,

(7.230)
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with .
dr(njlr)nl(’b)) (j1, m) | exp [—gﬁf ] | j1, m1), (7.231)
,gfzr)nz(ﬁ) = (j2, mj | exp [——ﬂJz } | j2, m2). (7.232)

From (7.54) we have A
d) () = ™I DY) (a, B, y); (7.233)

hence can rewrite (7.230) as

DY) (@ p.y) =" > i jos misma | jo myjrs jos my,mb |, m >D(J‘) (@, B, DY (a, B,y),

mymy
mimy m/lmz

(7.234)
since m = my + m'; and m" = my + m).
Now, let us see how to express the product of the rotation matrices dU) (8) and dU2) (8) in
terms of d/) (). Sandwiching both sides of

exp [—%ﬂjl)} exp |:—%,b’JEy:| — exp [—%ﬁjy} (7.235)
between
| js g2 mi,ma) =D (j1, jo; mi,ma | j, m) | j, m) (7.236)
Jm
and
s g2 miy,myl =D (i, jos mhy,my | j, m')(j, m' |, (7.237)
Jjm’

and since (j1, jo; my, ms| = {j1, m | (j2, m5 |and | ji1, jo; m1, ma) =| j1, m1) | ja, ma),
we have

: i, » . . i,s .
(j1, m’ | exp [‘gﬂjly] | j1, m1)(j2, my | exp [—gﬂJz,} | j2, m2)

= D Gt jos muma |, my(Gr, ja; mhomb | j, m'), m' | Ry(B) | j, m)

jmm’
(7.238)
or
U L0 lji1t+j2] o)
ds lml(ﬁ) mzmz(ﬂ) Z z<j1,j2; my,my | j, m)(ji, jo; my,my | j, mhd ().
lj1—=j2l mm’
(7.239)

Following the same procedure that led to (7.234), we can rewrite (7.239) as

()] (2) _ ; P N s 1Y)
Dmllml(aaﬁa V)Dmlzmz(aaﬁs V) _z (J15J25 my,ma | j, m){j1, j2; my,my | j, m )Dm/m(asﬂa y)

jmm’

(7.240)
This relation is known as the Clebsch—Gordan series.
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The relation (7.240) has an important application: the derivation of an integral involving
three spherical harmonics. When j; and j; are both integers (i.e., j1 = /1 and j» = /) and m
and m> are both zero (hence m = 0), equation (7.240) finds a useful application:

Dyt (@, B ) Dy (@, B ) Zh&woumwbmwamD%Wﬂﬂ
Im'

(7.241)

Since the expressions of D(l%, D(lfz), and D(l)O can be inferred from (7.73), notably

pO 4
D,g(a, B,0) = ,/2l+1 Yy (Bsa), (7.242)
we can reduce (7.241) to

QL+ D@L+ 1)
Yiymy By ) Yiymy (Br o) =D\ | = (1,125 0,0 11, 0){ly, Lps my,ma |1, m) Yy (B, ),
i 2 % 4m (2l +1) "

(7.243)
where we have removed the primes and taken the complex conjugate. Multiplying both sides
by Y (B, ) and integrating over o and /8, we obtain the following frequently used integral:

2 T
A MAxmwmnmwmmmmmmwwz CLENCRED 1 1:0,01 1, 0)
x (I, by mi,ma |1, m).
(7244

7.3.6 Isospin

The ideas presented above—spin and the addition of angular momenta—find some interesting
applications to other physical quantities. For instance, in the field of nuclear physics, the quan-
tity known as isofopic spin can be represented by a set of operators which not only obey the
same algebra as the components of angular momentum, but also couple in the same way as
ordinary angular momenta.

Since the nuclear force does not depend on the electric charge, we can consider the proton
and the neutron to be separate manifestations (states) of the same particle, the nucleon. The
nucleon may thus be found in two different states: a proton and a neutron. In this way, as the
protons and neutrons are identical particles with respect to the nuclear force, we will need an
additional quantum number (or label) to indicate whether the nucleon is a proton or a neutron.
Due to its formal analogy with ordinary spin, this label is called the isofopic spin or, in short,
the isospin. If we take the isospin quantum number to be %, its z-component will then be
represented by a quantum number having the values % and —%. The difference between a
proton and a neutron then becomes analogous to the difference between spin-up and spin-down
particles.

The fundamental difference between ordinary spin and the isospin is that, unlike the spin,
the isospin has nothing to do with rotations or spinning in the coordinate space, it hence cannot
be coupled with the angular momenta of the nucleons. Nucleons can thus be distinguished by

(f3) = :l:%, where 73 is the third or z-component of the isospin vector operator .
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7.3.6.1 Isospin Algebra
Due to the formal analogy between the isospin and the spin, their formalisms have similar
structures from a mathematical viewpoint. The algebra obeyed by the components 71, f, #3 of

the isospin operator ¢ can thus be inferred from the properties and commutation relations of the
spin operator. For instance, the components of the isospin operator can be constructed from
the Pauli matrices 7 in the same way as we did for the angular momentum operators of spin %
particles:

;:

z, (7.245)

0 1 0 —i 10
Tl:(l 0), T2=(i 0’), T3=(0 _1). (7.246)

The components 1,6, 5 obey the same commutation relations as those of angular momentum:

| =

with

~

[tAl, fQ] = itA3, [fz, tAg] = l‘lfl, [tAg, tAl] =ibh. (7.247)

So the nucleon can be found in two different states: when 73 acts on a nucleon state, it gives the
eignvalues :I:%. By convention the 73 of a proton is taken to be 3 = +% and that of a neutron is

3 = —%. Denoting the proton and neutron states, respectively, by | p) and | n),
1 1 1 1 1 0
=lt==,3==)= =lt==-,3=—=)= 7.248
| p) 5213 2> (0), | n) 513 2> (1), ( )
we have
f|)—511—111 (7.249)
3 p = 13 2a 2 - 2 29 2 ) .
A ~ 1 1 1|1 1
t — t ~—, == ) =—=|=,—=). 7250
v = -3} = =35 5) (7.250)
We can write (7.249) and (7.250), respectively, as
/1 0 1 L (1
(3 0)() -4 e
11 0 0 1L(0
TEES 6 R

By analogy with angular momentum, denoting the joint eignstates of 7> and 73 by | ¢, 73),
we have

Pl sy=tt+1)|t,6), Bt 6)=6]lt 5). (7.253)

We can also introduce the raising and lowering isospin operators:

N n 1
ty = tl+it2=§(‘[1+i‘[2)=( 0 ), (7.254)

~

1
0 0
. . (00
t——tl_lt2—§(fl_lf2)—(1 0

) (7.255)
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hence

iv|t, 3y =ytt+ 1) —t3(3+1) |t, 5 £1). (7.256)

Note that 7, and 7_ are operators which, when acting on a nucleon state, convert neutron states
into proton states and proton states into neutron states, respectively:

ir|n)=|Dp), i_ | p)=|n). (7.257)

We can also define a charge operator
O=e (?3 + —) , (7.258)

where e is the charge of the proton, with
Olp)=elp), 0 |n)=0. (7.259)
We should mention that strong interactions conserve isospin. For instance, a reaction like
d+d— a+x° (7.260)

is forbidden since the isospin is not conserved, because the isospins of d and a are both zero
and the isospin of the pion is equal to one (i.e., T(d) = T(a) = 0, but T'(x) = 1); this
leads to isospin zero for (d + d) and isospin one for (a 4+ 7). The reaction was confirmed
experimentally to be forbidden, since its cross-section is negligibly small. However, reactions
such as

p+p—od+zt, p+n—od+x° (7.261)

are allowed, since they conserve isospin.

7.3.6.2 Addition of Two Isospins

We should note that the isospins of different nucleons can be added in the same way as adding
angular momenta. For a nucleus consisting of several nucleons the total isospin is given by

the vector sum of the isospins of all individual nucleons: T = Z t, For 1nstance the total

isospin of a system of two nucleons can be obtained by coupling their isospins tl and 12
T =1 +10s. (7.262)
Denoting the joint eigenstates of f%, f%, T 2 and T 3by| T, N), we have:

2| T, Ny=T(T+1)| T, N), 3|7, Ny=N|T, N). (7.263)

Similarly, if we denote the joint eigenstates of f 22, f13, and f23 by |t1, ta; ny,n2), we have

(30,0 n,ma) = 60+ D, t; ny,na), (7.264)
t5lt, oy ny,np) = b+ Dlt, t2; ny,n2), (7.265)
fi5lt, t; ni,n2) = nilt, t; ni,na), (7.266)
bylt, o ni,n2) = nalt, 25 ny,na), (7.267)
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The matrix elements of the unitary transformation connecting the {| 7', N)}and {|¢{, t2; n1, n2)}
bases,
T, N) = Z (t1, t; mn2|T, N)lt, t2; ny,n2), (7.268)
ni,ny
are given by the coefficients (71, t; niny|T, N); these coefficients can be calculated in the
same way as the Clebsch—Gordan coefficients; see the next example.

Example 7.4
Find the various states corresponding to a two-nucleon system.

Solution
Let T be the total isospin vector operator of the two-nucleon system:
T =1+t (7.269)

This example is similar to adding two spin % angular momenta. Thus, the values of T" are 0 and
1. The case T = 0 corresponds to a singlet state:

1
10, 0) = 7 [l 21 I na—=1n)i | p2], (7.270)

where | p); means that nucleon 1 is a proton, | n); means that nucleon 2 is a neutron, and so
on. This state, which is an antisymmetric isospsin state, describes a bound (p-#n) system such
as the ground state of deuterium (7" = 0).

The case T' = 1 corresponds to the triplet states |1, N) with N = 1,0, —1:

|1, ) =Iphlp, (7.271)
I, 0) = %U ot L)t | mhilphal]. (7272)
11, —1) =] n)1 | m)a. (7.273)

The state | 1, 1) corresponds to the case where both nucleons are protons (p-p) and | 1, —1)
corresponds to the case where both nucleons are neutrons (n-n).

7.4 Scalar, Vector, and Tensor Operators

In this section we study how operators transform under rotations. Operators corresponding to
various physical quantities can be classified as scalars, vectors, and tensors as a result of their
behavior under rotations.

Consider an operator ,21, which can be a scalar, a vector, or a tensor. The transformation of
A under a rotation of infinitesimal angle 60 about an axis 7 is’

A = RI00)AR,00), (7.274)

TThe expectation value of an operator A with respect to the rotated state | y') = Ru(50) | ) is given by
W ALY = WIRN©0)ARN0) | y) = (W14 | ).
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where R, (60) can be inferred from (7.20)

Ro(00) =1 — %59;2 . (1.275)
Substituting (7.275) into (7.274) and keeping terms up to first order in 66, we obtain
A=A4- ;—59 (4, 7-J]. (7.276)

In the rest of this section we focus on the application of this relation to scalar, vector, and tensor
operators.
7.4.1 Scalar Operators

Since scalar operators are invariant under rotations (i.e., A = /I), equation (7.276) implies that
they commute with the angular momentum

[4, Ji]1=0 (k=x,y,z). (7.277)

This is also true for pseudo-scalars. A pseudo-scalar is defined by the product of a vector A
and a pseudo-vector or axial vector B x C: 4 - (B x C).

7.4.2 Vector Operators

~

On the one hand, a vector operator A transforms according to (7.276):

i
/

~b

A =Ad—Lood, n-J1. (7.278)

On the other hand, from the classical theory of rotations, when a vector A is rotated through an
angle 60 around an axis 7, it is given by

A = A+607 x A. (7.279)
Comparing (7.278) and (7.279), we obtain
(A, 7i-J]=ihi x A. (7.280)
The jth component of this equation is given by
(A, ii-J1=ihGix A); G =x,0.2), (7.281)
which in the case of j = x, y, z leads to
(4] = [A 4] =42 /] =0, (7.282)
(A b)) = indey |4y K] =inde, [4z J]=ind,, (7.283)

>

)

A
(A, L] = =ind,, [4y, L) ==inde, |4 J))=—inde. (.28%)
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Some interesting applications of (7.280) correspond to the cases where the vector operator A
is either the angular momentum, the position, or. the hnear momentum operator. Let us consider

these three cases separately. First, substituting A J into (7.280), we recover the usual angular
momentum commutation relations:

A

Il =ihJ,. (7.285)

R
S

[jxs jy] =ihJ;, [jys jz] :ihjx, [

Second, in the case of a spinless particle (i.e., J = Z), and if 4 is equal to the position operator,
A = R, then (7.280) will yield the following relations:

[;e,ix] — o, [f,l:y] — in3, [L] = —ikp, (7.286)
[ﬁ,iy] -0, [L] — ih%, [ﬁ, Zx] — —ihs, (7.287)
[2, iz] =0, [2, Lx] — ihp, [A,iy] = —ihi. (7.288)
Third, if j 2 and if j is equal to the momentum operator, ;IA f;, then (7.280) will lead to
[},ix] =0, [},iy] —ihP,, [ﬁx,iz] = —ihP,, (7.289)
[Pl =0 [Bnl]=inb [P L] =-ink, (7.290)
(i) =0 [Pl =ink.  [Pl]=-inb.. (7.291)
Now, introducing the operators

Ay = A, +idy, (7.292)

and using the relations (7.282) to (7.284), we can show that
[J;, 2i] — FhA,, [Jy, /ii] — —ihd,, [./z, /Ii] — +hA.. (7.293)

These relations in turn can be shown to lead to

[J;, /Ij::I —o, [J;, /I;F:I — 4284, (7.294)

A1 of the vector operator A; they are

Let us introduce the spherical components A_y, Ao, A
defined in terms of the Cartesian coordinates A x> Ay, A; as follows:

~ 1 A ~ ~ ~
Ay = ;E(Ax +4,), Ao = A.. (7.295)

For the particular case where Ais equal to the position vector R, we can express the components
Ry (where g = —1, 0, 1),

N | .
Ry = ZFE()C :|:y), Ry=12, (7.296)
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in terms of the spherical coordinates (recall that Ry =% = rsind cos &, Ry, = y =rsinfsing,
and R3 =z = r cos 8) as follows:

~ 1 . ~
Ry = :Fﬁreild’ sin 6, Ry =rcos 6. (7.297)

Using the relations (7.282) to (7.284) and (7.292) to (7.294), we can ascertain that

[J;, /iq] = hgd, (G=-1,0,1), (7.298)

[ji, /iq] =hV2—q@ £ DAdge1 (g =—1,0,1). (7.299)

7.4.3 Tensor Operators: Reducible and Irreducible Tensors

In general, a tensor of rank & has 3% components, where 3 denotes the dimension of the space.
For instance, a tensor such as

Tij = 4iB; (i, j=x,9,2), (7.300)

which is equal to the product of the components of two vectors A and fr’, is a second-rank
tensor; this tensor has 32 components.

7.4.3.1 Reducible Tensors

A Cartesian tensor 7; '/ can be decomposed into three parts:

A

~(0 ~(1 ~(2
Iy =10+ 10+ 12, (7.301)
with
~o 1 3. .
sz) = 30 j > T (7.302)
i=l

sy _ Loa s ;g
I = Sy =T G# ) (7.303)
~ (2 1 A ~ ~(0
Tiﬁ') _ E(T’/ + 1) — Tz§ ). (7.304)

Notice that if we add equations (7.302), (7.303), and (7.304), we end up with an identity rela-
tion: T;; = T;;.

The term ]A"l.ﬁ.o) has only one component and transforms like a scalar under rotations. The
second term YA};I) is an antisymmetric tensor of rank 1 which has three independent components;
it transforms like a vector. The third term j,i;z) is a symmetric second-rank tensor with zero

trace, and hence has five independent components; fi(.z ) cannot be reduced further to tensors of
lower rank. These five components define an irreducible second-rank tensor.

In general, any tensor of rank £ can be decomposed into tensors of lower rank that are
expressed in terms of linear combinations of its 3¥ components. However, there always remain
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(2k + 1) components that behave as a tensor of rank £ which cannot be reduced further. These
(2k + 1) components are symmetric and traceless with respect to any two indices; they form
the components of an irreducible tensor of rank k.

Equations (7.301) to (7.304) show how to decompose a Cartesian tensor operator, 7; j, into

a sum of irreducible spherical tensor operators YA};O) , Tiy), Ti;z). Cartesian tensors are not very
suitable for studying transformations under rotations, because they are reducible whenever their
rank exceeds 1. In problems that display spherical symmetry, such as those encountered in
subatomic physics, spherical tensors are very useful simplifying tools. It is therefore interesting

to consider irreducible spherical tensor operators.

7.4.3.2 Irreducible Spherical Tensors

Let us now focus only on the representation of irreducible tensor operators in spherical coor-
dinates. An irreducible spherical tensor operator of rank k£ (k is integer) is a set of (2k + 1)
operators 7, q(k), with ¢ = —k, ..., k, which transform in the same way as angular momentum
under a rotation of axes. For example, the case k£ = 1 corresponds to a vector. The quantities

Tq(l) are related to the components of the vector A as follows (see (7.295)):

T = ¢%2(Ax +4,), = 4. (7.305)
In what follows we are going to study some properties of spherical tensor operators and
then determine how they transform under rotations.
First, let us look at the various commutation relations of spherical tensors with the angular
momentum operator. Since a vector operator is a tensor of rank 1, we can rewrite equations
(7.298) to (7.299), respectively, as follows:

[jz, fq(”] — ngT" (G=—1,0,1), (7.306)
[ 73"

where we have adopted the notation ,Zlq =T q(l). We can easily generalize these two relations

W10 +1) —qlg £ DT\, (7.307)

to any spherical tensor of rank £, 7 q(k), and obtain these commutators:

[ 20 =hgf® @ =k —k+1,. k= 1), (7.308)
[J;, fq(’f)] =k + 1) —qqg= DT, (7.309)
Using the relations
k, ¢’ | J- 1k, q) = hqlk, ¢' |k, q) = hqdy g (7.310)
(k. q' | Jx 1k, @) = h/k(k+1) — q(q £ Dy, g1, (7.311)

along with (7.308) and (7.309), we can write

k
> 10k g 1Lk q) = maf P = [ 1 10, (7.312)
q'=—k
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k
> 10 g Ve 1k @) = kG F D —qlq D18, = e, 1], 7313)
q'=—k

The previous two relations can be combined into

~ k ~
5 A ~(k 3
[/, 0] = > 0%, a' 11k, @) (7.314)
q'=—k
or
3 A k A k=
[ﬁ-J, Tq(k>] = > W%k g 15Tk q). (7.315)
q'==k

Having determined the commutation relations of the tensor operators with the angular mo-
mentum (7.315), we are now well equipped to study how irreducible spherical tensor operators
transform under rotations. Using (7.276) we can write the transformation relation of a spherical

tensor 7, q(k) under an infinitesimal rotation as follows:

A Ay A i I TN
RI00)EO R, (00) = 7O + =00 [0, 7] (7.316)

Inserting (7.315) into (7.316), we obtain

k . .
~ N ~ Ak i L5 Ak oo 3
RT00) 70 R(00) = Zk Tk g | 00T Lk, q) =3 10k, g 1607/ |k, ).
q'=— q’
(7.317)
This result also holds for finite rotations

k
R, . ) TO R o) =D TV ¢ | RY (@ B.9) 1k q) =3 T90DY) (@ . 7).

q'=—k q’
(7318)
7.4.4 Wigner—Eckart Theorem for Spherical Tensor Operators
Taking the matrix elements of (7.308) between eigenstates of J? and J., we find
s m | [ 20 ] =g ® 1, m) =0 (7.319)
or .
m' —m—q)(j', m" | T® | j, m)=0. (7.320)

This implies that (j/, m’ | f’q(k) | j, m) vanishes unless m" = m + q. This property suggests
that the quantity (;’, m’ | f"q(k) | j, m) must be proportional to the Clebsch—Gordan coefficient
(j', m"| j,k; m,q);hence (7.320) leads to

(m" —m—q){j's m"| j, ks m,q) =0. (7.321)
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Now, taking the matrix elements of (7.309) between | j, m) and |;’, m’), we obtain

VG E£mG Fm + D Gm = UTH |, m)
=VGFmGEm+ DG, m' 1T ] j, m+1)
+VEFQhkEq+1) (G, m T 1), m). (7.322)

This equation has a structure which is identical to the recursion relation (7.150). For instance,
substituting j = j',m =m’, j1 = j,m| = m, jo =k, my = q into (7.150), we end up with

VG EMYG Fm + D) Glom F 1] j, ks m,q)
= VGFmGEm+D) (G m' | j ks mE1,q)
+VkFUhEqg+ D) m' | j ks m,qg£1). (7.323)

A comparison of (7.320) with (7.321) and (7.322) with (7.323) suggests that the dependence
of (j/, m'|T, q(k) | j, m) onm’, m, q is through a Clebsch-Gordan coefficient. The dependence,
however, of (;’, m’|Tq(k) | j, m)on j’, j, khas yet to be determined.

We can now state the Wigner—Eckart theorem: The matrix elements of spherical tensor
operators TA’q(k) with respect to angular momentum eigenstates | j, m) are given by

G\ T j,om) = (ks moqlj's my GO T® ). (7.324)

The factor (' || 70 | J), which depends only on j’, j, k, is called the reduced matrix element
of the tensor 7, q(k) (note that the double bars notation is used to distinguish the reduced matrix
elements, (j/ | 70 j), from the matrix elements, (j’, m'| T, q(k) | j, m)). The theorem
implies that the matrix elements (j/, m’| 7 q(k) | j, m) are written as the product of two terms: a
Clebsch—Gordan coefficient (j, k; m, q|j’, q’')—which depends on the geometry of the system
(i.e., the orientation of the system with respect to the z-axis), but not on its dynamics (i.e.,
j’, j, k)—and a dynamical factor, the reduced matrix element, which does not depend on the
orientation of the system in space (m’, ¢, m). The quantum numbers m’, m, g—which specify

the projections of the angular momenta J', J, and k onto the z-axis—give the orientation of
the system in space, for they specify its orientation with respect to the z-axis. As for j’, j, k,
they are related to the dynamics of the system, not to its orientation in space.

Wigner-Eckart theorem for a scalar operator

The simplest application of the Wigner—Eckart theorem is when dealing with a scalar operator
B. As seen above, a scalar is a tensor of rank £ = 0; hence ¢ = 0 as well; thus, equation
(7.324) yields

G am'|B | j, m) = (j,0; m,0lj", m"Y(j' I Bl j)= (|| Bl j)oj'jom'm,  (7.325)

since (j, 0; m, 0|j', m’"y = J;'j om'm.

Wigner—Eckart theorem for a vector operator

As shown in (7.305), a vector is a tensor of rank 1: 7 = 41 = 4 with A(()l) = Ay = A,
and AE_!{ =A4 = q:(fix + ﬁy) //2. An application of (7.324) to the g-component of a vector
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operator A leads to
Glom|Ag | j, m) = (7, 1; m,qlj’, m) (' Il A1l j). (7.326)
For instance, in the case of the angular momentum J , we have

Glam'ldy | j,omy = (a1 mogli’s myG T ). (7.327)

Applying this relation to the component Jo,

Glom' Vo | g, my = (o 1; m, 0L, m'YG ). (7.328)

Since (j’,m/ljo | j, m) = himdj'j om’m and the coefficient (j, 1; m,0 | j, m) is equal to
(J,1; m,0] j, m)=m//j(j + 1), we have
m

him 6j' j om'm = ﬁ(ﬂ IJ1j) = G IJIh=r/iG+ Doy, ;.
(7.329)

Due to the selection rules imposed by the Clebsch—Gordan coefficients, we see from (7.326)
that a spin zero particle cannot have a dipole moment. Since (0, 1; 0,¢|0, 0) = 0, we

have (0, 0|£q | 0, 0) = (0,1; 0,¢]0, 0)(0 | L I 0) = 0; the dipole moment isfz =
—q]j /(2mc). Similarly, a spin % particle cannot have a quadrupole moment, because as

ol ’
(1,25 m, gL, m'y =0, wehave (1, m'|1 211, m) = (1,2, m,qlimh (A 1 T @ L)y =o0.

~

Wigner-Eckart theorem for a scalar product J- A

OnthAe one hand, since J-A= JoAo —JA+1/1_1 - JA_1/1+1 and since Jy | j, m) =Hhm | j, m)
and J1i | j, m) = (h/2)/j( + 1) —m(m £ 1)|jm £ 1), we have

- I : - o , . .
(],m|J~A|j,m)=hm<],m|A0|j,m)—5\/](]+1)—m(m—l—l)<],m+1|A+1|],m)

h o
+5Jj<j+1)—m(m—1)<j,m—1|A+1 | j,m). (7.330)

On the other hand, from the Wigner—Eckart theorem (7.324) we have (j, m | Ao | j, m) =
(ol m, O jo m)(G A ), (s m+ 1 Agr | j m) =L m 1, m+ DG A7)

and (j, m — llfi_l | j, m)={(j,1; m,—=1|j, m—1){j | A || j); substituting these terms into
(7.330) we obtain

Gy mlJ-A|j, m) = [hm(j,l; m, 01 j, m)

h
= S0 m 11, m o+ DViG+ 1) —m@m+1)

h ES
+ §<j’ Lom,—1lj, m =1/ +1) —m(m — 1)} (A1)
(7.331)
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When A = J this relation leads to

Goml 21 gy m) = [ Amj 1m0, m)

— = m 1, m4+ 1D+ 1) —m@m + 1)

~ NS

+ =, 1; m,—1]j, m—l)\/j(]'-l-l)—M(m—l)] Ul J )
(7.332)

[\

We are now equipped to obtain a relation between the matrix elements of a vector operator

A and the matrix elements of the scalar operator J - 4; this relation is useful in the calculation
of the hydrogen’s energy corrections due to the Zeeman effect (see Chapter 9). For this, we
need to calculate two ratios: the first is between (7.326) and (7.327)

(G, m'NAg 1 j,m)  GlAl

. 4 = = (7.333)
(o m'l g | s m) G T )
and the second is between (7.331) and (7.332)
(J, ml| k L, m) _ Gl A||]) ., Yml L, m) _ (I A||])’ (7.334)
. 2o T A h2’(j+1)2 R A
(J, mlJ =1 j, m) G J G
since (j m | J?2 | j, m) =h%j(j + 1). Equating (7.333) and (7.334) we obtain
i GamlJ Al m)
(j, m'|4g | j, m) = — G, m'|Jg | j, m). (7.335)
’ G +1) ’

An important application of this relation pertains to the case where the vector operator Adisa
spin angular momentum S. Since

2 R e e O e Sl

J-S=(L+8)-S=L-S+8§8 = S A e e O
+

2 2

A

Jr—i2
2

>
[

, (7.336)

and since | j, m) is a joint eigenstate of jz, sz 52 and J. with eigenvalues i+ 1),

B21(l + 1), h?s(s + 1), and /im, respectively, the matrix element of S, then becomes easy to

calculate from (7.335):

Gom | J-S1jym) s G D =10+ D 45 +1)
5 (j,m|Jz | j,m) = — hm.

i +1) 2j(G+1)

(G, mIS; | j,m) =
(7.337)
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7.5 Solved Problems

Problem 7.1

(a) Show how Jy and fy transform under a rotation of (finite) angle o about the z-axis.
Using these results, determine how the angular momentum operator J transform under the
rotation. .

(b) Show how a vector operator A transforms under a rotation of angle o about the y-axis.

(c) Show that ol T /h giady [hp—in L /h _ p=iady/h

Solution

(a) The operator corresponding to a rotation of angle a about the z-axis is given by R. (a) =
e~iJz/h Under this rotation, an operator B transforms like B’ = Iéjﬁ’]@z = ¢l /0 Be=ial:/h
Using the relation

Qa4 o5 PN Lra [~ & Il r~ a
A Be :B+[A,B]+5[A,[A,B]]+—[A,[A,[

a

along with the commutation relations [ ., jy] = —ihjx and | J,, J;] = ihjy, we have

RN " A AT~ =« a A
€laJZ/th€_laJZ/h = Jy+— I:Jz, Jx] ) |:JZn

A A (4 A A
—Jx—aJy—aJx+3!Jy+4!Jx 5'Jy+
A a®  at A ad o’
= Jx(1—E+m+~--)—Jy(a—§+§—~-)
= Jycosa — jy sina. (7.339)
Similarly, we can show that
e[“jZ/hjye_i“jZ/h = Jycosa + Jy sina. (7.340)

As JAZ is invariant under an arbitrary rotation about the z-axis (el )=/n jze_mjz/ h— J;), we can
condense equations (7.339) and (7.340) into a single matrix relation:

o cosa —sina 0 Jx
eI jomia/h —  Ging cosa 0 e (7.341)
0 0 1 J.
(b) Using the commutation relations [jy, /ix] = —ihA. and [jy, /iz] = ihd, (see

(7.282) to (7.284)) along with (7.338), we have

Ly W L T % [jy, ﬁx] - 2?;22 [jyn [‘jy» ﬁx]]
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. o2 . o3~ ot . oS .
= Ay +a4d; !Ax—aAz+4—!Ax+—!z+
N a  at N a ol
SP (RN WO AR
= A, cosa + A sina. (7.342)
Similarly, we can show that
/i’z = ei"‘jl’/hlflze_i"‘jy/h = —A, sina + A4 cosa. (7.343)

Also, since A4, is invariant under an arbitrary rotation about the y-axis, we may combine equa-

tions (7.342) and (7.343) to find the vector operator A’ obtained by rotating A through an angle
o about the y-axis:

~

. ) cosa 0 sina fix

A = e/t go—iady/h _ 0 1 0 i, |. (7.344)
—sina 0 cosa A

iajy/h

(c) Expanding e and then using (7.340), we obtain

A a A 0 . n ~ N
oA e/h giady h =iz /b _ Z (zan/'h) A (jy)n J-imdi/h

= i (ia/‘h)” (J} cosw + jx Sin”)n = i M (jy)"
n=0

|
n: =0 n:

— eiehin, (7.345)

Problem 7.2

. . 0 1 0 —i 1 0
Use the Pauli matrices o, = ( 1 0 ), oy = ( i 0 ), and o, = ( 0 —1 ), to show
that

(a) e7i*% = [ cos a — iy sina, where I is the unit matrix,
(b) e*%rg,e™"** = 0, cos(2a) + 0, sin(2a).

Solution
(a) Using the expansion

( )2n+1

e —Z (2n). " @ 2”+Z « Q2+ Gy @ e (7.346)

and since 62 = 1,62" = I, and 5

2n+l — 5 where [ is the unit matrix, we have

—iooy __ ( l)n 2n_ ( 1) 2n+1
o= (g )Z@)' “ Z<2+1)' @™

= Icosa —ioy sina. (7.347)
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(b) From (7.347) we can write

%% ge %% = (cosa +ioysina)o,(cosa — ioy sina)
= o, cos® o + 0500y sin® a + i[ox, o7]sina cosa,
(7.348)
which, when using the facts that o0, = —0,0, of = I, and [0y, 0;] = —2i0), reduces to
ooy —iaoy __ 2 2 .2 :
e oe = 0,;C08"a — 0,07 sin" o + 20, sina cos a
= o,(cos’> a — sin® a) + oy sin(2a)
= 0, cos(2a) + oy sin(2a). (7.349)
Problem 7.3

Find the Clebsch—Gordan coefficients associated with the addition of two angular momenta
ji=1land j = 1.

Solution
The addition of j; = 1 and j, = 1 is encountered, for example, in a two-particle system where
the angular momenta of both particles are orbital.

The allowed values of the total angular momentum are between |j; — j2| < j < j1 + jo2;
hence j = 0, 1, 2. To calculate the relevant Clebsch—Gordan coefficients, we need to find

the basis vectors {|j, m)}, which are common eigenvectors of J %, J %, J? and J;, in terms of
{I1,1; my, ma)}.

Eigenvectors |j, m) associated with j =2
The state | 2, 2) is simply given by

[12,2)=[1,1; 1, 1); (7.350)

the corresponding Clebsch—Gordan coefficient is thus given by (1, 1; 1,1]2, 2) = 1.
As for | 2, 1), it can be found by applying J_ to | 2, 2) and (J1_+ J>_)to |1, 1; 1, 1), and
then equating the two results

Jo12, 2= (/4511 1, 1), (7.351)
This leads to
2412, 1) =ﬁh(|1,1; 1,0) + 1, 1; 0,1)) (7.352)
or to
12, 1>=i(|1,1; LO) +11,15 0,1); (7.353)
V2

hence (1,1; 1,0]2, 1) =(1,1; 0,12, 1) = l/ﬁ. Using (7.353), we can find |2, 0) by
applying J_ to | 2, 1) and (Ji_ + J_)to[|1,1; 1,0)+|1,1; 0, 1)]:

Jo 12, 1) =—=h(/i_+ )L, 1; 1,0)+1,1; 0, 1)], (7.354)

EH
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which leads to

1
[2, 0) = %(H,l, 1, —1)+2[1,1; 0,0) + 1, 1; —1,1)), (7.355)

hence (1,1; 1,—11]2, 0)=(1,1; —1,1]2, 0)=1/+/6and (1,1; 0,02, 0) =2/6.
Similarly, by repeated applications of J_ and (J;_ + J>_), we can show that

1
12, —1) :E(”’l’ 0, —1)+|1, 1; —1,0>), (7.356)
112, -2)=|1.1; —1,-1),| (7.357)

with (1, 1; 0, =112, —=1) = (1, 1; —1,0]2, —1) = 1/+/2and (1, 1; —1, —1]2, =2) = I.

Eigenvectors | j, m) associated with j = 1

The relation
1 1

Lomy= D D0 (L1 mumafl, )1, 1; my,mo) (7.358)
1

mi=—1 my=—
leads to

|1, 1) =all, 1; 1,0) +b|1,1; 0, 1), (7.359)
where a = (1,1; 1,0 | 1, 1) and b = (1,1; 0,1|1, 1). Since | 1, 1), |1,1; 1,0) and
[1,1; 0, 1) are all normalized, and since |1, 1; 1, 0) is orthogonal to |1,1; 0, 1) and a and b
are real, we have

(L1111, ) =a®>+b*> =1. (7.360)
Now, since (2,1 | 1, 1) = 0, equations (7.353) and (7.359) yield
a b
2,111, ) =—+—=0. 7.361

A combination of (7.360) and (7.361) leads to « = —b = +1/+/2. The signs of @ and b have
yet to be found. The phase convention mandates that coefficients like (1, j2; j1, (G —JjlJj, J)
must be positive. Thus, we have ¢ = 1/4/2 and b = —1/+/2, which when inserted into (7.359)
give

1
NG

This yields (1, 1; 1,01, 1) = 2and (1,1; 0,1 ] 1, 1) = —1.

To find |1, 0) we proceed as we did above when we obtained the states | 2, 1), |2, 0), ...,
|2, —2) by repeatedly applying J_ on | 2, 2). In this way, the application of J_ on | 1, 1) and
(Jl_ + Jz_) on[[1,1; 1,0y —|1,1; 0, 1)],

11, 1) = (|1,1; 1,0) — |1, 1; 0,1)). (7.362)

1
S ) =5 (Ji_+ )1, 15 1,00 = 11,15 0, 1)] (7.363)

gives

25
NGY |1, 0) = \/—T[H, I; L,-1)—|1,1; =1, 1)], (7.364)
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or

1
[1, 0) = ﬁ(”’ L1,=1)—|1,1; —1,1>), (7.365)

with (1,1; 1,-11]1, 0) = \%and(l, I; 1,111, 0)=—1/42.
Similarly, we can show that

1
11, —1) = E(|1, 1;0,—1) —|1,1; —1,0>), (7.366)

hence (1,1; 0,—1]1, —1) =1/4/2and (1,1; —1,0| 1, —1) = —1//2.

Eigenvector |0, 0) associated with j = 0
Since

0, 0) =all,1; 1,—1)+b[1,1; 0,0) + |1, 1; —1,1), (7.367)

wherea = (1,1; 1,—-11]0, 0),b=(1,1; 0,0]0, O),andc = (1,1; —1,1 | 0, 0) are real,
and since the states |0, 0), |1, 1; 1, —1),|1,1; 0,0),and |1, 1; —1, 1) are normal, we have

0,010, 00=a>+b>+2=1. (7.368)

Now, combining (7.355), (7.365), and (7.367), we obtain

(2,010, 0) =%+% % —0, (7.369)
(1, 0]o0, 0>=iz—\/i§=o. (7.370)

Since a is by convention positive, we can show that the solutions of (7.368), (7.369), and (7.370)
are given by @ = 1/+/3, b = —1/+/3, ¢ = 1/+/3, and consequently

1
10, 0) = 73(“’1’ 1,=1)—1[1,1; 0,0) + 1, I; —1,1>), (7.371)

with (1,1; 1,—1]0, 0) =(1,1; —1,1]0, 0) =1/+/3and (1,1; 0,0]0, 0) = —1/+/3.

Note that while the quintuplet states |2, m) (with m = £2, 41, 0) and the singlet state
| 0, 0) are symmetric, the triplet states |1, m) (with m = %1, 0) are antisymmetric under space
inversion.

Problem 7.4

(a) Find the total spin of a system of three spin % particles and derive the corresponding
Clebsch—Gordan coefficients.

(b) Consider a system of three nonidentical spin % particles whose Hamiltonian is given by

H= —60(3'1 . 3‘3 + 3‘2 . 5‘3) /K%, Find the system’s energy levels and their degeneracies.

Solution

(a) To add j; = %, Jo = %, and j3 = %, we begin by coupling j; and j; to form ji; =
J1 + J2, where |j1 — j21 < ji2 < |j1 + j2l; hence ji» = 0, 1. Then we add ji, and j3; this
leads to |j12 — js| < j < [jiz+ j3lorj =%, 3.
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We are going to denote the Jomt elgenstates of Jz, J J2 Jiza J and J; by |j12, j, m)

and the joint elgenstates of Jz, J2= J3, le, Jzz, and ng by | j1, j2, j3; mi, m2, m3); since
J1=Jj2=j3 = 2 and m; = j:2, my = :I:z, ms3 = :l:2, we will be using throughout this
problem the lighter notation |1, j2, j3; &, &, £) to abbreviate | %, %, %; :I:%, :I:%, :i:%).

In total there are eight states |ji2, j, m) since (2]1 + 1)(2]2 + 1)(2j3 + 1) = 8. Four of

these correspond to the subspace j = %: | 1,3 5,3 —) | 1,3 2, —) | 1,3 2, —%), and | 1, %, —%),
The remaining four belong to the subspace j = 1: | 0, 1 i —) | 0,1 3 —%), | 1, %, %>, and

| 1,1 5 —%). To construct the states |j12, j, m) in terms of |j1, j2, j3; £, &, £), we are going

to consider the two subspaces j = % and j = % separately.

Subspace j = 5
First, the states | 1, %, %) and | 1, %, —%) are clearly given by

3

1, )
2

33 3
'19 Es §>= |]1a]29]3,+3 +9 +>a _§>= |]13]29]3’ T T _> (7372)

To obtain | 1, %, %), we need to apply, on the one hand, J_on|l,3,3) ) (see (7.220)),

> 202
33 3 (3 3 (3
Lo, 2)=n/>(2+1)-2(2-1
272 2 \2 2 \2

and, on the other hand, apply (j1_+j2_+j3_) on|j1, j2, j3; +, +, +) (see (7.221) to (7.223)).
This yields

A

J_

2 ;>—h\/" > (7.373)

Gie o+ Ji)ljns jos jsi e 4) = 1 (g2 3i = )+ U o s =)

+ 115 J2s J35 5+ —>) , (7.374)

since \/ 13+ 1) =1} = 1) = 1. Equating (7.373) and (7.374) we infer

31 1
la_a_ =_( '5'>‘;_7 ) ‘)’5'; s T s 'a'a'; > 5_)‘
‘ 22> NG 11, 2, j35 = 45+ + s J2, 3+ = ) + 11, 2, J3s +. +, =)
(7.375)

Following the same method—applying J_on|1,3 5 —) and (Ji_+Jo_ +j3_) on the right-hand
side of (7.375) and then equating the two results—we find

3 1 1
17 ~° A :_(l .15 ‘27 3;+a > _>+| ‘1, .23 39 > +7 _>+| .15 ‘27 3;_3 > +>)
5 > /3 J15J25 ] J15J25 ] J1sJ25 ]

2
(7.376)

Subspace j = %

We can write | 0, %, %) as a linear combination of | /1, j2, j3; +, +, —) and | j1, j2, j3; —, +, +):
11 L L

03 Ea E = al]laj2a 735 +9 +9 _) +ﬁ|]19]2a J35 = +5 +) (7377)
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Since | 0, %, %) is normalized, while |j1, j2, j3; +, 4+, —) and |j1, j2, j3; —, +, +) are ortho-
normal, and since the Clebsch—Gordan coefficients, such as o and £, are real numbers, equation
(7.377) yields

o>+ p = (7.378)
On the other hand, since (1, %, % | 0, % 7) = 0, a combination of (7.375) and (7.377) leads to
1

A substitution of & = —f into (7.378) yields « = —f = 1/+/2, and substituting this into
(7.377) we obtain

11

1
s Ay AT T = i 5 } 5 9 s T 7/ T i B j ) i M . 7.380
7 2> ﬁ(Ul J2, J3 .+ =) = s 2, 3 =+ +)) (7.380)

Following the same procedure that led to (7.375)—applying J_ on the left-hand side of (7.380)
and (Ji— + J2— + J3_) on the right-hand side and then equating the two results—we find

1 1 1
O,_9__ :_(_ .a.s.; s T T .,.9.;_3_3 ) 7.381
5 2> 7 jts J2s 35 + )+ 11 J2, 73 +) (7.381)
Now, to find | 1, é, 5), we may write it as a linear combination of |j1, j2, j3; +, +, —),
|]17]23j37 s T o >3 and |j15]25j3;_5 +5 +>:
11 L L L

This state is orthogonal to] 0,1 35 2) and hence a = y; similarly, since this state is also
orthogonal to | 1, 3 5.3 —) wehave o + f+y =0,and hence 2a + f =0or f = =20 = —2y.
Now, since all the states of (7.382) are orthonormal, we have a® + % 4+ y2 = 1, which when
combined with f# = —2a = —2y leadsto a = y = —1/+/6 and f = 2/+/6. We may thus
write (7.382) as

11 1

15_7_ :_(_.3.5‘; s s 2.5‘7.; s T s _‘5.3.;_7 s )'

22> 7 11, 25 735+ 4, =) + 211, j2, J3s . — ) = s 2, J3s =+, +)
(7.383)

Finally, applying J_ on the left-hand side of (7.383) and (Ji—+Jr +.f3_) on the right-hand
side and equating the two results, we find

1 1 1
la_a__ :—("','; 5_5__2'>'7';_: s '5':‘;_7_7 )
2 2> NG 115 2, J35 + ) =21 J2, 35—+ =y s J2s 3 +)
(7.384)
(b) Since we have three different (nonidentical) particles, their spin angular momenta mu-
tually commute. We may thus write their Hamiltonian as H = —(eo /hz)(S 1+ Sz) S3 Due
to this suggestive form of H,itis appropriate, as shown in (a), to start by coupling S 1 with Sz

to obtain §12 = 5‘1 + 3‘2, and then add 3‘12 to §3 to generate the total spin: S = 3”12 + §3. We
may thus write H as

T Si= 09, S =0 (252 2
f=—= 2 (S1+52) 8= 3808y =5 (£ -8, - 8). (7.385)
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since S”lz . 5‘3 = %[(3‘12 + §3)2 — 3‘122 — S”%]. Since the operators I:I, 3”2, 3”122, and 3‘32 mutually
commute, we may select as their joint eigenstates the kets |s12, s, m); we have seen in (a) how
to construct these states. The eigenvalues of H are thus given by

~ 60 ~ A A~
Alsizsom) = =5 (8= 8%, = &) srz.5.m)
€ 3
= -5 S(S+1)—S12(S12+1)—Z Is12,s, m), (7.386)

since s3 = % and 3‘32|s12,s, m) = h%s3(s3 + 1)|s12, s, m) = (342 /4)|s12, s, m).
As shown in (7.386), the energy levels of this system are degenerate with respect to m, since
they depend on the quantum numbers s and 51> but not on m:

€0 3
Es,s = -5 |:S(S + 1) —sp@En+1) - Zi| . (7.387)
For instance, the energy Es, s = E13/2 = —€o/2 is fourfold degenerate, since it corresponds
to four different states: |s12, s, m) =| 1, %, :l:%) and | 1, %, :I:%). Similarly, the energy

Eo,1/2 = 0 is twofold degenerate; the corresponding states are | 0, %, :I:%). Finally, the energy

E1,1/2 = € is also twofold degenerate since it corresponds to | 1, %, :I:%).

Problem 7.5

Consider a system of four nonidentical spin % particles. Find the possible values of the total
spin S of this system and specify the number of angular momentum eigenstates, corresponding
to each value of S.

Solution R o R o

First, we need to couple two spins at a time: S15 = S|+ 52 and S34 = S3+.S4. Then we couple
3”12 and 3‘34: S = 5‘12 + §34. From Problem 7.4, page 438, we have sj = 0, 1 and s34 = 0, 1.
In total there are 16 states |sm) since (251 + 1)(2s2 + 1)(2s3 + 1)(2s4 + 1) = 2% = 16.

Since s;2 = 0, 1 and s34 = 0, 1, the coupling of 3’12 and 3’34 yields the following values for
the total spin s:

e When s> = 0 and s34 = 0 we have only one possible value, s = 0, and hence only one
eigenstate, |[sm) =1 0, 0).

e When sip = 1 and s34 = 0, we have s = 1; there are three eigenstates: |s m) =| 1, £1),
and | 1, 0).

e When sy, = 0 and s34 = 1, we have s = 1; there are three eigenstates: [sm) =| 1, £1),
and | 1, 0).

e When s;p = 1 and s34 = 1 we have s = 0, 1,2; we have here nine eigenstates (see
Problem 7.3, page 436): | 0, 0), | 1, £1),| 1, 0),]2, £2),]|2, £1),and | 2, 0).

In conclusion, the possible values of the total spin when coupling four % spinsares =0, 1, 2;
the value s = 0 occurs twice, s = 1 three times, and s = 2 only once.
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Problem 7.6
Work out the coupling of the isospins of a pion—nucleon system and infer the various states of
this system.

Solution

Since the isospin of a pion meson is 1 and that of a nucleon is %, the total isospin of a pion—

nucleon system can be obtained by coupling the isospins #{ = 1 and #, = % The various values

of the total isospin lie in the range |¢1; — 2| < T < #; + t2; hence they are given by T = %, %
The coupling of the isospins 11 = 1 and t, = % is analogous to the addition of an orbital

angular momentum / = 1 and a spin %; the expressions pertaining to this coupling are listed in
(7.206) to (7.211). Note that there are three different 7 -mesons:

1L, h=|z%, |L0=z% |1, -1)=|z"), (7.388)

and two nucleons, a proton and a neutron:

1 1 1 1

By analogy with (7.206) to (7.211) we can write the states corresponding to 7 = % as

33V L ) e
‘5’ §>—|1, 1)‘2, 2>—|7T )1 p), (7.390)
3NV 2 LA LIV )2 0 L
(7.391)
5_1_¢1_111+ﬁ101_1_¢- +ﬁo
2, 2 _ﬁl > >252 3| 5)2’ 2 _\/gln- )lp) 3|7T>|n>7
(7.392)
3 3 1 1 _
‘E’ _§>:|1, _1)‘5, _§>:|7z ) | n), (7.393)
and those corresponding to 7' = % as
>3 -2 b3 —5)- =110 )5 5 = ianin- L1290
P I R Y BV i PR B e R Y- S A
(7.394)

l—1—i|10>1—1—ﬁ|1—1>11—i|°| —ﬁ|—|>
29 2_ 3 > 23 2 3 > 2’2_ﬁn>n> 37T>p
(7.395)

Problem 7.7

(a) Calculate the expression of (2, 0]Y1o | 1, 0).

(b) Use the result of (a) along with the Wigner—Eckart theorem to calculate the reduced
matrix element (2 || Y7 || 1).
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Solution
(a) Since

T 2w
2,01 Yol 1, 0) = / sin 0 do / Y30, 9) Y100, 9) Y100, 0)do,  (1.396)
0 0

and using the relations Y20 (6, ¢) = +/5/(167)(3cos? 8 — 1) and Y10(8, ) = /3/(dx) cos 6,

we have
3 35 T 2
2,0 Y0]1, 0) = —,/—/ 00529(300320—1)sin9d6/ do
4z 167 0 0

3 /5 T
= —/— / cos? (3 cos® O — 1) sin 6 do. (7.397)
2V l6x 0

The change of variables x = cos 8 leads to

3 5 T
(2,01 Y011, 0) = —,/—/ cos20(3 cos’ @ — 1) sin 0 d0
2V l6x 0

35t o, o, 1
- 2/ =2 -1 =—. :
7V Ten /_lx (3x )dx N (7.398)

(b) Applying the Wigner—Eckart theorem to (2, 0 | Y9 | 1, 0) and using the Clebsch—
Gordan coefficient (1,1; 0,02, 0) = 2/«/3, we have

(2,01 Y01, 00 =(1,1; 0,012, 0)2 | Y1 | 1) = 2| 1|l 1. (7.399)

2 (
NG
Finally, we may obtain (2 || Y1 || 1) from (7.398) and (7.399):

[3
2Inin= Ton" (7.400)

Problem 7.8
(a) Find the reduced matrix elements associated with the spherical harmonic Yz, (0, ¢).
(b) Calculate the dipole transitions (n'I'm’ | ¥ | nlm).

Solution
On the one hand, an application of the Wigner—Eckart theorem to Y, yields

{0, m' | Yig |1, m)y =Lk myq |, m'y(d" | YO |1 1) (7.401)
and, on the other hand, a straightforward evaluation of

2r T
(', m" | Yig |1, m) = / d(ﬂ/ sin 0 dO(l', m | 09)Yiy 0, 9)(0p |1, m)
0 0

27 T
= [ do [ sin 0407, 0.00%100.0)Yin(0.0)  (T.402)
0 0
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can be inferred from the triple integral relation (7.244):

[@1+ 1)k + 1)
r Yig 11, ——————~(I,k; 0,0]I', 0)(I, k; I, m). 7.403
< s m | kql ) 471'(2[’+1) <a ’ H | s ><’ ’ m’ql H m) ( )

We can then combine (7.401) and (7.403) to obtain the reduced matrix element

N [ R e e )
HYy¥inn = @+ 1) (I, k; 0,01, 0). (7.404)

(b) To calculate (n'l'm’ | ¥ | nlm) it is more convenient to express the vector 7 in terms of
the spherical components 7 = (1, 7o, 71), which are given in terms of the Cartesian coordi-
nates x, y, z as follows:

x+iy T X —iy I o—ip
ro=- =—¢'""sin 0, ro=z=rcos 0, r_| = =—¢ '?sin 0,
V2o V2 V2
(7.405)
which in turn may be condensed into a single relation
4
rg = Trqu(Q, 0), q=1,0,-1. (7.406)

Next we may write (n'I'm’ | r4 | nlm) in terms of a radial part and an angular part:

ﬁ

(n'I'm' | ry | nlm) —n'l" | rgInl)(I', m'|Y140,9) |1, m). (7.407)

The calculation of the radial part, (n'l’ | 7, | nl) = [ >0 r3R*,l/ (r)R},(r)dr, is straightforward
and is of no concern to us here; see Chapter 6 for its calculation. As for the angular part
(I', m"| Y140, 9) | I, m), we can infer its expression from (7.403)

320+ 1)

I',m | Y|l = [—
< , m | lql 5m> 471_(21,+1)

(,1; 0,01, 0)(,1; m,q |I', m'). (7.408)

The Clebsch—Gordan coefficients (I, 1; m,q | I’, m’) vanish unless m’ =m +qg and/ — 1 <
I!'<l+lorAm=m'—m=qg=1,0,—1and Al =1 —[ = 1,0, —1. Notice that the case
Al = 0 is ruled out from the parity selection rule; so, the only permissible values of I’ and / are
those for which Al =1’ — [ = +1. Obtaining the various relevant Clebsch-Gordan coefficients
from standard tables, we can ascertain that the only terms of (7.408) that survive are

3+m+ DI +m+2)
82l + (21 +3)

I+1, m+ 1Yy |1, m) = \/ (7.409)

30—m—1)( -
U=1, m+ 1Yy |, m) = \/ 8(7r(2lm+ 1)()2([+3’")), (7.410)

3[4 + 1)2 — m2]
472+ D)2 +3)’

({+1, mYio |1, m) = \/ (7.411)
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B 32 — m2)

=L mioll, m) = \/47r(2l—|— DEI—1) (7:412)
3 =m+ DU =m+2)

((+1, m=1Y_y |1, m) = \/ I (7.413)

3 / —1
(=1, m—1Yiy |1, m) = /;ﬂz;;”l(&;_ 1)). (7.414)

Problem 7.9
Find the rotation matrix d‘1) corresponding to j = 1.

Solution .
To find the matrix of dV () = e~"#»/" for j = 1, we need first to find the matrix representa-

tion of fy within the joint eigenstates {| j, m)} of J? and J.. Since the basis of J = 1 consists
of three states | 1, —1), | 1, 0),| 1, 1), the matrix representing fy within this basis is given by

(L, 11y | (I, 11Jy 11, 0) |jy|1—1>
Jy =5 <1,0|JA| o (Lo 1L 0 (Lo, |1 =1)
(L =11 11, 1) (1, =11Jy 11,00 (1, =11 |1 -1
_ i (1) _01 01 (7.415)
V2\o 1 o
We can easily verify that Jy3 =Jy:
72 1 0 -1 in3 0o -1 0
JP=—/[ 0 2 o0 PB=—1[1 0 -1 ]=n%. (7.416)
y > y y
2\ 210 1 V2lo 1 o
We can thus infer
2 2n—-2 72 2n+1 2
=" (n > 0), S =h (7.417)
Combining these two relations with
" — 1 ( iBY"
—ipJy/h Y n
¢ = va( h) Iy
n=0
Py () T PN
“en \ & Yoo+ )\ a

(7.418)

we obtain

YN D" o hs (=D,
eTPHIN = 1+(—y) B =i 2 G

HM8

2n)! 2n + 1)!



446 CHAPTER 7. ROTATIONS AND ADDITION OF ANGULAR MOMENTA

AN\ 2 A
_ iV IS ED | _ED"
_[+(h) [; @ P 1} P e
(7.419)

where [ is the 3 x 3 unit matrix. Using the relations > 2 j[(—1)"/ @m)'(B)*" = cos f and
> [(=D"/@2n + D1]B*+! = sin B, we may write

AN\ 2 A
- . ] J
e BN = [ 4 (%) [cos f— 1] — i% sin A. (7.420)

Inserting now the matrix expressions for .J,, and Jy2 as listed in (7.415) and (7.416), we obtain

o o/ 10 - ;[0 -1 0
e—’ﬁfy/h:nrz 0 2 0 J(osp—1—i—| 1 —1 |sing (7.421)
10 1 V2lo 1 o

or

d® a® o a®, 3(1+cosf) ——ssinf 3(1—cosfp)
dVpy = 4V a4l 4 | = % sin 8 cos f8 _\/LE sin 8

1 1 1 .

al), aly ) L1 —cosp) Lssinp 11 +cosp)

(7.422)
Since %(l + cos ) = cos?(f3/2) and %(l — cos ) = sin®(f/2), we have

cos’(f/2) ——5sin(f)  sin(8/2)
dV(B) = e hH/h = %sin(ﬂ) cos(B) —% sin(8) |- (7.423)
sin’(8/2)  sin(f)  cos’(B/2)

This method becomes quite intractable when attempting to derive the matrix of d*/) (p) for
large values of ;. In Problem 7.10 we are going to present a simpler method for deriving d/) ()
for larger values of j; this method is based on the addition of angular momenta.

Problem 7.10
(a) Use the relation

duB) = D D" gz muuma |y myG, jos mhymy | jom'yd ) (B2 (B),

mimz m' m),

for the case where j; = 1 and j, = % along with the Clebsch—Gordan coefficients derived in
(7.206) to (7.209), and the matrix elements of @(1/2 (8) and d" (f), which are given by (7.89)
and (7.423), respectively, to find the expressions of the matrix elements of d §33/ 2 (8),d §3{ 2) B,
23 23
) B). (). )P ), and ) ).
(b) Use the six expressions derived in (a) to infer the matrix of 4@/ (8).
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Solution 1 s
(@) Using (1, 3; 1,3 1 3, 3) = 1, d{}(8) = cos®(8/2) and d{'[? () = cos(8/2), we

22
have

G2 [ Lo 1|3 3\ 1 33\ (172 gy _ 3 (B
d%% (ﬁ)_<1,2, L3 '2, 2><1,2, L ‘2 2>d11 (,b’)d (B) = cos (2) (7.424)

Similarly, since (1,%, ,2 | 5 2 = /2/3, ,2, ,—% | %, %) = 1/«/§, and since
d))(B) = —(1/+/2) sin(8) and d;‘j? B) = — sm(/)’/2), we have

(3/2) 1 3 3 11 3 D (gal![?
d =(1,=; 1, L,=5 0, =, =)d d
1 113 3 1 L3 1\ a2
L= 1, =2, 21,2 1, —= d
+<,2, ,2‘2, 2><,2, , 2‘2 2> ) (/3)

= —% sin f§ cos (é) - % cos? (é) sin (g)

3 sin (£> cos? (é) . (7.425)
2 2

To calculate dg3/2) (B), we need to use the coefficients (1, %; 0, —% | %, —%) = 4/2/3 and
73—
(14 =113 —d) = 1/ along with . (8) = sin(52):

a6 = <1% L3 B §><1 > I%E ——>d§”l<ﬂ)d<lf>(ﬁ)
+<1, 1’ 1, ‘ ><1,%’ — ‘ > (Uw)d(l/z)w)
_ ! B
= «/3 (2)005(2)+%smﬂsm(2)
= V3sin (/E))) cos (g) (7.426)

For d§3/23) (f) we have
273

) = <,;;, ‘2 ;>@,1,—L—1‘3 >(”(ﬂmQ”Nﬁ)=-wm3(ﬁ),

2 |2 2
(7.427)
because (1, 4; —1, =1 |3, =3y = 1,4, () = sin®(8/2), and d\'/7) () = —sin(B/2).

172
1.

To calculate df3_/2)(,b’) we need to use the coefficients (1, 5; 0, % | 3 3 % = /2/3 and

22
m%,%@&wwﬁm@mﬂwmﬂﬁW3
(3/2) 1 1 1 113 M (gya1/?
d 1_9 s T A 1 1’ d d
<,2 ‘2 2>< 3 L=3 5 5 )al e @)

—_

1 1 1. T3 1) o %
Dol Dbt e
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1 113 1 113
g0z 5 g){ngozfp g)wedPo
1 113 1 1 113
+<1’§; boa 5><1 2 %2 ‘2 2>d1(‘1’)w)d(1/2)(ﬁ)
= %cos (/%)—%sin([)’)sin(g)+§cos(ﬂ)cos(§>—%sin(ﬁ)sin(é)
= |:3cos2 (é) —2|cos (ﬁ)
2 | 2
= %(3 cos f — 1) cos (é) (7.428)
Similarly, we have
1 113 1 1 113 1
a0 = {15155 3) 1 13 5 -3 et R
1 113 1 1 113 1
e o L e e G Lo
1 113 1 1 113 1
tzogl3a)lig ra s glahedPe)
1 113 1 1 113 1
Hrgog s g)(ig omz)3 )@wdie
= %sm3 (g) %m(ﬁ)cos (g —lsm(ﬁ)cos (é)—%cos(ﬂ)sm( )
= [30052 (E)—l] sin(é)
2 2
= —% (Bcosp + 1)sin (é) (7.429)

(b) The remaining ten matrix elements of d G/2) (f) can be inferred from the six elements
derived above by making use of the properties of the d-function listed in (7.67). For instance,

usmg d(l) (,B) ( 1)m —mdU)

(B), we can verify that

d°P .y = dSP@),  dCP e =dPPw),  dBP ) =-dPP®),
2 2 22 2 2 22 2 2 22
(7.430)
d“m(/ﬂ = d“/”(/ﬂ d?é?«f) = —dg_”;w), d(3/2)(ﬁ) dg_/z;(ﬁ).
(7.431)

Similarly, using d 7, () B =(=n" "=mgi) (f) we can obtain the remaining four elements:

m'm mm’

d(3/z)w) _ d(3/2)(ﬂ) d(s/z)(ﬂ) a2 p), (7.432)
d?ﬁ?(ﬁ) = d?éi)w), dii/i);(ﬁ) = —d%7, (p). (7.433)
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Collecting the six matrix elements calculated in (a) along with the ten elements inferred

above, we obtain the matrix of /2 (8):

cos’ (g) —+/3sin ( ) cos? (g) «/§sin ( ) cos (g) —sin? (g)
V3 sin (g) cos? (g) 5 (3cos f — 1) cos (g) (3 cos f + 1) sin (g) /3 sin? (g)cos (g)
V/3 sin? (g) cos (g) 1 7 (3cos B+ 1) sin (g 7 (3cosp — 1) cos (%) —+/3sin (g) cos (g) '
sin’ (g) ﬁsm (g) cos (g) V3 sin (g) cos? (%) cos’ (g
which can be reduced to 79
c;;z(;ﬂ/z(%) ) 3 cos (%) V/3sin (g) — scl(r)lz((ﬁﬂ(//g)))
LY. eos(8)  igm —wey  V3sin(s
> (p) = Sisin ( §) Seosp] Johol s ( %) (7.435)
%2((/% V3sin (g) V3cos (g) %

Following the method outlined in this problem, we can in principle find the matrix of any
d-function. For instance, using the matrices of d(!) and d(!/?) along with the Clebsch-Gordan
coefficients resulting from the addition of j; = 1 and j, = 1, we can find the matrix of @ ().

Problem 7.11

Consider two nonidentical particles each with angular momenta 1 and whose Hamiltonian is

given by

A~ &1 5 E E &) A A
H= ;(Ll + L) -Lr+ ﬁ(le +1y.)%,

where ¢] and &; are constants having the dimensions of energy. Find the energy levels and their
degeneracies for those states of the system whose total angular momentum is equal to 27.

Solution

The total angular momentum of the system is obtained by coupling /1 = 1 and /; = 1: L =

Ly+Lo. Thisleadsto Ly L = M2 -1 -

Hamiltonian it yields

= —(L1 L2+L2)+

L 22 722, 72 €2 22

2), and when this is inserted into the system’s

(7.436)

Notice that the operators A , Lz, L%, Lz, and 1:Z mutually commute; we denote their joint
eigenstates by | /, m). The energy levels of (7.436) are thus given by

Em =5 [ 104+ D) =0+ D)+ b+ D]+ em? =

sincelj =1, = 1.

%11(1 + 1)+ aam?,

(7.437)

The calculation of | /, m) in terms of the states |I1, m1)|l>, m2) = |l1,lr; m1, my) was
carried out in Problem 7.3, page 436; the states corresponding to a total angular momentum of

| = 2 are given by

12, £2) = |1, 1; £1,41),

1
2, £1) = —

V2

(1.5 £L0 #1115 0.2D),

(7.438)
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1
|2, 0) \/E(Il’l’ I,—=1)+2[1,1; 0,0) + |1, 1; 1,1)). (7.439)
From (7.437) we see that the energy corresponding to / = 2 and m = +£2 is doubly degenerate,
because the states | 2, £2) have the same energy E> 17 = 3¢1 + 4¢2. The two states | 2, +1)
are also degenerate, for they correspond to the same energy £ +1 = 3e; + 2. The energy
corresponding to | 2, 0) is not degenerate: Epg = 3¢y.

7.6 Exercises

Exercise 7.1
Show that the linear transformation y = Rx where

cos sin X
R = o ¢ ¢ s y = V1 N X = 1
—sing cos¢ p X2
is a counterclockwise rotation of the Cartesian xjx coordinate system in the plane about the

origin with an angle ¢.

Exercise 7.2
Show that the nth power of the rotation matrix

R($) = ( cos¢ —sing )

singg  cos¢

is equal to

nipy _ [ cos(ng) —sin(ng)
R"(¢) —( sin(ng)  cos(ng) )

What is the geometrical meaning of this result?

Exercise 7.3

i,

Using the space displacement operator U (/i) e AP/ \where P is the linear momentum

iAP/h R o—idP/h _ B o

NN

operator, show that e

Exercise 7.4 .
The components 4; (with j = x, y, z) of a vector 4 transform under space rotations as 4; =
R;; A;, where R is the rotation matrix.

(a) Using the invariance of the scalar product of any two vectors (e.g., A E‘) under rotations,
show that the rows and columns of the rotation matrix R are orthonormal to each other (i.e.,
show that Rij Ry = 5j,k)-

(b) Show that the transpose of R is equal to the inverse of R and that the determinant of R
is equal to +1.

Exercise 7.5
The operator corresponding to a rotation of angle & about an axis 7 is given by

(]ﬁ (9) — e—i(iﬁ-j/h.



7.6. EXERCISES 451

Show that the matrix elements of the position operator R are rotated through an infinitesimal

~

rotation like R = R + 0n x R. (i.e., in the case where € is infinitesimal, show that
UH@)R;U,(0) = R; + 6(i x R);).

Exercise 7.6
Consider the wave function of a particle () = (vV2x 4+ +2y + 2) f(r), where f(r) is a
spherically symmetric function.

(a) Is w (¥) an eigenfunction of L2? If so, what is the eigenvalue?

(b) What are the probabilities for the particle to be found in the state m; = —1, m; = 0, and
m; =17

(c) If w(#) is an energy eigenfunction with eigenvalues £ and if £ () = 372, find the
expression of the potential ¥ () to which this particle is subjected.

Exercise 7.7
Consider a particle whose wave function is given by

v = (%YU(@, 0) = 31110,9) + %Y10(9,¢)> 10,

where f'(r) is a normalized radial function, i.e., fooo 22y dr = 1.

(a) Calculate the expectation values of ZZ, L., and L, in this state.
(b) Calculate the expectation value of ¥ (6) = 2 cos” # in this state.
(c) Find the probability that the particle will be found in the state m; = 0.

Exercise 7.8

A particle of spin % is in a d state of orbital angular momentum (i.e., / = 2). Work out the
coupling of the spin and orbital angular momenta of this particle, and find all the states and the
corresponding Clebsch—Gordan coefficients.

Exercise 7.9
The spin-dependent Hamiltonian of an electron—positron system in the presence of a uniform
magnetic field in the z-direction (B = Bk) can be written as

H= /1§1 -§2 + (ren_Bc) (Slz - 32_,) s

where 7 is a real number and S| and S, are the spin operators for the electron and the positron,
respectively.

(a) If the spin function of the system is given by |%, —%), find the energy eigenvalues and
their corresponding eigenvectors.

(b) Repeat (a) in the case where 4 = 0, but B # 0.

(c) Repeat (a) in the case where B = 0, but 1 # 0.

Exercise 7.10 . R R R
(a) Show that 77 =/2 o=imJx oimJ2/2 — =iz Jy,
(b) Prove J_e™i"/x = ¢=i7Jx J, and then show that ™"’ | j, m) = e~i"J|j, —m).
(c) Using (a) and (b), show that e="/Y|j, m) = (=1)/="|j, —m).
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Exercise 7.11

Using the commutation relations between the Pauli matrices, show that:
(a) €% g ™% = g, cos(2a) + o, sin(2at),
(b) €% 5,e7% = gy cos(20) — gy sin(2a),
(c) €% g,e™ %% =g, cos(2a) — o sin(2a).

Exercise 7.12
(a) Show how J,, J), and J; transform under a rotation of (finite) angle a about the x-axis.

(b) Using the results of part (a), determine how the angular momentum operator J trans-
forms under the rotation.

Exercise 7.13
(a) Show how the operator J transforms under a rotation of angle 7 about the x-axis.

b) Use the result of part (a) to show that .]Aie_iﬂjx/h — einde/h ] _
( p +

Exercise 7.14
Consider a rotation of finite angle a about an axis # which transforms unit vector a into another

unit vector b. Show that e=#Jb/h = gitn/hg=ifJa/hg=ian/h

Exercise 7.15
(a) Show that e’”JJ/ZhJ e—imdy/2h _ =J.
(b) Show also that eimdy/2h giady[hg=inJy/2h _ gial:/h

lan/hA e—lan/h

(c) For any vector operator A, show that e Ay cosa + Ay sina.

Exercise 7.16
Using J = J| + J7 show that

d’ij’l/(ﬁ) Z Z ]1a]27 mi, my |]n >]17_]2a m1m2|]9 dol)/(ﬁ)d(u) (ﬁ)

n12m
MM 'y mily

Exercise 7.17
Consider the tensor 4(8, ¢) = cos 0 sin 6 cos ¢.

(a) Calculate all the matrix elements 4,,,,, = (I, m' | A |1, m) forl = 1.

(b) Express A (0, ¢) in terms of the components of a spherical tensor of rank 2 (i.e., in terms
of Y2, (0, 9)).

(c) Calculate again all the matrix elements A4,,,,, but this time using the Wigner—Eckart
theorem. Compare these results with those obtained in (a). (The Clebsch—Gordan coefficients
may be obtained from tables.)

Exercise 7.18

(a) Express xz/r% and (x> — y?)/r? in terms of the components of a spherical tensor of
rank 2.

(b) Using the Wigner—Eckart theorem, calculate the values of (1, 0 | xz/»% | 1, 1) and
(L 1] 2 =y)/r? 1, =1,

Exercise 7.19 I . T
Show that (j, m’ | e Av/h J2BN/M | jom!y =S m? | dmj/:,, B) 1%

m=-—j
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Exercise 7.20
Calculate the trace of the rotation matrix D(/? (a, 8, ) for (a) f = 7 and (b) @ = y = 7 and
p =2rm.

Exercise 7.21

The quadrupole moment operator of a charge ¢ is given by on =q(32% — rz) Write on in
terms of an irreducible spherical tensor of rank 2 and then express (j, j| onl J, Jj) in terms
of j and the reduced matrix element (j || r2Y@ | j). Hint: You may use the coefficient

(7,2 m, 0] j, m) = (=1)/""[3m?> — j(j + DI/ = DjG + DZj +3).

Exercise 7.22
Prove the following commutation relations:

@ [ e TY) = 5 10tk g 12 1 q),
o) [Je, 1, 701 + [y,[y,T“‘)]] (2, 12, 701 = ke + 02T,

Exercise 7.23

Consider a spin % particle which has an orbital angular momentum / = 1. Find all the Clebsch—
Gordan coefficients involved in the addition of the orbital and spin angular momenta of this
particle. Hint: The Clebsch—Gordan coefficient (ji, j2; Jj1, (j2 — j1) | Jj2, Jj2) is real and
positive.

Exercise 7.24
This problem deals with another derivation of the matrix elements of ‘1 (8). Use the relation

a0 py=> Z]l,Jz, mimy |, m) G, ja mh,my |, m') A0 (B (B)

mymy m' m2

for the case where j; = j, = % along with the matrix elements of d(!/2)(8), which are given
by (7.89), to derive all the matrix elements of 4V ().

Exercise 7.25
Consider the tensor A(0, ¢) = sin® 0 cos(2¢).

(a) Calculate the reduced matrix element (2 || Y5 || 2). Hint: You may calculate explicitly
(2, 1|Y20 | 2, 1) and then use the Wigner—Eckart theorem to calculate it again.

(b) Express A(@, ¢) in terms of the components of a spherical tensor of rank 2 (i.e., in terms
of Yom (0, (ﬂ))

(c) Calculate 4,,+1 = (2, m’'|4|2, £1) form’ = £2, 1, 0. You may need this Clebsch—
Gordan coefficient: (j,2; m,0| j, m) = [3m*> — j(j + D1/V@j = Dj(G + DZj + 3).

Exercise 7.26

(a) Calculate the reduced matrix element (1 || Y7 || 2). Hint: For this, you may need to
calculate (1, 0| Y10 | 2, 0) directly and then from the Wigner—Eckart theorem.

(b) Using the Wigner—Eckart theorem and the relevant Clebsch—Gordan coefficients from
the table, calculate (1, m|Yy,,/|2, m”) for all possible values of m, m’, and m”. Hint: You may

5
find the integral [° 73R}, (r)R32(r) dr = 1654;% (g) and the following coefficients useful:

(s m, 01 = 1), m) ==V —m)(G +m)/[j 2/ + DI,
(o Is (m =1, 1 =1, m) =G —m)(j —m+1)/[2j(2j + 1)], and
o Is m+ 1), =1 = 1), m) =G +m)(G+m+1)/[2j2j + D]
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Exercise 7.27
A particle of spin % is in a d state of orbital angular momentum (i.e., / = 2).

(a) What are its possible states of total angular momentum.

(b) If its Hamiltonian is given by H = a + bL-S+ cZz, where a, b, and ¢ are numbers, find
the values of the energy for each of the different states of total angular momentum. Express
your answer in terms of a, b, c.

Exercise 7.28

Consider an /-state electron. Calculate the Clebsch—Gordan coefficients involved in the fol-

lowing {| j, m)} states of the electron: | %, %), | %, %), | %, %)» | %, %).

Exercise 7.29
Let the Hamiltonian of two nonidentical spin % particles be

A~ &1 S S S &) A A~
H= ?(51 +8) 81— ;(Slz +5,),

where €1 and ¢; are constants having the dimensions of energy. Find the energy levels and their
degeneracies.

Exercise 7.30
Find the energy levels and their degeneracies for a system of two nonidentical spin % particles
with Hamiltonian NP . c0 .

H= ;(S% +87) - 7 (81 +52.),

where ¢ is a constant having the dimensions of energy.

Exercise 7.31
Consider two nonidentical spin s = % particles with Hamiltonian

A & S s & A N
H= h—‘i(sl + 82 — h—i(slz +8.)2,

where ¢ is a constant having the dimensions of energy. Find the energy levels and their degen-
eracies.

Exercise 7.32
Consider a system of three nonidentical particles, each of spin s = %, whose Hamiltonian is
given by

n el 2 2 2 &2 .4 P d
H= ﬁ(sl +83) -S>+ ﬁ(Slz + 8, + 5.,

where ¢ and &; are constants having the dimensions of energy. Find the system’s energy levels
and their degeneracies.

Exercise 7.33

Consider a system of three nonidentical particles, each with angular momentum % Find the
possible values of the total spin S of this system and specify the number of angular momentum
eigenstates corresponding to each value of S.



