
Chapter 7

Rotations and Addition of Angular

Momenta

In this chapter we deal with rotations, the properties of addition of angular momenta, and the

properties of tensor operators.

7.1 Rotations in Classical Physics

A rotation is defined by an angle of rotation and an axis about which the rotation is performed.

Knowing the rotation matrix R, we can determine how vectors transform under rotations; in
a three-dimensional space, a vector A becomes A when rotated: A RA. For instance, a
rotation over an angle about the z-axis transforms the components Ax , Ay , Az of the vector

A into Ax , Ay , Az:

Ax
Ay
Az

cos sin 0

sin cos 0

0 0 1

Ax
Ay
Az

(7.1)

or

A Rz A (7.2)

where

Rz

cos sin 0

sin cos 0

0 0 1

(7.3)

Similarly, the rotation matrices about the x and y axes are given by

Rx

1 0 0

0 cos sin

0 sin cos

Ry

cos 0 sin

0 1 0

sin 0 cos

(7.4)

From classical physics we know that while rotations about the same axis commute, rotations

about different axes do not. From (7.4) we can verify that Rx Ry Ry Rx . In fact,
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392 CHAPTER 7. ROTATIONS AND ADDITION OF ANGULAR MOMENTA

using (7.4) we can have

Rx Ry

cos 0 sin

sin2 cos cos sin

cos sin sin cos2
(7.5)

Ry Rx

cos sin2 cos sin

0 cos sin

sin sin cos cos2
(7.6)

hence Rx Ry Ry Rx is given by

0 sin2 sin cos sin

sin2 0 cos sin sin

sin cos sin cos sin sin 0

(7.7)

In the case of infinitesimal rotations of angle about the x y , z axes, and using cos

1 2 2 and sin , we can reduce (7.7) to

Rx Ry Ry Rx

0 2 0
2 0 0

0 0 0

(7.8)

which, when combined with Rz 2 of (7.3),

Rz

1
2

2
0

1
2

2
0

0 0 1

Rz
2

1 2 0
2 1 0

0 0 1

(7.9)

leads to

Rx Ry Ry Rx Rz
2 1

1 2 0
2 1 0

0 0 1

1 0 0

0 1 0

0 0 1

(7.10)

We will show later that this relation can be used to derive the commutation relations between

the components of the angular momentum (7.26).

The rotation matrices R are orthogonal, i.e.,

RRT RT R 1 (7.11)

where RT is the transpose of the matrix R. In addition, the orthogonal matrices conserve the
magnitude of vectors:

A A (7.12)

since A RA yields A 2 A2 or A 2x A 2y A 2z A2x A2y A2z .
It is easy to show that the matrices of orthogonal rotations form a (nonabelian) group and

that they satisfy this relation

det R 1 (7.13)
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This group is called the special three-dimensional orthogonal group, SO 3 , because the rota-

tion group is a special case of a more general group, the group of three-dimensional orthogonal

transformations, O 3 , which consist of both rotations and reflections and for which

det R 1 (7.14)

The group SO 3 transforms a vector A into another vector A while conserving the size of its
length.

7.2 Rotations in Quantum Mechanics

In this section we study the relationship between the angular momentum and the rotation op-

erator and then study the properties as well as the representation of the rotation operator. The

connection is analogous to that between the linear momentum operator and translations. We

will see that the angular momentum operator acts as a generator for rotations.

A rotation is specified by an angle and by a unit vector n about which the rotation is per-
formed. Knowing the rotation operator R, we can determine how state vectors and operators
transform under rotations; as shown in Chapter 2, a state and an operator A transform
according to

R A RAR† (7.15)

The problem reduces then to finding R. We may now consider infinitesimal as well as finite
rotations.

7.2.1 Infinitesimal Rotations

Consider a rotation of the coordinates of a spinless particle over an infinitesimal angle about

the z-axis. Denoting this rotation by the operator Rz , we have

Rz r r (7.16)

Taylor expanding the wave function to the first order in , we obtain

r r 1 r (7.17)

Comparing (7.16) and (7.17) we see that Rz is given by

Rz 1 (7.18)

Since the z-component of the orbital angular momentum is

L z ih (7.19)

we can rewrite (7.18) as

Rz 1
i

h
Lz (7.20)
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Wemay generalize this relation to a rotation of angle about an arbitrary axis whose direction

is given by the unit vector n:

R 1
i

h
n L (7.21)

This is the operator corresponding to an infinitesimal rotation of angle about n for a spinless
system. The orbital angular momentum is thus the generator of infinitesimal spatial rotations.

Rotations and the commutation relations

We can show that the relation (7.10) leads to the commutation relations of angular momentum

[Lx L y] ihL z . The operators corresponding to infinitesimal rotations of angle about the

x and y axes can be inferred from (7.20):

Rx 1
i

h
Lx

2

2h2
L2x Ry 1

i

h
L y

2

2h2
L2y (7.22)

where we have extended the expansions to the second power in . On the one hand, the follow-

ing useful relation can be obtained from (7.22):

Rx Ry Ry Rx 1
i

h
Lx

2

2h2
L2x 1

i

h
L y

2

2h2
L2y

1
i

h
L y

2

2h2
L2y 1

i

h
Lx

2

2h2
L2x

2

h2
Lx L y L yLx

2

h2
[Lx L y] (7.23)

where we have kept only terms up to the second power in ; the terms in cancel out automat-

ically.

On the other hand, according to (7.10), we have

Rx Ry Ry Rx Rz
2 1 (7.24)

Since Rz 2 1 i 2 h L z this relations leads to

Rx Ry Ry Rx Rz
2 1

i 2

h
Lz (7.25)

Finally, equating (7.23) and (7.25), we end up with

[Lx L y] ihLz (7.26)

Similar calculations for Ry Rz Rz Ry and Rz Rx Rx Rz lead to the

other two commutation relations [L y L z] ihLx and [Lz Lx ] ihL y .
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7.2.2 Finite Rotations

The operator Rz corresponding to a rotation (of the coordinates of a spinless particle) over a

finite angle about the z-axis can be constructed in terms of the infinitesimal rotation operator
(7.20) as follows. We divide the angle into N infinitesimal angles : N . The

rotation over the finite angle can thus be viewed as a series of N consecutive infinitesimal
rotations, each over the angle , about the z-axis, applied consecutively one after the other:

Rz Rz N Rz
N 1 i

h
Lz

N

(7.27)

Since N , and if is infinitesimally small, we have

Rz lim
N

N

k 1

1
i

h N
n L lim

N
1

i

h N
L z

N

(7.28)

or

Rz e i Lz h (7.29)

We can generalize this result to infer the rotation operator Rn corresponding to a rotation

over a finite angle around an axis n:

Rn e i n L h (7.30)

where L is the orbital angular momentum. This operator represents the rotation of the coordi-
nates of a spinless particle over an angle about an axis n.
The discussion that led to (7.30) was carried out for a spinless system. A more general

study for a system with spin would lead to a relation similar to (7.30):

Rn e
i
h n J

(7.31)

where J is the total angular momentum operator; this is known as the rotation operator. For
instance, the rotation operator Rx of a rotation through an angle about the x-axis is given
by

Rx e i Jx h (7.32)

The properties of Rn are determined by those of the operators Jx Jy Jz .

Remark

The Hamiltonian of a particle in a central potential, H P2 2m V r , is invariant under
spatial rotations since, as shown in Chapter 6, it commutes with the orbital angular momentum:

[H L] 0 H e i n L h 0 (7.33)

Due to this symmetry of space isotropy or rotational invariance, the orbital angular momentum
is conserved1. So, in the case of particles moving in central potentials, the orbital angular
momentum is a constant of the motion.

1In classical physics when a system is invariant under rotations, its total angular momentum is also conserved.
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7.2.3 Properties of the Rotation Operator

The rotation operators constitute a representation of the rotation group and satisfy the following

properties:

The product of any two rotation operators is another rotation operator:

Rn1Rn2 Rn3 (7.34)

The associative law holds for rotation operators:

Rn1Rn2 Rn3 Rn1 Rn2Rn3 (7.35)

The identity operator (corresponding to no rotation) satisfies the relation

I Rn Rn I Rn (7.36)

From (7.31) we see that for each rotation operator Rn , there exists an inverse operator
R 1
n so that

RnR
1

n R 1
n Rn I (7.37)

The operator R n , which is equal to R 1
n , corresponds to a rotation in the opposite sense

to Rn .

In sharp contrast to the translation group2 in three dimensions, the rotation group is not com-

mutative (nonabelian). The product of two rotation operators depends on the order in which
they are performed:

Rn1 Rn2 Rn2 Rn1 (7.38)

this is due to the fact that the commutator [n1 J n2 J ] is not zero. In this way, the rotation
group is in general nonabelian.

But if the two rotations were performed about the same axis, the corresponding operators
would commute:

Rn Rn Rn Rn Rn (7.39)

Note that, since the angular momentum operator J is Hermitian, equation (7.31) yields

R
†
n R 1

n Rn ei n J h (7.40)

hence the rotation operator (7.31) is unitary:

R
†
n R 1

n R
†
n Rn I (7.41)

The operator Rn therefore conserves the scalar product of kets, notably the norm of vectors.

For instance, using

Rn Rn (7.42)

along with (7.41), we can show that , since

R
†
n Rn (7.43)

2The linear momenta Pi and Pj—which are the generators of translation—commute even when i j ; hence the
translation group is said to be abelian.
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7.2.4 Euler Rotations

It is known from classical mechanics that an arbitrary rotation of a rigid body can be expressed

in terms of three consecutive rotations, called the Euler rotations. In quantum mechanics, in-

stead of expressing the rotation operator Rn e i n J h in terms of a rotation through an

angle about an arbitrary axis n, it is more convenient to parameterize it, as in classical me-
chanics, in terms of the three Euler angles where 0 2 , 0 , and

0 2 . The Euler rotations transform the space-fixed set of axes xyz into a new set
x y z , having the same origin O, by means of three consecutive counterclockwise rotations:

First, rotate the space-fixed Oxyz system through an angle about the z-axis; this rota-
tion transforms the Oxyz system into Ou z: Oxyz Ou z.

Second, rotate the u z system through an angle about the -axis; this rotation trans-

forms the Ou z system into O z : Ou z O z .

Third, rotate the z system through an angle about the z -axis; this rotation trans-
forms the O z system into Ox y z : O z Ox y z .

The operators representing these three rotations are given by Rz , R , and Rz , respec-

tively. Using (7.31) we can represent these three rotations by

R Rz R Rz exp i Jz h exp i J h exp i Jz h (7.44)

The form of this operator is rather inconvenient, for it includes rotations about axes belonging

to different systems (i.e., z , , and z); this form would be most convenient were we to express
(7.44) as a product of three rotations about the space-fixed axes x , y, z. So let us express Rz
and R in terms of rotations about the x y z axes. Since the first Euler rotation described
above, Rz , transforms the operator Jy into J , i.e., J Rz JyRz by (7.15), we have

R Rz Ry Rz e i Jz he i Jy hei Jz h (7.45)

Here Jz is obtained from Jz by the consecutive application of the second and third Euler rota-
tions, Jz R Rz JzRz R ; hence

Rz R Rz Rz Rz R (7.46)

Since R Rz Ry Rz , substituting (7.45) into (7.46) we obtain

Rz Rz Ry Rz Rz Rz Rz Rz Ry Rz

Rz Ry Rz Ry Rz

e i Jz he i Jy he i Jz hei Jy hei Jz h (7.47)

where we used the fact that Rz Rz e i Jz hei Jz h 1.

Finally, inserting (7.45) and (7.47) into (7.44) and simplifying (i.e., using Rz Rz
1 and Ry Ry 1), we end up with a product of three rotations about the space-fixed

axes y and z:

R Rz Ry Rz e i Jz he i Jy he i Jz h (7.48)
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The inverse transformation of (7.48) is obtained by taking three rotations in reverse order over

the angles :

R 1 Rz Ry Rz R† ei Jz hei Jy hei Jz h (7.49)

7.2.5 Representation of the Rotation Operator

The rotation operator R as given by (7.48) implies that its properties are determined

by the algebraic properties of the angular momentum operators Jx , Jy , Jz . Since R

commutes with J2, we may look for a representation of R in the basis spanned by the

eigenvectors of J 2 and Jz , i.e., the j m states.

From (7.48), we see thatJ2 commutes with the rotation operator, [J 2 R ] 0;

thus, the total angular momentum is conserved under rotations

J2R j m R J 2 j m j j 1 R j m (7.50)

However, the z-component of the angular momentum changes under rotations, unless the axis
of rotation is along the z-axis. That is, when R acts on the state j m , we end up
with a new state having the same j but with a different value of m:

R j m
j

m j

j m j m R j m

j

m j

D j
m m j m (7.51)

where

D j
m m j m R j m (7.52)

These are the matrix elements of R for the j m states; D j
m m is the am-

plitude of j m when j m is rotated. The rotation operator is thus represented by a

2 j 1 2 j 1 square matrix in the j m basis. The matrix of D j is known

as the Wigner D-matrix and its elements D j
m m as the Wigner functions. This matrix

representation is often referred to as the 2 j 1 -dimensional irreducible representation of the
rotation operator R .

Since j m is an eigenstate of Jz , it is also an eigenstate of the rotation operator ei Jz h ,
because

ei Jz h j m ei m j m (7.53)

We may thus rewrite (7.52) as

D j
m m e i m m d j

m m (7.54)

where

d j
m m j m e i Jy h j m (7.55)
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This shows that only the middle rotation operator, e i Jy h , mixes states with different values

of m. Determining the matrix elements D j
m m therefore reduces to evaluation of the

quantities d j
m m .

A general expression of d j
m m , called the Wigner formula, is given by the following

explicit expression:

d j
m m

k

1 k m m j m ! j m ! j m ! j m !

j m k ! j m k ! k m m !k!

cos
2

2 j m m 2k

sin
2

m m 2k

(7.56)

The summation over k is taken such that none of the arguments of factorials in the denominator
are negative.

We should note that, since the D-function D j
m m is a joint eigenfunction of J 2 and

Jz , we have

J 2D j
m m j j 1 h2D j

m m (7.57)

JzD
j
m m hmD j

m m (7.58)

J D j
m m h j m j m 1 D j

m m 1
(7.59)

Properties of the D-functions
We now list some of the most useful properties of the rotation matrices. The complex conjugate

of the D-functions can be expressed as

D j
m m j m R j m j m R† j m

j m R 1 j m

D j
mm (7.60)

We can easily show that

D j
m m 1 m mD j

m m D j
mm (7.61)

The D-functions satisfy the following unitary relations:

m

D j
km D j

k m k k (7.62)

m

D j
mk D j

mk k k (7.63)
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since

m

D j
mk D j

mk
m

j k R 1 j m j m R j k

j k R 1 R j k

j k j k

k k (7.64)

From (7.55) we can show that the d-functions satisfy the following relations:

d j
m m 1 j m

m m d j
m m 0 m m (7.65)

Since d jm m are elements of a unitary real matrix, the matrix d
j must be orthogonal. We

may thus write

d j
m m d j

m m

1
d j
mm (7.66)

and

d j
m m 1 m md j

mm 1 m md j
m m (7.67)

The unitary matrices D j form a 2 j 1 dimensional irreducible representation of the SO 3
group.

7.2.6 Rotation Matrices and the Spherical Harmonics

In the case where the angular momentum operator J is purely orbital (i.e., the values of j are
integer, j l), there exists a connection between the D-functions and the spherical harmonics
Ylm . The operator R when applied to a vector r pointing in the direction
would generate a vector r along a new direction :

r R r (7.68)

An expansion in terms of l m and a multiplication by l m leads to

l m r
m

l m R l m l m r (7.69)

or to

Ylm
m

D l
m m Ylm (7.70)

since l m r Ylm and l m r Ylm .

In the case where the vector r is along the z-axis, we have 0; hence m 0. From

Chapter 5, Yl0 0 is given by

Ylm 0
2l 1

4
m 0 (7.71)

We can thus reduce (7.70) to

Ylm D l
m 0 Yl0 0

2l 1

4
D l
m 0 (7.72)
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or to

D l
m0

4

2l 1
Ylm (7.73)

This means that a rotation through the Euler angles of the vector r , when it is along
the z-axis, produces a vector r whose azimuthal and polar angles are given by and ,

respectively. Similarly, we can show that

D l
0m

4

2l 1
Ylm (7.74)

and

D l
00 0 0 Pl cos (7.75)

where Pl cos is the Legendre polynomial.

We are now well equipped to derive the theorem for the addition of spherical harmonics.

Let be the polar coordinates of the vector r with respect to the space-fixed x y z system
and let be its polar coordinates with respect to the rotated system x y z ; taking the
complex conjugate of (7.70) we obtain

Ylm
m

D l
m m Ylm (7.76)

For the case m 0, since (from Chapter 5)

Yl0
2l 1

4
Pl cos (7.77)

and since from (7.74)

D l
0m

4

2l 1
Ylm (7.78)

we can reduce (7.76) to

2l 1

4
Pl cos

m

4

2l 1
Ylm Ylm (7.79)

or to

Pl cos
4

2l 1
m

Ylm Ylm (7.80)

Integrals involving the D-functions
Let denote the Euler angles; hence

d
0

sin d
2

0

d
2

0

d (7.81)

Using the relation

D j
m m d

0

d j
m m sin d

2

0

e im d
2

0

e im d

8 2
j 0 m 0 m 0 (7.82)
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we may write

D j
mk D j

m k d 1 m k D j
m k D j

m k d

1 m k

0

d j
m k d j

m k sin d

2

0

e i m m d
2

0

e i k k d

8 2

2 j 1
j j m m k k (7.83)

Example 7.1

Find the rotation matrices d 1 2 and D 1 2 corresponding to j 1
2
.

Solution

On the one hand, since the matrix of Jy for j
1
2
(Chapter 5) is given by

Jy
h

2

0 i
i 0

h

2
y (7.84)

and since the square of the Pauli matrix y is equal to the unit matrix,
2
y 1, the even and odd

powers of y are given by

2n
y

1 0

0 1
2n 1
y

0 i
i 0 y (7.85)

On the other hand, since the rotation operator

Ry e i Jy h e i y 2 (7.86)

can be written as

e i y 2

n 0

i 2n

2n ! 2

2n
2n

n 0

i 2n 1

2n 1 ! 2

2n 1
2n 1
y (7.87)

a substitution of (7.85) into (7.87) yields

e i y 2 1 0

0 1
n 0

1 n

2n ! 2

2n

i y
n 0

1 n

2n 1 ! 2

2n 1

1 0

0 1
cos

2

0 1

1 0
sin

2
(7.88)

hence

d 1 2 e i Jy h
d 1 21
2
1
2

d 1 21
2

1
2

d 1 21
2
1
2

d 1 21
2

1
2

cos 2 sin 2

sin 2 cos 2

(7.89)
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Since as shown in (7.54) D j
m m e i m m d j

m m , we have

D 1 2
e i 2 cos 2 e i 2 sin 2

ei 2 sin 2 ei 2 cos 2
(7.90)

7.3 Addition of Angular Momenta

The addition of angular momenta is encountered in all areas of modern physics. Mastering its

techniques is essential for an understanding of the various subatomic phenomena. For instance,

the total angular momentum of the electron in a hydrogen atom consists of two parts, an orbital

part L, which is due to the orbiting motion of the electron around the proton, and a spin part S,
which is due to the spinning motion of the electron about itself. The properties of the hydrogen

atom cannot be properly discussed without knowing how to add the orbital and spin parts of the

electron’s total angular momentum.

In what follows we are going to present the formalism of angular momentum addition and

then consider some of its most essential applications.

7.3.1 Addition of Two Angular Momenta: General Formalism

In this section we present the general formalism corresponding to the problem of adding two

commuting angular momenta.

Consider two angular momenta J 1 and J 2 which belong to different subspaces 1 and 2; J 1

and J2 may refer to two distinct particles or to two different properties of the same particle3.
The latter case may refer to the orbital and spin angular momenta of the same particle. Assum-

ing that the spin–orbit coupling is sufficiently weak, then the space and spin degrees of freedom

of the electron evolve independently of each other.

The components of J1 and J 2 satisfy the usual commutation relations of angular momen-
tum:

J1x J1y ih J1z J1y J1z ih J1x J1z J1x ih J1y (7.91)

J2x J2y ih J2z J2y J2z ih J2x J2z J2x ih J2y (7.92)

Since J1, and J 2 belong to different spaces, their components commute:

J1 j J2k 0 j k x y z (7.93)

3Throughout this section we shall use the labels 1 and 2 to refer to quantities relevant to the two particles or the two

subspaces.
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Now, denoting the joint eigenstates of J 21 and J1z by j1 m1 and those of J 22 and J2z by
j2 m2 , we have

J 21 j1 m1 j1 j1 1 h2 j1 m1 (7.94)

J1z j1 m1 m1h j1 m1 (7.95)

J 22 j2 m2 j2 j2 1 h2 j2 m2 (7.96)

J2z j2 m2 m2h j2 m2 (7.97)

The dimensions of the spaces to which J1 and J 2 belong are given by 2 j1 1 and 2 j2 1 ,

respectively4. The operators J 21 and J1z are represented within the j1 m1 basis by square

matrices of dimension 2 j1 1 2 j1 1 , while J 22 and J2z are representation by square
matrices of dimension 2 j2 1 2 j2 1 within the j2 m2 basis.

Consider now the two particles (or two subspaces) 1 and 2 together. The four operators J21,

J 22, J1z , J2z form a complete set of commuting operators; they can thus be jointly diagonalized
by the same states. Denoting their joint eigenstates by j1 j2 m1 m2 , we can write them as
direct products of j1 m1 , and j2 m2

j1 j2 m1 m2 j1 m1 j2 m2 (7.98)

because the coordinates of J1 and J 2 are independent. We can thus rewrite (7.94)–(7.97) as

J 21 j1 j2 m1 m2 j1 j1 1 h2 j1 j2 m1 m2 (7.99)

J1z j1 j2 m1 m2 m1h j1 j2 m1 m2 (7.100)

J 22 j1 j2 m1 m2 j2 j2 1 h2 j1 j2 m1 m2 (7.101)

J2z j1 j2 m1 m2 m2h j1 j2 m1 m2 (7.102)

The kets j1 j2 m1 m2 form a complete and orthonormal basis. Using

m1m2

j1 j2 m1 m2 j1 j2 m1 m2
m1

j1 m1 j1 m1
m2

j2 m2 j2 m2

(7.103)

and since j1 m1 and j2 m2 are complete (i.e., m1
j1 m1 j1 m1 1) and

orthonormal (i.e., j1 m1 j1 m1 j1 j1 m1 m1
and similarly for j2 m2 ), we see that

the basis j1 j2 m1 m2 is complete,

j1

m1 j1

j2

m2 j2

j1 j2 m1 m2 j1 j2 m1 m2 1 (7.104)

and orthonormal,

j1 j2 m1 m2 j1 j2 m1 m2 j1 m1 j1 m1 j2 m2 j2 m2

j1 j1 j2 j2 m1 m1 m2 m2
(7.105)

4This is due to the fact that the number of basis vectors spanning the spaces to which J1 and J2 belong are equal
to 2 j1 1 and 2 j2 1 , respectively; these vectors are j1 j1 , j1 j1 1 , , j1 j1 1 , j1 j1 and

j2 j2 , j2 j2 1 , , j2 j2 1 , j2 j2 .
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The basis j1 j2 m1 m2 clearly spans the total space which is made of subspaces 1 and 2.

From (7.98) we see that the dimension N of this space is equal to the product of the dimensions
of the two subspaces spanned by j1 m1 and j2 m2 :

N 2 j1 1 2 j2 1 (7.106)

We can now introduce the step operators J1 J1x i J1y and J2 J2x i J2y ; their
actions on j1 j2 m1m2 are given by

J1 j1 j2 m1 m2 h j1 m1 j1 m1 1 j1 j2 m1 1 m2 (7.107)

J2 j1 j2 m1 m2 h j2 m2 j2 m2 1 j1 j2 m1 m2 1 (7.108)

The problem of adding two angular momenta, J 1 and J 2,

J J 1 J 2 (7.109)

consists of finding the eigenvalues and eigenvectors of J 2 and Jz in terms of the eigenvalues and

eigenvectors of J21, J
2
2, J1z , and J2z . Since the matrices of J 1 and J 2 have in general different

dimensions, the addition specified by (7.109) is not an addition of matrices; it is a symbolic

addition.

By adding (7.91) and (7.92), we can easily ascertain that the components of J satisfy the
commutation relations of angular momentum:

Jx Jy ih Jz Jy Jz ih Jx Jz Jx ih Jy (7.110)

Note that J 21, J
2
2, J

2, Jz jointly commute; this can be ascertained from the relation:

J2 J 21 J 22 2J1z J2z J1 J2 J1 J2 (7.111)

which leads to

J2 J21 J2 J 22 0 (7.112)

and to

J 2 Jz J 21 Jz J 22 Jz 0 (7.113)

But in spite of the fact that J2 Jz 0, the operators J1z and J2z do not commute separately

with J2:

J 2 J1z 0 J 2 J2z 0 (7.114)

Now, since J21, J
2
2, J

2, Jz form a complete set of commuting operators, they can be diago-
nalized simultaneously by the same states; designating these joint eigenstates by j1 j2 j m ,
we have

J21 j1 j2 j m j1 j1 1 h2 j1 j2 j m (7.115)

J22 j1 j2 j m j2 j2 1 h2 j1 j2 j m (7.116)

J2 j1 j2 j m j j 1 h2 j1 j2 j m (7.117)

Jz j1 j2 j m mh j1 j2 j m (7.118)
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For every j , the number m has 2 j 1 allowed values: m j , j 1, , j 1, j .
Since j1 and j2 are usually fixed, we will be using, throughout the rest of this chapter, the

shorthand notation j m to abbreviate j1 j2 j m . The set of vectors j m form a

complete and orthonormal basis:

j

j

m j

j m j m 1 (7.119)

j m j m j j m m (7.120)

The space where the total angular momentum J operates is spanned by the basis j m ;

this space is known as a product space. It is important to know that this space is the same
as the one spanned by j1 j2 m1 m2 ; that is, the space which includes both subspaces 1

and 2. So the dimension of the space which is spanned by the basis j m is also equal to

N 2 j1 1 2 j2 1 as specified by (7.106).

The issue now is to find the transformation that connects the bases j1 j2 m1 m2 and

j m .

7.3.1.1 Transformation between Bases: Clebsch–Gordan Coefficients

Let us now return to the addition of J1 and J 2. This problem consists in essence of obtaining the

eigenvalues of J2 and Jz and of expressing the states j m in terms of j1 j2 m1 m2 . We

should mention that j m is the state in which J 2 and J z have fixed values, j j 1 and m,

but in general not a state in which the values of J 1z and J 2z are fixed; as for j1 j2 m1 m2 ,

it is the state in which J 21, J
2
2, J 1z , and J2z have fixed values.

The j1 j2 m1 m2 and j m bases can be connected by means of a transformation

as follows. Inserting the identity operator as a sum over the complete basis j1 j2 m1 m2 ,
we can write

j m
j1

m1 j1

j2

m2 j2

j1 j2 m1 m2 j1 j2 m1 m2 j m

m1m2

j1 j2 m1 m2 j m j1 j2 m1 m2 (7.121)

where we have used the normalization condition (7.104); since the bases j1 j2 m1 m2
and j m are both normalized, this transformation must be unitary. The coefficients
j1 j2 m1 m2 j m , which depend only on the quantities j1, j2, j , m1, m2, and m,
are the matrix elements of the unitary transformation which connects the j m and

j1 j2 m1 m2 bases. These coefficients are called the Clebsch–Gordan coefficients.
The problem of angular momentum addition reduces then to finding the Clebsch–Gordan

coefficients j1 j2 m1 m2 j m . These coefficients are taken to be real by convention;
hence

j1 j2 m1 m2 j m j m j1 j2 m1 m2 (7.122)

Using (7.104) and (7.120) we can infer the orthonormalization relation for the Clebsch–Gordan

coefficients:

m1m2

j m j1 j2 m1 m2 j1 j2 m1 m2 j m j j m m (7.123)
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and since the Clebsch–Gordan coefficients are real, this relation can be rewritten as

m1m2

j1 j2 m1 m2 j m j1 j2 m1 m2 j m j j m m (7.124)

which leads to

m1m2

j1 j2 m1 m2 j m 2 1 (7.125)

Likewise, we have

j

j

m j

j1 j2 m1 m2 j m j1 j2 m1 m2 j m m1 m1 m2 m2
(7.126)

and, in particular,

j m

j1 j2 m1 m2 j m 2 1 (7.127)

7.3.1.2 Eigenvalues of J2 and Jz

Let us study how to find the eigenvalues of J 2 and Jz in terms of those of J 21, J
2
2, J1z , and J2z ;

that is, obtain j and m in terms of j1, j2, m1 and m2. First, since Jz J1z J2z , we have
m m1 m2. Now, to find j in terms of j1 and j2, we proceed as follows. Since the maximum
values of m1 and m2 are m1max j1 and m2max j2, we have mmax m1max m2max
j1 j2; but since m j , then jmax j1 j2.
Next, to find the minimum value jmin of j , we need to use the fact that there are a total of

2 j1 1 2 j2 1 eigenkets j m . To each value of j there correspond 2 j 1 eigenstates

j m , so we have
jmax

j jmin

2 j 1 2 j1 1 2 j2 1 (7.128)

which leads to (see Example 7.2, page 408, for the proof)

j2min j1 j2
2 jmin j1 j2 (7.129)

Hence the allowed values of j are located within the range

j1 j2 j j1 j2 (7.130)

This expression can also be inferred from the well-known triangle relation5. So the allowed

values of j proceed in integer steps according to

j j1 j2 j1 j2 1 j1 j2 1 j1 j2 (7.131)

5The length of the sum of two classical vectors, A B, must be located between the sum and the difference of the
lengths of the two vectors, A B and A B , i.e., A B A B A B.
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Thus, for every j the allowed values of m are located within the range j m j .
Note that the coefficient j1 j2 m1 m2 j m vanishes unless m1 m2 m. This can

be seen as follows: since Jz J1z J2z , we have

j1 j2 m1 m2 Jz J1z J2z j m 0 (7.132)

and since Jz j m mh j m , j1 j2 m1 m2 J1z m1h j1 j2 m1 m2 , and

j1 j2 m1 m2 J2z m2h j1 j2 m1 m2 we can write

m m1 m2 j1 j2 m1 m2 j m 0 (7.133)

which shows that j1 j2 m1 m2 j m is not zero only when m m1 m2 0.

If m1 m2 m j1 j2 m1 m2 j m 0 (7.134)

So, for the Clebsch–Gordan coefficient j1 j2 m1 m2 j m not to be zero, we must simul-

taneously have

m1 m2 m and j1 j2 j j1 j2 (7.135)

These are known as the selection rules for the Clebsch–Gordan coefficients.

Example 7.2

Starting from
jmax
j jmin

2 j 1 2 j1 1 2 j2 1 , prove (7.129).

Solution

Let us first work on the left-hand side of

jmax

j jmin

2 j 1 2 j1 1 2 j2 1 (7.136)

Since jmax j1 j2 we can write the left-hand side of this equation as an arithmetic sum
which has jmax jmin 1 [ j1 j2 1 jmin] terms:

jmax

j jmin

2 j 1 2 jmin 1 2 jmin 3 2 jmin 5 2 j1 j2 1 (7.137)

To calculate this sum, we simply write it in the following two equivalent ways:

S 2 jmin 1 2 jmin 3 2 jmin 5 [2 j1 j2 1] (7.138)

S [2 j1 j2 1] [2 j1 j2 1] [2 j1 j2 3] 2 jmin 1 (7.139)

Adding these two series term by term, we obtain

2S 2[ j1 j2 1 jmin] 2[ j1 j2 1 jmin] 2[ j1 j2 1 jmin] (7.140)

Since this expression has jmax jmin 1 [ j1 j2 1 jmin] terms, we have

2S 2[ j1 j2 1 jmin][ j1 j2 1 jmin] (7.141)
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hence

S [ j1 j2 1 jmin][ j1 j2 1 jmin] j1 j2 1 2 j2min (7.142)

Now, equating this expression with the right-hand side of (7.136), we obtain

j1 j2 1 2 j2min 2 j1 1 2 j2 1 (7.143)

which in turn leads to

j2min j1 j2
2 (7.144)

7.3.2 Calculation of the Clebsch–Gordan Coefficients

First, we should point out that the Clebsch–Gordan coefficients corresponding to the two lim-

iting cases where m1 j1, m2 j2, j j1 j2, m j1 j2 and m1 j1, m2 j2,
j j1 j2, m j1 j2 are equal to one:

j1 j2 j1 j2 j1 j2 j1 j2 1 j1 j2 j1 j2 j1 j2 j1 j2 1

(7.145)

These results can be inferred from (7.121), since j1 j2 j1 j2 , and j1 j2 j1 j2
have one element each:

j1 j2 j1 j2 j1 j2 j1 j2 j1 j2 j1 j2 j1 j2 j1 j2 (7.146)

j1 j2 j1 j2 j1 j2 j1 j2 j1 j2 j1 j2 j1 j2 j1 j2 (7.147)

where j1 j2 j1 j2 , j1 j2 j1 j2 , j1 j2 j1 j2 , and j1 j2 j1 j2
are all normalized.

The calculations of the other coefficients are generally more involved than the two limiting

cases mentioned above. For this, we need to derive the recursion relations between the matrix

elements of the unitary transformation between the j m and j1 j2 m1 m2 bases,

since, when j1, j2 and j are fixed, the various Clebsch–Gordan coefficients are related to one
another by means of recursion relations. To find the recursion relations, we need to evaluate the

matrix elements j1 j2 m1 m2 J j m in two different ways. First, allow J to act to

the right, i.e., on j m :

j1 j2 m1 m2 J j m h j m j m 1 j1 j2 m1 m2 j m 1 (7.148)

Second, make J J1 J2 act to the left6, i.e., on j1 j2 m1 m2 :

j1 j2 m1 m2 J j m h j1 m1 j1 m1 1 j1 j2 m1 1 m2 j m

h j2 m2 j2 m2 1 j1 j2 m1 m2 1 j m (7.149)

6Recall that j1 j2 m1 m2 J1 h j1 m1 j1 m1 1 j1 j2 m1 1 m2 .
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Equating (7.148) and (7.149) we obtain the desired recursion relations for the Clebsch–Gordan

coefficients:

j m j m 1 j1 j2 m1 m2 j m 1

j1 m1 j1 m1 1 j1 j2 m1 1 m2 j m

j2 m2 j2 m2 1 j1 j2 m1 m2 1 j m

(7.150)

These relations, together with the orthonormalization relation (7.125), determine all Clebsch–

Gordan coefficients for any given values of j1, j2, and j . To see this, let us substitute m1 j1
and m j into the lower part of (7.150). Since m2 can be equal only to m2 j j1 1, we

obtain

2 j j1 j2 j1 j j1 1 j j 1 j2 j j1 1 j2 j j1

j1 j2 j1 j j1 j j

(7.151)

Thus, knowing j1 j2 j1 j j1 j j , we can determine j1 j2 j1 j j1 1 j j 1 .

In addition, substituting m1 j1, m j 1 and m2 j j1 into the upper part of (7.150),
we end up with

2 j j1 j2 j1 j j1 j j 2 j1 j1 j2 j1 1 j j1 j j 1

j2 j j1 j2 j j1 1 j1 j2 j1 j j1 1 j j 1

(7.152)

Thus knowing j1 j2 j1 j j1 j j and j1 j2 j1 j j1 1 j j 1 , we can

determine j1 j2 j1 1 j j1 j j 1 . Repeated application of the recursion relation

(7.150) will determine all the other Clebsch–Gordan coefficients, provided we know only one

of them: j1 j2 j1 j j1 j j . As for the absolute value of this coefficient, it can
be determined from the normalization condition (7.124). Thus, the recursion relation (7.150),

in conjunction with the normalization condition (7.124), determines all the Clebsch–Gordan

coefficients except for a sign. But how does one determine this sign?

The convention, known as the phase convention, is to consider j1 j2 j1 j j1 j j to
be real and positive. This phase convention implies that

j1 j2 m1 m2 j m 1 j j1 j2 j2 j1 m2 m1 j m (7.153)

hence

j1 j2 m1 m2 j m 1 j j1 j2 j1 j2 m1 m2 j m
j2 j1 m2 m1 j m

(7.154)

Note that, since all the Clebsch–Gordan coefficients are obtained from a single coefficient

j1 j2 j1 j j1 j j , and since this coefficient is real, all other Clebsch–Gordan coef-
ficients must also be real numbers.
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Following the same method that led to (7.150) from j1 j2 m1 m2 J j m , we
can show that a calculation of j1 j2 m1 m2 J j m 1 leads to the following recursion

relation:

j m 1 j m j1 j2 m1 m2 j m

j1 m1 j1 m1 1 j1 j2 m1 1 m2 j m 1

j2 m2 j2 m2 1 j1 j2 m1 m2 1 j m 1

(7.155)

We can use the recursion relations (7.150) and (7.155) to obtain the values of the various

Clebsch–Gordan coefficients. For instance, if we insert m1 j1, m2 j2 1, j j1 j2,
and m j1 j2 into the lower sign of (7.150), we obtain

j1 j2 j1 j2 1 j1 j2 j1 j2 1
j2

j1 j2
(7.156)

Similarly, a substitution of m1 j1 1, m2 j2, j j1 j2, and m j1 j2 into the lower
sign of (7.150) leads to

j1 j2 j1 1 j2 j1 j2 j1 j2 1
j1

j1 j2
(7.157)

We can also show that

j 1 m 0 j m
m

j j 1
j 0 m 0 j m 1 (7.158)

Example 7.3

(a) Find the Clebsch–Gordan coefficients associated with the coupling of the spins of the

electron and the proton of a hydrogen atom in its ground state.

(b) Find the transformation matrix which is formed by the Clebsch–Gordan coefficients.

Verify that this matrix is unitary.

Solution

In their ground states the proton and electron have no orbital angular momenta. Thus, the

total angular momentum of the atom is obtained by simply adding the spins of the proton and

electron.

This is a simple example to illustrate the general formalism outlined in this section. Since

j1
1
2
and j2

1
2
, j has two possible values j 0 1. When j 0, there is only a single

state j m 0 0 ; this is called the spin singlet. On the other hand, there are three possible
values of m 1 0 1 for the case j 1; this corresponds to a spin triplet state 1 1 ,

1 0 , 1 1 .

From (7.121), we can express the states j m in terms of 1
2
1
2
m1 m2 as follows:

j m
1 2

m1 1 2

1 2

m2 1 2

1

2

1

2
m1 m2 j m

1

2

1

2
m1 m2 (7.159)
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which, when applied to the two cases j 0 and j 1, leads to

0 0
1

2

1

2

1

2

1

2
0 0

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2
0 0

1

2

1

2

1

2

1

2

(7.160)

1 1
1

2

1

2

1

2

1

2
1 1

1

2

1

2

1

2

1

2
(7.161)

1 0
1

2

1

2

1

2

1

2
1 0

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2
1 0

1

2

1

2

1

2

1

2

(7.162)

1 1
1

2

1

2

1

2

1

2
1 1

1

2

1

2

1

2

1

2
(7.163)

To calculate the Clebsch–Gordan coefficients involved in (7.160)–(7.163), we are going

to adopt two separate approaches: the first approach uses the recursion relations (7.150) and

(7.155), while the second uses the algebra of angular momentum.

First approach: using the recursion relations

First, to calculate the two coefficients 1
2
1
2

1
2

1
2
0 0 involved in (7.160), we need, on

the one hand, to substitute j 0 m 0 m1 m2
1
2
into the upper sign relation of (7.150):

1

2

1

2

1

2

1

2
0 0

1

2

1

2

1

2

1

2
0 0 (7.164)

On the other hand, the substitution of j 0 and m 0 into (7.125) yields

1

2

1

2

1

2

1

2
0 0 2

1

2

1

2

1

2

1

2
0 0 2 1 (7.165)

Combining (7.164) and (7.165) we end up with

1

2

1

2

1

2

1

2
0 0

1

2
(7.166)

The sign of 1
2
1
2

1
2

1
2
0 0 has to be positive because, according to the phase convention,

the coefficient j1 j2 j1 j j1 j j is positive; hence

1

2

1

2

1

2

1

2
0 0

1

2
(7.167)

As for 1
2
1
2

1
2
1
2
0 0 , its value can be inferred from (7.164) and (7.167):

1

2

1

2

1

2

1

2
0 0

1

2
(7.168)

Second, the calculation of the coefficients involved in (7.161) to (7.163) goes as follows. The

orthonormalization relation (7.125) leads to

1

2

1

2

1

2

1

2
1 1 2 1

1

2

1

2

1

2

1

2
1 1 2 1 (7.169)
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and since 1
2
1
2

1
2
1
2
1 1 and 1

2
1
2

1
2

1
2
1 1 are both real and positive, we have

1

2

1

2

1

2

1

2
1 1 1

1

2

1

2

1

2

1

2
1 1 1 (7.170)

As for the coefficients 1
2
1
2

1
2

1
2
1 0 and 1

2
1
2

1
2
1
2
1 0 , they can be extracted by

setting j 1 m 0, m1
1
2
, m2

1
2
and j 1, m 0, m1

1
2
, m2

1
2
, respectively,

into the lower sign case of (7.155):

2
1

2

1

2

1

2

1

2
1 0

1

2

1

2

1

2

1

2
1 1 (7.171)

2
1

2

1

2

1

2

1

2
1 0

1

2

1

2

1

2

1

2
1 1 (7.172)

Combining (7.170) with (7.171) and (7.172), we find

1

2

1

2

1

2

1

2
1 0

1

2

1

2

1

2

1

2
1 0

1

2
(7.173)

Finally, substituting the Clebsch–Gordan coefficients (7.167), (7.168) into (7.160) and (7.170),

and substituting (7.173) into (7.161) to (7.163), we end up with

0 0
1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2
(7.174)

1 1
1

2

1

2

1

2

1

2
(7.175)

1 0
1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2
(7.176)

1 1
1

2

1

2

1

2

1

2
(7.177)

Note that the singlet state 0 0 is antisymmetric, whereas the triplet states 1 1 , 1 0 ,

and 1 1 are symmetric.

Second approach: using angular momentum algebra

Beginning with j 1, and since 1 1 and 1
2
1
2

1
2
1
2
are both normalized, equation (7.161)

leads to
1

2

1

2

1

2

1

2
1 1 2 1 (7.178)

From the phase convention, which states that j1 j2 j j j1 j j must be positive, we see
that 1

2
1
2

1
2
1
2
1 1 1, and hence

1 1
1

2

1

2

1

2

1

2
(7.179)

Now, to find the Clebsch–Gordan coefficients in 1 0 , we simply apply J on 1 1 :

J 1 1 J1 J2
1

2

1

2

1

2

1

2
(7.180)
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which leads to

1 0
1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2
(7.181)

hence 1
2
1
2

1
2
1
2
1 0 1 2 and 1

2
1
2

1
2

1
2
1 0 1 2. Next, applying J on

(7.181), we get

1 1
1

2

1

2

1

2

1

2
(7.182)

Finally, to find 0 0 , we proceed in two steps: first, since

0 0 a
1

2

1

2

1

2

1

2
b
1

2

1

2

1

2

1

2
(7.183)

where a 1
2
1
2

1
2
1
2
0 0 and b 1

2
1
2

1
2

1
2
0 0 , a combination of (7.181) with

(7.183) leads to

0 0 1 0
a

2

b

2
0 (7.184)

second, since 0 0 is normalized, we have

0 0 0 0 a2 b2 1 (7.185)

Combining (7.184) and (7.185), and since 1
2
1
2

1
2

1
2

0 0 must be positive, we obtain

a 1
2
1
2

1
2
1
2
0 0 1 2 and b 1

2
1
2

1
2

1
2
0 0 1 2. Inserting these

values into (7.183) we obtain

0 0
1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2
(7.186)

(b) Writing (7.174) to (7.177) in a matrix form:

0 0

1 1

1 0

1 1

0 1 2 1 2 0

1 0 0 0

0 1 2 1 2 0

0 0 0 1

1
2
1
2

1
2

1
2

1
2
1
2

1
2

1
2

1
2
1
2

1
2

1
2

1
2
1
2

1
2

1
2

(7.187)

we see that the elements of the transformation matrix

U

0 1 2 1 2 0

1 0 0 0

0 1 2 1 2 0

0 0 0 1

(7.188)

which connects the j m vectors to their j1 j2 m1 m2 counterparts, are given by the

Clebsch–Gordan coefficients derived above. Inverting (7.187) we obtain

1
2
1
2

1
2

1
2

1
2
1
2

1
2

1
2

1
2
1
2

1
2

1
2

1
2
1
2

1
2

1
2

0 1 0 0

1 2 0 1 2 0

1 2 0 1 2 0

0 0 0 1

0 0

1 1

1 0

1 1

(7.189)
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From (7.187) and (7.189) we see that the transformation matrix U is unitary; this is expected

since U 1 U†.

7.3.3 Coupling of Orbital and Spin Angular Momenta

We consider here an important application of the formalism of angular momenta addition to

the coupling of an orbital and a spin angular momentum: J L S. In particular, we want
to find Clebsch–Gordan coefficients associated with this coupling for a spin s 1

2
particle.

In this case we have: j1 l (integer), m1 ml , j2 s 1
2
, and m2 ms

1
2
. The

allowed values of j as given by (7.130) are located within the interval l 1
2

j l 1
2
. If

l 0 the problem would be obvious: the particle would have only spin and no orbital angular

momentum. But if l 0 then j can take only two possible values j l 1
2
. There are

2 l 1 states l 1
2
m corresponding to the case j l 1 2 and 2l states l 1

2
m

corresponding to j l 1
2
. Let us study in detail each one of these two cases.

Case j l 1 2

Applying the relation (7.121) to the case where j l 1
2
, we have

l
1

2
m

l

ml l

1 2

m2 1 2

l
1

2
ml m2 l

1

2
m l

1

2
ml m2

ml

l
1

2
ml

1

2
l

1

2
m l

1

2
ml

1

2

ml

l
1

2
ml

1

2
l

1

2
m l

1

2
ml

1

2
(7.190)

Using the selection rule ml m2 m or ml m m2, we can rewrite (7.190) as follows:

l
1

2
m l

1

2
m

1

2

1

2
l

1

2
m l

1

2
m

1

2

1

2

l
1

2
m

1

2

1

2
l

1

2
m l

1

2
m

1

2

1

2
(7.191)

We need now to calculate l 1
2
m 1

2
1
2
l 1

2
m and l 1

2
m 1

2
1
2
l 1

2
m . We begin

with the calculation of l 1
2
m 1

2
1
2
l 1

2
m . Substituting j l 1

2
, j1 l j2

1
2
,

m1 m 1
2
, m2

1
2
into the upper sign case of (7.155), we obtain

l m
3

2
l m

1

2
l
1

2
m

1

2

1

2
l

1

2
m

l m
1

2
l m

1

2
l
1

2
m

1

2

1

2
l

1

2
m 1

(7.192)

or

l
1

2
m

1

2

1

2
l

1

2
m

l m 1 2

l m 3 2
l
1

2
m

1

2

1

2
l

1

2
m 1 (7.193)
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By analogy with l 1
2
m 1

2
1
2
l 1

2
m we can express the Clebsch–Gordan coefficient

l 1
2
m 1

2
1
2
l 1

2
m 1 in terms of l 1

2
m 3

2
1
2
l 1

2
m 2 :

l
1

2
m

1

2

1

2
l

1

2
m

l m 1 2

l m 3 2

l m 3 2

l m 5 2

l
1

2
m

3

2

1

2
l

1

2
m 2 (7.194)

We can continue this procedure until m reaches its lowest values, l 1
2
:

l
1

2
m

1

2

1

2
l

1

2
m

l m 1 2

l m 3 2

l m 3 2

l m 5 2

2l

2l 1
l
1

2
l

1

2

1

2
l

1

2

(7.195)

or

l
1

2
m

1

2

1

2
l

1

2
m

l m 1 2

2l 1
l
1

2
l

1

2
l

1

2
l

1

2
(7.196)

From (7.125) we can easily obtain l 1
2

l 1
2
l 1

2
l 1

2

2
1, and since this

coefficient is real we have l 1
2

l 1
2
l 1

2
l 1

2
1. Inserting this value into

(7.196) we end up with

l
1

2
m

1

2

1

2
l

1

2
m

l m 1 2

2l 1
(7.197)

Now we turn to the calculation of the second coefficient, l 1
2
m 1

2
1
2
l 1

2
m , involved

in (7.191). We can perform this calculation in two different ways. The first method consists of

following the same procedure adopted above to find l 1
2
m 1

2
1
2
l 1

2
m . For this, we

need only to substitute j l 1
2
j1 l j2

1
2
m1 m 1

2
m2

1
2
in the lower sign

case of (7.155) and work our way through. A second, simpler method consists of substituting

(7.197) into (7.191) and then calculating the norm of the resulting equation:

1
l m 1 2

2l 1
l
1

2
m

1

2

1

2
l

1

2
m

2

(7.198)

where we have used the facts that the three kets l 1
2
m and l 1

2
m 1

2
1
2
are normal-

ized. Again, since l 1
2
m 1

2
1
2
l 1

2
m is real, (7.198) leads to

l
1

2
m

1

2

1

2
l

1

2
m

l m 1 2

2l 1
(7.199)
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A combination of (7.191), (7.197), and (7.199) yields

l
1

2
m

l m 1 2

2l 1
l
1

2
m

1

2

1

2

l m 1 2

2l 1
l
1

2
m

1

2

1

2
(7.200)

where the possible values of m are given by

m l
1

2
l

1

2
l

3

2
l

3

2
l

1

2
l

1

2
(7.201)

Case j l 1 2

There are 2l states, l 1
2
m , corresponding to j l 1

2
; these are l 1

2
l 1

2
,

l 1
2

l 3
2
, , l 1

2
l 1

2
. Using (7.121) we write any state l 1

2
m as

l
1

2
m l

1

2
m

1

2

1

2
l

1

2
m l

1

2
m

1

2

1

2

l
1

2
m

1

2

1

2
l

1

2
m l

1

2
m

1

2

1

2
(7.202)

The two Clebsch–Gordan coefficients involved in this equation can be calculated by following

the same method that we adopted above for the case j l 1
2
. Thus, we can ascertain that

l 1
2
m is given by

l
1

2
m

l m 1 2

2l 1
l
1

2
m

1

2

1

2

l m 1 2

2l 1
l
1

2
m

1

2

1

2
(7.203)

where

m l
1

2
l

3

2
l

3

2
l

1

2
(7.204)

We can combine (7.200) and (7.203) into

l
1

2
m

l m 1
2

2l 1
l
1

2
m

1

2

1

2

l m 1
2

2l 1
l
1

2
m

1

2

1

2

(7.205)

Illustration on a particle with l 1

As an illustration of the formalism worked out above, we consider the particular case of l 1.

Inserting l 1 and m 3
2
, 1
2
, 1

2
, 3

2
into the upper sign of (7.205), we obtain

3

2

3

2
1
1

2
1
1

2
(7.206)

3

2

1

2

2

3
1
1

2
0
1

2

1

3
1
1

2
1

1

2
(7.207)

3

2

1

2

1

3
1
1

2
1
1

2

2

3
1
1

2
0

1

2
(7.208)

3

2

3

2
1
1

2
1

1

2
(7.209)
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Similarly, an insertion of l 1 and m 1
2
, 1

2
into the lower sign of (7.205) yields

1

2

1

2

2

3
1
1

2
1

1

2

1

3
1
1

2
0
1

2
(7.210)

1

2

1

2

1

3
1
1

2
0

1

2

2

3
1
1

2
1
1

2
(7.211)

Spin–orbit functions

The eigenfunctions of the particle’s total angular momentum J L S may be represented

by the direct product of the eigenstates of the orbital and spin angular momenta, l m 1
2
and

1
2
1
2
. From (7.205) we have

l
1

2
m

l m 1
2

2l 1
l m

1

2

1

2

1

2

l m 1
2

2l 1
l m

1

2

1

2

1

2
(7.212)

If this particle moves in a central potential, its complete wave function consists of a space part,

r n l m 1
2

Rnl r Yl m 1
2
, and a spin part, 1

2
1
2
:

n l j l 1
2 m

Rnl r
l m 1

2

2l 1
Yl m 1

2

1

2

1

2

l m 1
2

2l 1
Yl m 1

2

1

2

1

2

(7.213)

Using the spinor representation for the spin part, 1
2
1
2

1

0
and 1

2
1
2

0

1
, we

can write (7.213) as follows:

n l j l 1
2 m

r
Rnl r

2l 1

l m 1
2
Yl m 1

2

l m 1
2
Yl m 1

2

(7.214)

where m is half-integer. The states (7.213) and (7.214) are simultaneous eigenfunctions of

J 2, L2, S2, and Jz with eigenvalues h2 j j 1 , h2l l 1 , h2s s 1 3h2 4, and hm,

respectively. The wave functions n l j l 1
2 m

r are eigenstates of L S as well, since

L S nl jm
1

2
J 2 L2 S2 nl jm

h2

2
j j 1 l l 1 s s 1 nl jm (7.215)

Here j takes only two values, j l 1
2
, so we have

nl jm L S nl jm
h2

2
j j 1 l l 1

3

4

1
2
lh2 j l 1

2

1
2
l 1 h2 j l 1

2

(7.216)
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7.3.4 Addition of More Than Two Angular Momenta

The formalism for adding two angular momenta may be generalized to those cases where we

add three or more angular momenta. For instance, to add three mutually commuting angular

momenta J J 1 J 2 J3, we may follow any of these three methods. (a) Add J 1 and J 2

to obtain J12 J 1 J2, and then add J 12 to J3: J J 12 J3. (b) Add J2 and J 3 to

form J23 J2 J 3, and then add J 23 to J 1: J J 1 J 23. (c) Add J 1 and J 3 to form

J13 J 1 J 3, and then add J13 to J2: J J 2 J 13.

Considering the first method and denoting the eigenstates of J 21 and J1z by j1 m1 , those

of J 22, and J2z by j2 m2 , and those of J 23 and J3z by j3 m3 , we may express the joint

eigenstates j12 j m of J 21, J
2
2, J

2
3, J

2
12, J

2 and Jz in terms of the states

j1 j2 j3 m1 m2 m3 j1 m1 j2 m2 j3 m3 (7.217)

as follows. First, the coupling of J 1 and J2 leads to

j12 m12

j1

m1 j1

j2

m2 j2

j1 j2 m1 m2 j12 m12 j1 j2 m1 m2 (7.218)

where m12 m1 m2 and j1 j2 j12 j1 j2 . Then, adding J12 and J 3, the state
j12 j m is given by

j12

m12 j12

j3

m3 j3

j1 j2 m1 m2 j12 m12 j12 j3 m12 m3 j12 j m j1 j2 j3 m1 m2 m3

(7.219)

with m m12 m3 and j12 j3 j j12 j3 ; the Clebsch–Gordan coefficients

j1 j2 m1 m2 j12 m12 and j12 j3 m12 m3 j12 j m correspond to the coupling of J 1

and J 2 and of J12 and J 3, respectively. The calculation of these coefficients is similar to that
of two angular momenta. For instance, in Problem 7.4, page 438, we will see how to add three

spins and how to calculate the corresponding Clebsch–Gordan coefficients.

We should note that the addition of J 1, J 2, and J 3 in essence consists of constructing the
eigenvectors j12 j m in terms of the 2 j1 1 2 j2 1 2 j3 1 states j1 j2 j3 m1 m2 m3 .
We may then write

J j12 j m h j j 1 m m 1 j12 j m 1 (7.220)

J1 j1 j2 j3 m1 m2 m3 h j1 j1 1 m1 m1 1 j1 j2 j3 m1 1 m2 m3

(7.221)

J2 j1 j2 j3 m1 m2 m3 h j2 j2 1 m2 m2 1 j1 j2 j3 m1 m2 1 m3

(7.222)

J3 j1 j2 j3 m1 m2 m3 h j3 j3 1 m3 m3 1 j1 j2 j3 m1 m2 m3 1

(7.223)

The foregoing method can be generalized to the coupling of more than three angular mo-

menta: J J1 J 2 J3 J N . Each time we couple two angular momenta, we reduce
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the problem to the coupling of N 1 angular momenta. For instance, we may start by adding

J 1 and J 2 to generate J12; we are then left with N 1 angular momenta. Second, by adding

J 12 and J 3 to form J123, we are left with N 2 angular momenta. Third, an addition of J 123

and J 4 leaves us with N 3 angular momenta, and so on. We may continue in this way till

we add all given angular momenta.

7.3.5 Rotation Matrices for Coupling Two Angular Momenta

We want to find out how to express the rotation matrix associated with an angular momentum

J in terms of the rotation matrices corresponding to J 1 and J2 such that J J 1 J2. That is,

knowing the rotation matrices d j1 and d j2 , how does one calculate d j
mm ?

Since

d j
m m j m Ry j m (7.224)

where

j m
m1m2

j1 j2 m1 m2 j m j1 j2 m1 m2 (7.225)

j m
m1m2

j1 j2 m1 m2 j m j1 j2 m1 m2 (7.226)

and since the Clebsch–Gordan coefficients are real,

j m
m1m2

j1 j2 m1 m2 j m j1 j2 m1 m2 (7.227)

we can rewrite (7.224) as

d j
m m

m1m2 m1m2

j1 j2 m1 m2 j m j1 j2 m1 m2 j m

j1 j2 m1 m2 Ry j1 j2 m1 m2 (7.228)

Since Ry exp[ Jy h] exp[ J1y h] exp[ J2y h], because Jy J1y J2y , and
since j1 j2 m1 m2 j1 m1 j2 m2 and j1 j2 m1 m2 j1 m1 j2 m2 , we
have

d j
m m

m1m2 m1m2

j1 j2 m1 m2 j m j1 j2 m1 m2 j m

j1 m1 exp
i

h
J1y j1 m1 j2 m2 exp

i

h
J2y j2 m2

(7.229)

or

d j
m m

m1m2 m1m2

j1 j2 m1 m2 j m j1 j2 m1 m2 j m d j1
m1m1

d j2
m2m2

(7.230)
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with

d j1
m1m1

j1 m1 exp
i

h
J1y j1 m1 (7.231)

d j2
m2m2

j2 m2 exp
i

h
J2y j2 m2 (7.232)

From (7.54) we have

d j
m m ei m m D j

m m (7.233)

hence can rewrite (7.230) as

D
j
m m

m1m2 m1m2

j1 j2 m1 m2 j m j1 j2 m1 m2 j m D
j1
m1m1

D
j2
m2m2

(7.234)

since m m1 m1 and m m2 m2.
Now, let us see how to express the product of the rotation matrices d j1 and d j2 in

terms of d j
mm . Sandwiching both sides of

exp
i

h
J1y exp

i

h
J2y exp

i

h
Jy (7.235)

between

j1 j2 m1 m2
jm

j1 j2 m1 m2 j m j m (7.236)

and

j1 j2 m1 m2
jm

j1 j2 m1 m2 j m j m (7.237)

and since j1 j2 m1 m2 j1 m1 j2 m2 and j1 j2 m1 m2 j1 m1 j2 m2 ,
we have

j1 m1 exp
i

h
J1y j1 m1 j2 m2 exp

i

h
J2y j2 m2

jmm

j1 j2 m1 m2 j m j1 j2 m1 m2 j m j m Ry j m

(7.238)

or

d j1
m1m1

d j2
m2m2

j1 j2

j1 j2 mm

j1 j2 m1 m2 j m j1 j2 m1 m2 j m d j
m m

(7.239)
Following the same procedure that led to (7.234), we can rewrite (7.239) as

D
j1
m1m1

D
j2
m2m2

jmm

j1 j2 m1 m2 j m j1 j2 m1 m2 j m D
j
m m

(7.240)

This relation is known as the Clebsch–Gordan series.
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The relation (7.240) has an important application: the derivation of an integral involving

three spherical harmonics. When j1 and j2 are both integers (i.e., j1 l1 and j2 l2) and m1
and m2 are both zero (hence m 0), equation (7.240) finds a useful application:

D l1
m10

D l2
m20

lm

l1 l2 0 0 l 0 l1 l2 m1 m2 l m D l
m 0

(7.241)

Since the expressions of D l1
m10
, D l2

m20
, and D l

m 0 can be inferred from (7.73), notably

D l
m 0 0

4

2l 1
Ylm (7.242)

we can reduce (7.241) to

Yl1m1 Yl2m2
lm

2l1 1 2l2 1

4 2l 1
l1 l2 0 0 l 0 l1 l2 m1 m2 l m Ylm

(7.243)

where we have removed the primes and taken the complex conjugate. Multiplying both sides

by Ylm and integrating over and , we obtain the following frequently used integral:

2

0

d
0

Ylm Yl1m1 Yl2m2 sin d 2l1 1 2l2 1
4 2l 1 l1 l2 0 0 l 0

l1 l2 m1 m2 l m

(7.244)

7.3.6 Isospin

The ideas presented above—spin and the addition of angular momenta—find some interesting

applications to other physical quantities. For instance, in the field of nuclear physics, the quan-

tity known as isotopic spin can be represented by a set of operators which not only obey the
same algebra as the components of angular momentum, but also couple in the same way as

ordinary angular momenta.

Since the nuclear force does not depend on the electric charge, we can consider the proton

and the neutron to be separate manifestations (states) of the same particle, the nucleon. The
nucleon may thus be found in two different states: a proton and a neutron. In this way, as the

protons and neutrons are identical particles with respect to the nuclear force, we will need an

additional quantum number (or label) to indicate whether the nucleon is a proton or a neutron.

Due to its formal analogy with ordinary spin, this label is called the isotopic spin or, in short,
the isospin. If we take the isospin quantum number to be 1

2
, its z-component will then be

represented by a quantum number having the values 1
2
and 1

2
. The difference between a

proton and a neutron then becomes analogous to the difference between spin-up and spin-down

particles.

The fundamental difference between ordinary spin and the isospin is that, unlike the spin,

the isospin has nothing to do with rotations or spinning in the coordinate space, it hence cannot

be coupled with the angular momenta of the nucleons. Nucleons can thus be distinguished by

t3
1
2
, where t3 is the third or z-component of the isospin vector operator t .
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7.3.6.1 Isospin Algebra

Due to the formal analogy between the isospin and the spin, their formalisms have similar

structures from a mathematical viewpoint. The algebra obeyed by the components t1, t2, t3 of

the isospin operator t can thus be inferred from the properties and commutation relations of the
spin operator. For instance, the components of the isospin operator can be constructed from

the Pauli matrices in the same way as we did for the angular momentum operators of spin 1
2

particles:

t
1

2
(7.245)

with

1
0 1

1 0 2
0 i
i 0 3

1 0

0 1
(7.246)

The components t1, t2, t3 obey the same commutation relations as those of angular momentum:

t1 t2 i t3 t2 t3 i t1 t3 t1 i t2 (7.247)

So the nucleon can be found in two different states: when t3 acts on a nucleon state, it gives the
eignvalues 1

2
. By convention the t3 of a proton is taken to be t3

1
2
and that of a neutron is

t3
1
2
. Denoting the proton and neutron states, respectively, by p and n ,

p t
1

2
t3

1

2

1

0
n t

1

2
t3

1

2

0

1
(7.248)

we have

t3 p t3
1

2

1

2

1

2

1

2

1

2
(7.249)

t3 n t3
1

2

1

2

1

2

1

2

1

2
(7.250)

We can write (7.249) and (7.250), respectively, as

1

2

1 0

0 1

1

0

1

2

1

0
(7.251)

1

2

1 0

0 1

0

1

1

2

0

1
(7.252)

By analogy with angular momentum, denoting the joint eignstates of t2 and t3 by t t3 ,
we have

t2 t t3 t t 1 t t3 t3 t t3 t3 t t3 (7.253)

We can also introduce the raising and lowering isospin operators:

t t1 i t2
1

2
1 i 2

0 1

0 0
(7.254)

t t1 i t2
1

2
1 i 2

0 0

1 0
(7.255)
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hence

t t t3 t t 1 t3 t3 1 t t3 1 (7.256)

Note that t and t are operators which, when acting on a nucleon state, convert neutron states
into proton states and proton states into neutron states, respectively:

t n p t p n (7.257)

We can also define a charge operator

Q e t3
1

2
(7.258)

where e is the charge of the proton, with

Q p e p Q n 0 (7.259)

We should mention that strong interactions conserve isospin. For instance, a reaction like

d d 0 (7.260)

is forbidden since the isospin is not conserved, because the isospins of d and are both zero

and the isospin of the pion is equal to one (i.e., T d T 0, but T 1); this

leads to isospin zero for d d and isospin one for 0 . The reaction was confirmed

experimentally to be forbidden, since its cross-section is negligibly small. However, reactions

such as

p p d p n d 0 (7.261)

are allowed, since they conserve isospin.

7.3.6.2 Addition of Two Isospins

We should note that the isospins of different nucleons can be added in the same way as adding

angular momenta. For a nucleus consisting of several nucleons, the total isospin is given by

the vector sum of the isospins of all individual nucleons: T A
i t i . For instance, the total

isospin of a system of two nucleons can be obtained by coupling their isospins t1 and t2:

T t1 t2 (7.262)

Denoting the joint eigenstates of t 21, t
2
2, T

2, and T3 by T N , we have:

T 2 T N T T 1 T N T3 T N N T N (7.263)

Similarly, if we denote the joint eigenstates of t 21, t
2
2, t13 , and t23 by t1 t2 n1 n2 , we have

t 21 t1 t2 n1 n2 t1 t1 1 t1 t2 n1 n2 (7.264)

t 22 t1 t2 n1 n2 t2 t2 1 t1 t2 n1 n2 (7.265)

t13 t1 t2 n1 n2 n1 t1 t2 n1 n2 (7.266)

t23 t1 t2 n1 n2 n2 t1 t2 n1 n2 (7.267)
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The matrix elements of the unitary transformation connecting the T N and t1 t2 n1 n2
bases,

T N
n1 n2

t1 t2 n1n2 T N t1 t2 n1 n2 (7.268)

are given by the coefficients t1 t2 n1n2 T N ; these coefficients can be calculated in the
same way as the Clebsch–Gordan coefficients; see the next example.

Example 7.4

Find the various states corresponding to a two-nucleon system.

Solution

Let T be the total isospin vector operator of the two-nucleon system:

T t1 t2 (7.269)

This example is similar to adding two spin 1
2
angular momenta. Thus, the values of T are 0 and

1. The case T 0 corresponds to a singlet state:

0 0
1

2
p 1 n 2 n 1 p 2 (7.270)

where p 1 means that nucleon 1 is a proton, n 2 means that nucleon 2 is a neutron, and so
on. This state, which is an antisymmetric isospsin state, describes a bound (p-n) system such
as the ground state of deuterium T 0 .

The case T 1 corresponds to the triplet states 1 N with N 1, 0, 1:

1 1 p 1 p 2 (7.271)

1 0
1

2
p 1 n 2 n 1 p 2 (7.272)

1 1 n 1 n 2 (7.273)

The state 1 1 corresponds to the case where both nucleons are protons (p-p) and 1 1

corresponds to the case where both nucleons are neutrons (n-n).

7.4 Scalar, Vector, and Tensor Operators

In this section we study how operators transform under rotations. Operators corresponding to

various physical quantities can be classified as scalars, vectors, and tensors as a result of their

behavior under rotations.

Consider an operator A, which can be a scalar, a vector, or a tensor. The transformation of
A under a rotation of infinitesimal angle about an axis n is7

A R
†
n ARn (7.274)

7The expectation value of an operator A with respect to the rotated state Rn is given by

A R
†
n ARn A .
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where Rn can be inferred from (7.20)

Rn 1
i

h
n J (7.275)

Substituting (7.275) into (7.274) and keeping terms up to first order in , we obtain

A A
i

h
[A n J ] (7.276)

In the rest of this section we focus on the application of this relation to scalar, vector, and tensor

operators.

7.4.1 Scalar Operators

Since scalar operators are invariant under rotations (i.e., A A , equation (7.276) implies that
they commute with the angular momentum

[A Jk ] 0 k x y z (7.277)

This is also true for pseudo-scalars. A pseudo-scalar is defined by the product of a vector A
and a pseudo-vector or axial vector B C: A B C .

7.4.2 Vector Operators

On the one hand, a vector operator A transforms according to (7.276):

A A
i

h
[A n J ] (7.278)

On the other hand, from the classical theory of rotations, when a vector A is rotated through an
angle around an axis n, it is given by

A A n A (7.279)

Comparing (7.278) and (7.279), we obtain

[A n J ] ihn A (7.280)

The j th component of this equation is given by

[A n J ] j ih n A j j x y z (7.281)

which in the case of j x y z leads to

Ax Jx Ay Jy Az Jz 0 (7.282)

Ax Jy ihAz Ay Jz ihAx Az Jx ihAy (7.283)

Ax Jz ihAy Ay Jx ihAz Az Jy ih Ax (7.284)
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Some interesting applications of (7.280) correspond to the cases where the vector operator A
is either the angular momentum, the position, or the linear momentum operator. Let us consider

these three cases separately. First, substituting A J into (7.280), we recover the usual angular
momentum commutation relations:

[Jx Jy] ih Jz [Jy Jz] ih Jx [Jz Jx ] ih Jy (7.285)

Second, in the case of a spinless particle (i.e., J L), and if A is equal to the position operator,

A R, then (7.280) will yield the following relations:

x Lx 0 x L y ihz x L z ihy (7.286)

y L y 0 y Lz ihx y Lx ihz (7.287)

z Lz 0 z Lx ihy z L y ihx (7.288)

Third, if J L and if A is equal to the momentum operator, A P , then (7.280) will lead to

Px Lx 0 Px L y ihPz Px L z ihPy (7.289)

Py L y 0 Py L z ihPx Py Lx ihPz (7.290)

Pz Lz 0 Pz Lx ihPy Pz L y ihPx (7.291)

Now, introducing the operators

A Ax i Ay (7.292)

and using the relations (7.282) to (7.284), we can show that

Jx A hAz Jy A ihAz Jz A hA (7.293)

These relations in turn can be shown to lead to

J A 0 J A 2hAz (7.294)

Let us introduce the spherical components A 1, A0, A1 of the vector operator A; they are
defined in terms of the Cartesian coordinates Ax Ay Az as follows:

A 1
1

2
Ax Ay A0 Az (7.295)

For the particular case where A is equal to the position vector R, we can express the components
Rq (where q 1 0 1),

R 1
1

2
x y R0 z (7.296)
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in terms of the spherical coordinates (recall that R1 x r sin cos , R2 y r sin sin ,

and R3 z r cos ) as follows:

R 1
1

2
re i sin R0 r cos (7.297)

Using the relations (7.282) to (7.284) and (7.292) to (7.294), we can ascertain that

Jz Aq hq Aq q 1 0 1 (7.298)

J Aq h 2 q q 1 Aq 1 q 1 0 1 (7.299)

7.4.3 Tensor Operators: Reducible and Irreducible Tensors

In general, a tensor of rank k has 3k components, where 3 denotes the dimension of the space.
For instance, a tensor such as

Ti j Ai B j i j x y z (7.300)

which is equal to the product of the components of two vectors A and B, is a second-rank
tensor; this tensor has 32 components.

7.4.3.1 Reducible Tensors

A Cartesian tensor Ti j can be decomposed into three parts:

Ti j T 0
i j T 1

i j T 2
i j (7.301)

with

T 0
i j

1

3
i j

3

i 1

Ti i (7.302)

T 1
i j

1

2
Ti j T j i i j (7.303)

T 2
i j

1

2
Ti j T j i T 0

i j (7.304)

Notice that if we add equations (7.302), (7.303), and (7.304), we end up with an identity rela-

tion: Ti j Ti j .

The term T 0
i j has only one component and transforms like a scalar under rotations. The

second term T 1
i j is an antisymmetric tensor of rank 1 which has three independent components;

it transforms like a vector. The third term T 2
i j is a symmetric second-rank tensor with zero

trace, and hence has five independent components; T 2
i j cannot be reduced further to tensors of

lower rank. These five components define an irreducible second-rank tensor.

In general, any tensor of rank k can be decomposed into tensors of lower rank that are
expressed in terms of linear combinations of its 3k components. However, there always remain
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2k 1 components that behave as a tensor of rank k which cannot be reduced further. These
2k 1 components are symmetric and traceless with respect to any two indices; they form

the components of an irreducible tensor of rank k.
Equations (7.301) to (7.304) show how to decompose a Cartesian tensor operator, Ti j , into

a sum of irreducible spherical tensor operators T 0
i j T 1

i j T 2
i j . Cartesian tensors are not very

suitable for studying transformations under rotations, because they are reducible whenever their

rank exceeds 1. In problems that display spherical symmetry, such as those encountered in

subatomic physics, spherical tensors are very useful simplifying tools. It is therefore interesting

to consider irreducible spherical tensor operators.

7.4.3.2 Irreducible Spherical Tensors

Let us now focus only on the representation of irreducible tensor operators in spherical coor-

dinates. An irreducible spherical tensor operator of rank k (k is integer) is a set of 2k 1

operators T k
q , with q k k, which transform in the same way as angular momentum

under a rotation of axes. For example, the case k 1 corresponds to a vector. The quantities

T 1
q are related to the components of the vector A as follows (see (7.295)):

T 1
1

1

2
Ax Ay T 1

0 Az (7.305)

In what follows we are going to study some properties of spherical tensor operators and

then determine how they transform under rotations.

First, let us look at the various commutation relations of spherical tensors with the angular

momentum operator. Since a vector operator is a tensor of rank 1, we can rewrite equations

(7.298) to (7.299), respectively, as follows:

Jz T 1
q hqT 1

q q 1 0 1 (7.306)

J T 1
q h 1 1 1 q q 1 T 1

q 1 (7.307)

where we have adopted the notation Aq T 1
q . We can easily generalize these two relations

to any spherical tensor of rank k, T k
q , and obtain these commutators:

Jz T k
q hqT k

q q k k 1 k 1 k (7.308)

J T k
q h k k 1 q q 1 T k

q 1 (7.309)

Using the relations

k q Jz k q hq k q k q hq q q (7.310)

k q J k q h k k 1 q q 1 q q 1 (7.311)

along with (7.308) and (7.309), we can write

k

q k

T k
q k q Jz k q hqT k

q Jz T k
q (7.312)
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k

q k

T k
q k q J k q h k k 1 q q 1 T k

q 1 J T k
q (7.313)

The previous two relations can be combined into

J T k
q

k

q k

T k
q k q J k q (7.314)

or

n J T k
q

k

q k

T k
q k q n J k q (7.315)

Having determined the commutation relations of the tensor operators with the angular mo-

mentum (7.315), we are now well equipped to study how irreducible spherical tensor operators

transform under rotations. Using (7.276) we can write the transformation relation of a spherical

tensor T k
q under an infinitesimal rotation as follows:

R
†
n T k

q Rn T k
q

i

h
n J T k

q (7.316)

Inserting (7.315) into (7.316), we obtain

R† T k
q R

k

q k

T k
q k q 1

i

h
n J k q

q

T k
q k q ei n J h k q

(7.317)

This result also holds for finite rotations

R† T k
q R

k

q k

T k
q k q R† k q

q

T k
q D k

q q

(7.318)

7.4.4 Wigner–Eckart Theorem for Spherical Tensor Operators

Taking the matrix elements of (7.308) between eigenstates of J2 and Jz , we find

j m Jz T k
q hqT k

q j m 0 (7.319)

or

m m q j m T k
q j m 0 (7.320)

This implies that j m T k
q j m vanishes unless m m q. This property suggests

that the quantity j m T k
q j m must be proportional to the Clebsch–Gordan coefficient

j m j k m q ; hence (7.320) leads to

m m q j m j k m q 0 (7.321)
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Now, taking the matrix elements of (7.309) between j m and j m , we obtain

j m j m 1 j m 1 T k
q j m

j m j m 1 j m T k
q j m 1

k q k q 1 j m T k
q 1 j m (7.322)

This equation has a structure which is identical to the recursion relation (7.150). For instance,

substituting j j m m j1 j m1 m j2 k m2 q into (7.150), we end up with

j m j m 1 j m 1 j k m q

j m j m 1 j m j k m 1 q

k q k q 1 j m j k m q 1 (7.323)

A comparison of (7.320) with (7.321) and (7.322) with (7.323) suggests that the dependence

of j m T k
q j m on m , m, q is through a Clebsch–Gordan coefficient. The dependence,

however, of j m T k
q j m on j j k has yet to be determined.

We can now state theWigner–Eckart theorem: The matrix elements of spherical tensor

operators T k
q with respect to angular momentum eigenstates j m are given by

j m T k
q j m j k m q j m j T k j (7.324)

The factor j T k j , which depends only on j j k, is called the reduced matrix element

of the tensor T k
q (note that the double bars notation is used to distinguish the reduced matrix

elements, j T k j , from the matrix elements, j m T k
q j m ). The theorem

implies that the matrix elements j m T k
q j m are written as the product of two terms: a

Clebsch–Gordan coefficient j k m q j q —which depends on the geometry of the system

(i.e., the orientation of the system with respect to the z-axis), but not on its dynamics (i.e.,
j j k)—and a dynamical factor, the reduced matrix element, which does not depend on the
orientation of the system in space m q m . The quantum numbers m m q—which specify

the projections of the angular momenta J , J , and k onto the z-axis—give the orientation of
the system in space, for they specify its orientation with respect to the z-axis. As for j , j , k,
they are related to the dynamics of the system, not to its orientation in space.

Wigner–Eckart theorem for a scalar operator

The simplest application of the Wigner–Eckart theorem is when dealing with a scalar operator

B. As seen above, a scalar is a tensor of rank k 0; hence q 0 as well; thus, equation

(7.324) yields

j m B j m j 0 m 0 j m j B j j B j j j m m (7.325)

since j 0 m 0 j m j j m m.

Wigner–Eckart theorem for a vector operator

As shown in (7.305), a vector is a tensor of rank 1: T 1 A 1 A, with A 10 A0 Az
and A 11 A 1 Ax Ay 2. An application of (7.324) to the q-component of a vector
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operator A leads to

j m Aq j m j 1 m q j m j A j (7.326)

For instance, in the case of the angular momentum J , we have

j m Jq j m j 1 m q j m j J j (7.327)

Applying this relation to the component J0,

j m J0 j m j 1 m 0 j m j J j (7.328)

Since j m J0 j m hm j j m m and the coefficient j 1 m 0 j m is equal to

j 1 m 0 j m m j j 1 , we have

hm j j m m
m

j j 1
j J j j J j h j j 1 j j

(7.329)

Due to the selection rules imposed by the Clebsch–Gordan coefficients, we see from (7.326)

that a spin zero particle cannot have a dipole moment. Since 0 1 0 q 0 0 0, we

have 0 0 Lq 0 0 0 1 0 q 0 0 0 L 0 0; the dipole moment is

qL 2mc . Similarly, a spin 1
2
particle cannot have a quadrupole moment, because as

1
2
2 m q 1

2
m 0, we have 1

2
m T 2

q
1
2
m 1

2
2 m q 1

2
m 1

2
T 2 1

2
0.

Wigner–Eckart theorem for a scalar product J A

On the one hand, since J A J0A0 J 1A 1 J 1A 1 and since J0 j m hm j m
and J 1 j m h 2 j j 1 m m 1 jm 1 , we have

j m J A j m hm j m A0 j m
h

2
j j 1 m m 1 j m 1 A 1 j m

h

2
j j 1 m m 1 j m 1 A 1 j m (7.330)

On the other hand, from the Wigner–Eckart theorem (7.324) we have j m A0 j m

j 1 m 0 j m j A j , j m 1 A 1 j m j 1 m 1 j m 1 j A j

and j m 1 A 1 j m j 1 m 1 j m 1 j A j ; substituting these terms into
(7.330) we obtain

j m J A j m hm j 1 m 0 j m

h

2
j 1 m 1 j m 1 j j 1 m m 1

h

2
j 1 m 1 j m 1 j j 1 m m 1 j A j

(7.331)
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When A J this relation leads to

j m J 2 j m hm j 1 m 0 j m

h

2
j 1 m 1 j m 1 j j 1 m m 1

h

2
j 1 m 1 j m 1 j j 1 m m 1 j J j

(7.332)

We are now equipped to obtain a relation between the matrix elements of a vector operator

A and the matrix elements of the scalar operator J A; this relation is useful in the calculation
of the hydrogen’s energy corrections due to the Zeeman effect (see Chapter 9). For this, we

need to calculate two ratios: the first is between (7.326) and (7.327)

j m Aq j m

j m Jq j m

j A j

j J j
(7.333)

and the second is between (7.331) and (7.332)

j m J A j m

j m J 2 j m

j A j

j J j

j m J A j m

h2 j j 1 2

j A j

j J j
(7.334)

since j m J 2 j m h2 j j 1 . Equating (7.333) and (7.334) we obtain

j m Aq j m
j m J A j m

h2 j j 1
j m Jq j m (7.335)

An important application of this relation pertains to the case where the vector operator A is a

spin angular momentum S. Since

J S L S S L S S2
L S 2 L2 S2

2
S2

J 2 L2 S2

2
S2

J2 L2 S2

2
(7.336)

and since j m is a joint eigenstate of J 2, L2, S2 and Jz with eigenvalues h
2 j j 1 ,

h2l l 1 , h2s s 1 , and hm, respectively, the matrix element of Sz then becomes easy to
calculate from (7.335):

j m Sz j m
j m J S j m

h2 j j 1
j m Jz j m

j j 1 l l 1 s s 1

2 j j 1
hm

(7.337)
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7.5 Solved Problems

Problem 7.1

(a) Show how Jx and Jy transform under a rotation of (finite) angle about the z-axis.

Using these results, determine how the angular momentum operator J transform under the
rotation.

(b) Show how a vector operator A transforms under a rotation of angle about the y-axis.

(c) Show that ei Jz hei Jy he i Jz h e i Jy h .

Solution

(a) The operator corresponding to a rotation of angle about the z-axis is given by Rz

e i Jz h . Under this rotation, an operator B transforms like B R
†
z BRz ei Jz hBe i Jz h .

Using the relation

eABe A B A B
1

2!
A A B

1

3!
A A A B (7.338)

along with the commutation relations Jz Jy ih Jx and Jz Jx ih Jy , we have

ei Jz h Jxe
i Jz h Jx

i

h
Jz Jx

2

2!h2
Jz Jz Jx

i 3

3!h3
Jz Jz Jz Jx

Jx Jy
2

2!
Jx

3

3!
Jy

4

4!
Jx

5

5!
Jy

Jx 1
2

2!

4

4!
Jy

3

3!

5

5!

Jx cos Jy sin (7.339)

Similarly, we can show that

ei Jz h Jye
i Jz h Jy cos Jx sin (7.340)

As Jz is invariant under an arbitrary rotation about the z-axis (ei Jz h Jze i Jz h Jz), we can
condense equations (7.339) and (7.340) into a single matrix relation:

ei Jz h Je i Jz h
cos sin 0

sin cos 0

0 0 1

Jx
Jy
Jz

(7.341)

(b) Using the commutation relations Jy Ax ihAz and Jy Az ihAx (see

(7.282) to (7.284)) along with (7.338), we have

ei Jy h Axe
i Jy h Ax

i

h
Jy Ax

2

2!h2
Jy Jy Ax



7.5. SOLVED PROBLEMS 435

i 3

3!h3
Jy Jy Jy Ax

Ax Az
2

2!
Ax

3

3!
Az

4

4!
Ax

5

5!
Jz

Ax 1
2

2!

4

4!
Az

3

3!

5

5!

Ax cos Az sin (7.342)

Similarly, we can show that

Az ei Jy h Aze
i Jy h Ax sin Az cos (7.343)

Also, since Ay is invariant under an arbitrary rotation about the y-axis, we may combine equa-

tions (7.342) and (7.343) to find the vector operator A obtained by rotating A through an angle
about the y-axis:

A ei Jy h Ae i Jy h
cos 0 sin

0 1 0

sin 0 cos

Ax
Ay
Az

(7.344)

(c) Expanding ei Jy h and then using (7.340), we obtain

ei Jz hei Jy he i Jz h

n 0

i h n

n!
ei Jz h Jy

n
e i Jz h

n 0

i h n

n!
Jy cos Jx sin

n

n 0

i h n

n!
Jy

n

e i Jy h (7.345)

Problem 7.2

Use the Pauli matrices x
0 1

1 0
, y

0 i
i 0

, and z
1 0

0 1
, to show

that

(a) e i x I cos i x sin , where I is the unit matrix,
(b) ei x ze i x z cos 2 y sin 2 .

Solution

(a) Using the expansion

e i x

n 0

i 2n

2n !
2n 2n

x
n 0

i 2n 1

2n 1 !
2n 1 2n 1

x (7.346)

and since 2
x 1, 2n

x I , and 2n 1
x x , where I is the unit matrix, we have

e i x 1 0

0 1
n 0

1 n

2n !
2n i x

n 0

1 n

2n 1 !
2n 1

I cos i x sin (7.347)
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(b) From (7.347) we can write

ei x
ze

i x cos i x sin z cos i x sin

z cos
2

x z x sin
2 i[ x z] sin cos

(7.348)

which, when using the facts that x z z x ,
2
x I , and [ x z] 2i y , reduces to

ei x
ze

i x
z cos

2
z
2
x sin

2 2 y sin cos

z cos
2 sin2 y sin 2

z cos 2 y sin 2 (7.349)

Problem 7.3

Find the Clebsch–Gordan coefficients associated with the addition of two angular momenta

j1 1 and j2 1.

Solution

The addition of j1 1 and j2 1 is encountered, for example, in a two-particle system where

the angular momenta of both particles are orbital.

The allowed values of the total angular momentum are between j1 j2 j j1 j2;
hence j 0, 1, 2. To calculate the relevant Clebsch–Gordan coefficients, we need to find

the basis vectors j m , which are common eigenvectors of J 21, J
2
2, J

2 and Jz , in terms of
1 1 m1 m2 .

Eigenvectors j m associated with j 2

The state 2 2 is simply given by

2 2 1 1 1 1 (7.350)

the corresponding Clebsch–Gordan coefficient is thus given by 1 1 1 1 2 2 1.

As for 2 1 , it can be found by applying J to 2 2 and J1 J2 to 1 1 1 1 , and

then equating the two results

J 2 2 J1 J2 1 1 1 1 (7.351)

This leads to

2h 2 1 2h 1 1 1 0 1 1 0 1 (7.352)

or to

2 1
1

2
1 1 1 0 1 1 0 1 (7.353)

hence 1 1 1 0 2 1 1 1 0 1 2 1 1 2. Using (7.353), we can find 2 0 by

applying J to 2 1 and J1 J2 to [ 1 1 1 0 1 1 0 1 ]:

J 2 1
1

2
h J1 J2 [ 1 1 1 0 1 1 0 1 ] (7.354)
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which leads to

2 0
1

6
1 1 1 1 2 1 1 0 0 1 1 1 1 (7.355)

hence 1 1 1 1 2 0 1 1 1 1 2 0 1 6 and 1 1 0 0 2 0 2 6.

Similarly, by repeated applications of J and J1 J2 , we can show that

2 1
1

2
1 1 0 1 1 1 1 0 (7.356)

2 2 1 1 1 1 (7.357)

with 1 1 0 1 2 1 1 1 1 0 2 1 1 2 and 1 1 1 1 2 2 1.

Eigenvectors j m associated with j 1

The relation

1 m
1

m1 1

1

m2 1

1 1 m1 m2 1 m 1 1 m1 m2 (7.358)

leads to

1 1 a 1 1 1 0 b 1 1 0 1 (7.359)

where a 1 1 1 0 1 1 and b 1 1 0 1 1 1 . Since 1 1 , 1 1 1 0 and

1 1 0 1 are all normalized, and since 1 1 1 0 is orthogonal to 1 1 0 1 and a and b
are real, we have

1 1 1 1 a2 b2 1 (7.360)

Now, since 2 1 1 1 0, equations (7.353) and (7.359) yield

2 1 1 1
a

2

b

2
0 (7.361)

A combination of (7.360) and (7.361) leads to a b 1 2. The signs of a and b have
yet to be found. The phase convention mandates that coefficients like j1 j2 j1 j j1 j j
must be positive. Thus, we have a 1 2 and b 1 2, which when inserted into (7.359)

give

1 1
1

2
1 1 1 0 1 1 0 1 (7.362)

This yields 1 1 1 0 1 1 1
2
and 1 1 0 1 1 1 1

2
.

To find 1 0 we proceed as we did above when we obtained the states 2 1 , 2 0 , ,

2 2 by repeatedly applying J on 2 2 . In this way, the application of J on 1 1 and

J1 J2 on [ 1 1 1 0 1 1 0 1 ],

J 1 1
1

2
J1 J2 [ 1 1 1 0 1 1 0 1 ] (7.363)

gives

2h 1 0
2h

2
[ 1 1 1 1 1 1 1 1 ] (7.364)
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or

1 0
1

2
1 1 1 1 1 1 1 1 (7.365)

with 1 1 1 1 1 0 1

2
and 1 1 1 1 1 0 1 2.

Similarly, we can show that

1 1
1

2
1 1 0 1 1 1 1 0 (7.366)

hence 1 1 0 1 1 1 1 2 and 1 1 1 0 1 1 1 2.

Eigenvector 0 0 associated with j 0

Since

0 0 a 1 1 1 1 b 1 1 0 0 c 1 1 1 1 (7.367)

where a 1 1 1 1 0 0 , b 1 1 0 0 0 0 , and c 1 1 1 1 0 0 are real,

and since the states 0 0 , 1 1 1 1 , 1 1 0 0 , and 1 1 1 1 are normal, we have

0 0 0 0 a2 b2 c2 1 (7.368)

Now, combining (7.355), (7.365), and (7.367), we obtain

2 0 0 0
a

6

2b

6

c

6
0 (7.369)

1 0 0 0
a

2

c

2
0 (7.370)

Since a is by convention positive, we can show that the solutions of (7.368), (7.369), and (7.370)
are given by a 1 3, b 1 3, c 1 3, and consequently

0 0
1

3
1 1 1 1 1 1 0 0 1 1 1 1 (7.371)

with 1 1 1 1 0 0 1 1 1 1 0 0 1 3 and 1 1 0 0 0 0 1 3.

Note that while the quintuplet states 2 m (with m 2 1 0) and the singlet state

0 0 are symmetric, the triplet states 1 m (with m 1 0) are antisymmetric under space

inversion.

Problem 7.4

(a) Find the total spin of a system of three spin 1
2
particles and derive the corresponding

Clebsch–Gordan coefficients.

(b) Consider a system of three nonidentical spin 1
2
particles whose Hamiltonian is given by

H 0 S1 S3 S2 S3 h2. Find the system’s energy levels and their degeneracies.

Solution

(a) To add j1
1
2
, j2

1
2
, and j3

1
2
, we begin by coupling j1 and j2 to form j12

j1 j2, where j1 j2 j12 j1 j2 ; hence j12 0 1. Then we add j12 and j3; this
leads to j12 j3 j j12 j3 or j

1
2

3
2
.
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We are going to denote the joint eigenstates of J 21, J
2
2, J

2
3, J

2
12, J

2, and Jz by j12 j m

and the joint eigenstates of J21, J
2
2, J

2
3, J1z , J2z , and J3z by j1 j2 j3 m1 m2 m3 ; since

j1 j2 j3
1
2
and m1

1
2
, m2

1
2
, m3

1
2
, we will be using throughout this

problem the lighter notation j1 j2 j3 to abbreviate 1
2
1
2
1
2

1
2

1
2

1
2
.

In total there are eight states j12 j m since 2 j1 1 2 j2 1 2 j3 1 8. Four of

these correspond to the subspace j 3
2
: 1 3

2
3
2
, 1 3

2
1
2
, 1 3

2
1
2
, and 1 3

2
3
2
.

The remaining four belong to the subspace j 1
2
: 0 1

2
1
2
, 0 1

2
1
2
, 1 1

2
1
2
, and

1 1
2

1
2
. To construct the states j12 j m in terms of j1 j2 j3 , we are going

to consider the two subspaces j 3
2
and j 1

2
separately.

Subspace j 3
2

First, the states 1 3
2
3
2
and 1 3

2
3
2
are clearly given by

1
3

2

3

2
j1 j2 j3 1

3

2

3

2
j1 j2 j3 (7.372)

To obtain 1 3
2
1
2
, we need to apply, on the one hand, J on 1 3

2
3
2
(see (7.220)),

J 1
3

2

3

2
h
3

2

3

2
1

3

2

3

2
1 1

3

2

1

2
h 3 1

3

2

1

2
(7.373)

and, on the other hand, apply J1 J2 J3 on j1 j2 j3 (see (7.221) to (7.223)).

This yields

J1 J2 J3 j1 j2 j3 h j1 j2 j3 j1 j2 j3

j1 j2 j3 (7.374)

since 1
2
1
2

1 1
2
1
2

1 1. Equating (7.373) and (7.374) we infer

1
3

2

1

2

1

3
j1 j2 j3 j1 j2 j3 j1 j2 j3

(7.375)

Following the same method—applying J on 1 3
2
1
2
and J1 J2 J3 on the right-hand

side of (7.375) and then equating the two results—we find

1
3

2

1

2

1

3
j1 j2 j3 j1 j2 j3 j1 j2 j3

(7.376)

Subspace j 1
2

We can write 0 1
2
1
2
as a linear combination of j1 j2 j3 and j1 j2 j3 :

0
1

2

1

2
j1 j2 j3 j1 j2 j3 (7.377)
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Since 0 1
2
1
2
is normalized, while j1 j2 j3 and j1 j2 j3 are ortho-

normal, and since the Clebsch–Gordan coefficients, such as and , are real numbers, equation

(7.377) yields
2 2 1 (7.378)

On the other hand, since 1 3
2
1
2
0 1
2
1
2

0, a combination of (7.375) and (7.377) leads to

1

3
0 (7.379)

A substitution of into (7.378) yields 1 2, and substituting this into

(7.377) we obtain

0
1

2

1

2

1

2
j1 j2 j3 j1 j2 j3 (7.380)

Following the same procedure that led to (7.375)—applying J on the left-hand side of (7.380)

and J1 J2 J3 on the right-hand side and then equating the two results—we find

0
1

2

1

2

1

2
j1 j2 j3 j1 j2 j3 (7.381)

Now, to find 1 1
2
1
2
, we may write it as a linear combination of j1 j2 j3 ,

j1 j2 j3 , and j1 j2 j3 :

1
1

2

1

2
j1 j2 j3 j1 j2 j3 j1 j2 j3 (7.382)

This state is orthogonal to 0 1
2
1
2
, and hence ; similarly, since this state is also

orthogonal to 1 3
2
1
2
, we have 0, and hence 2 0 or 2 2 .

Now, since all the states of (7.382) are orthonormal, we have 2 2 2 1, which when

combined with 2 2 leads to 1 6 and 2 6. We may thus

write (7.382) as

1
1

2

1

2

1

6
j1 j2 j3 2 j1 j2 j3 j1 j2 j3

(7.383)

Finally, applying J on the left-hand side of (7.383) and J1 J2 J3 on the right-hand

side and equating the two results, we find

1
1

2

1

2

1

6
j1 j2 j3 2 j1 j2 j3 j1 j2 j3

(7.384)

(b) Since we have three different (nonidentical) particles, their spin angular momenta mu-

tually commute. We may thus write their Hamiltonian as H 0 h
2 S1 S2 S3. Due

to this suggestive form of H , it is appropriate, as shown in (a), to start by coupling S1 with S2

to obtain S12 S1 S2, and then add S12 to S3 to generate the total spin: S S12 S3. We
may thus write H as

H
0

h2
S1 S2 S3

0

h2
S12 S3

0

2h2
S2 S212 S23 (7.385)
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since S12 S3
1
2
[ S12 S3 2 S212 S23 ]. Since the operators H , S

2, S212, and S
2
3 mutually

commute, we may select as their joint eigenstates the kets s12 s m ; we have seen in (a) how
to construct these states. The eigenvalues of H are thus given by

H s12 s m
0

2h2
S2 S212 S23 s12 s m

0

2
s s 1 s12 s12 1

3

4
s12 s m (7.386)

since s3
1
2
and S23 s12 s m h2s3 s3 1 s12 s m 3h2 4 s12 s m .

As shown in (7.386), the energy levels of this system are degenerate with respect tom, since
they depend on the quantum numbers s and s12 but not on m:

Es12 s
0

2
s s 1 s12 s12 1

3

4
(7.387)

For instance, the energy Es12 s E1 3 2 0 2 is fourfold degenerate, since it corresponds

to four different states: s12 s m 1 3
2

3
2
and 1 3

2
1
2
. Similarly, the energy

E0 1 2 0 is twofold degenerate; the corresponding states are 0 1
2

1
2
. Finally, the energy

E1 1 2 0 is also twofold degenerate since it corresponds to 1 1
2

1
2
.

Problem 7.5

Consider a system of four nonidentical spin 1
2
particles. Find the possible values of the total

spin S of this system and specify the number of angular momentum eigenstates, corresponding
to each value of S.

Solution

First, we need to couple two spins at a time: S12 S1 S2 and S34 S3 S4. Then we couple

S12 and S34: S S12 S34. From Problem 7.4, page 438, we have s12 0 1 and s34 0 1.

In total there are 16 states sm since 2s1 1 2s2 1 2s3 1 2s4 1 24 16.

Since s12 0 1 and s34 0 1, the coupling of S12 and S34 yields the following values for
the total spin s:

When s12 0 and s34 0 we have only one possible value, s 0, and hence only one

eigenstate, sm 0 0 .

When s12 1 and s34 0, we have s 1; there are three eigenstates: s m 1 1 ,

and 1 0 .

When s12 0 and s34 1, we have s 1; there are three eigenstates: sm 1 1 ,

and 1 0 .

When s12 1 and s34 1 we have s 0 1 2; we have here nine eigenstates (see

Problem 7.3, page 436): 0 0 , 1 1 , 1 0 , 2 2 , 2 1 , and 2 0 .

In conclusion, the possible values of the total spin when coupling four 1
2
spins are s 0 1 2;

the value s 0 occurs twice, s 1 three times, and s 2 only once.
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Problem 7.6

Work out the coupling of the isospins of a pion–nucleon system and infer the various states of

this system.

Solution

Since the isospin of a pion meson is 1 and that of a nucleon is 1
2
, the total isospin of a pion–

nucleon system can be obtained by coupling the isospins t1 1 and t2
1
2
. The various values

of the total isospin lie in the range t1 t2 T t1 t2; hence they are given by T
3
2
, 1
2
.

The coupling of the isospins t1 1 and t2
1
2
is analogous to the addition of an orbital

angular momentum l 1 and a spin 1
2
; the expressions pertaining to this coupling are listed in

(7.206) to (7.211). Note that there are three different -mesons:

1 1 1 0 0 1 1 (7.388)

and two nucleons, a proton and a neutron:

1

2

1

2
p

1

2

1

2
n (7.389)

By analogy with (7.206) to (7.211) we can write the states corresponding to T 3
2
as

3

2

3

2
1 1

1

2

1

2
p (7.390)

3

2

1

2

2

3
1 0

1

2

1

2

1

3
1 1

1

2

1

2

2

3
0 p

1

3
n

(7.391)

3

2

1

2

1

3
1 1

1

2

1

2

2

3
1 0

1

2

1

2

1

3
p

2

3
0 n

(7.392)

3

2

3

2
1 1

1

2

1

2
n (7.393)

and those corresponding to T 1
2
as

1

2

1

2

2

3
1 1

1

2

1

2

1

3
1 0

1

2

1

2

2

3
n

1

3

0 p

(7.394)

1

2

1

2

1

3
1 0

1

2

1

2

2

3
1 1

1

2

1

2

1

3

0 n
2

3
p

(7.395)

Problem 7.7

(a) Calculate the expression of 2 0 Y10 1 0 .

(b) Use the result of (a) along with the Wigner–Eckart theorem to calculate the reduced

matrix element 2 Y1 1 .
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Solution

(a) Since

2 0 Y10 1 0
0

sin d
2

0

Y20 Y10 Y10 d (7.396)

and using the relations Y20 5 16 3 cos2 1 and Y10 3 4 cos ,

we have

2 0 Y10 1 0
3

4

5

16 0

cos2 3 cos2 1 sin d
2

0

d

3

2

5

16 0

cos2 3 cos2 1 sin d (7.397)

The change of variables x cos leads to

2 0 Y10 1 0
3

2

5

16 0

cos2 3 cos3 1 sin d

3

2

5

16

1

1

x2 3x2 1 dx
1

5
(7.398)

(b) Applying the Wigner–Eckart theorem to 2 0 Y10 1 0 and using the Clebsch–

Gordan coefficient 1 1 0 0 2 0 2 6, we have

2 0 Y10 1 0 1 1 0 0 2 0 2 Y1 1
2

6
2 Y1 1 (7.399)

Finally, we may obtain 2 Y1 1 from (7.398) and (7.399):

2 Y1 1
3

10
(7.400)

Problem 7.8

(a) Find the reduced matrix elements associated with the spherical harmonic Ykq .

(b) Calculate the dipole transitions n l m r nlm .

Solution

On the one hand, an application of the Wigner–Eckart theorem to Ykq yields

l m Ykq l m l k m q l m l Y k l (7.401)

and, on the other hand, a straightforward evaluation of

l m Ykq l m
2

0

d
0

sin d l m Ykq l m

2

0

d
0

sin d Yl m Ykq Ylm (7.402)
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can be inferred from the triple integral relation (7.244):

l m Ykq l m
2l 1 2k 1

4 2l 1
l k 0 0 l 0 l k m q l m (7.403)

We can then combine (7.401) and (7.403) to obtain the reduced matrix element

l Y k l
2l 1 2k 1

4 2l 1
l k 0 0 l 0 (7.404)

(b) To calculate n l m r nlm it is more convenient to express the vector r in terms of
the spherical components r r 1 r0 r1 , which are given in terms of the Cartesian coordi-
nates x , y, z as follows:

r1
x iy

2

r

2
ei sin r0 z r cos r 1

x iy

2

r

2
e i sin

(7.405)

which in turn may be condensed into a single relation

rq
4

3
rY1q q 1 0 1 (7.406)

Next we may write n l m rq nlm in terms of a radial part and an angular part:

n l m rq nlm
4

3
n l rq nl l m Y1q l m (7.407)

The calculation of the radial part, n l rq nl 0 r3Rn l r Rnl r dr , is straightforward
and is of no concern to us here; see Chapter 6 for its calculation. As for the angular part

l m Y1q l m , we can infer its expression from (7.403)

l m Y1q l m
3 2l 1

4 2l 1
l 1 0 0 l 0 l 1 m q l m (7.408)

The Clebsch–Gordan coefficients l 1 m q l m vanish unless m m q and l 1

l l 1 or m m m q 1 0 1 and l l l 1 0 1. Notice that the case

l 0 is ruled out from the parity selection rule; so, the only permissible values of l and l are
those for which l l l 1. Obtaining the various relevant Clebsch–Gordan coefficients

from standard tables, we can ascertain that the only terms of (7.408) that survive are

l 1 m 1 Y11 l m
3 l m 1 l m 2

8 2l 1 2l 3
(7.409)

l 1 m 1 Y11 l m
3 l m 1 l m

8 2l 1 2l 3
(7.410)

l 1 m Y10 l m
3[ l 1 2 m2]

4 2l 1 2l 3
(7.411)
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l 1 m Y10 l m
3 l2 m2

4 2l 1 2l 1
(7.412)

l 1 m 1 Y1 1 l m
3 l m 1 l m 2

8 2l 1 2l 3
(7.413)

l 1 m 1 Y1 1 l m
3 l m l m 1

8 2l 1 2l 1
(7.414)

Problem 7.9

Find the rotation matrix d 1 corresponding to j 1.

Solution

To find the matrix of d 1 e i Jy h for j 1, we need first to find the matrix representa-

tion of Jy within the joint eigenstates j m of J2 and Jz . Since the basis of j 1 consists

of three states 1 1 , 1 0 , 1 1 , the matrix representing Jy within this basis is given by

Jy
h

2

1 1 Jy 1 1 1 1 Jy 1 0 1 1 Jy 1 1

1 0 Jy 1 1 1 0 Jy 1 0 1 0 Jy 1 1

1 1 Jy 1 1 1 1 Jy 1 0 1 1 Jy 1 1

ih

2

0 1 0

1 0 1

0 1 0

(7.415)

We can easily verify that J3y Jy:

J 2y
h2

2

1 0 1

0 2 0

1 0 1

J 3y
ih3

2

0 1 0

1 0 1

0 1 0

h2 Jy (7.416)

We can thus infer

J2ny h2n 2 J 2y n 0 J2n 1
y h2n Jy (7.417)

Combining these two relations with

e i Jy h

n 0

1

n!

i

h

n

Jny

n 0

1

2n !

i

h

2n

J2ny
n 0

1

2n 1 !

i

h

2n 1

J 2n 1
y

(7.418)

we obtain

e i Jy h I
Jy
h

2

n 1

1 n

2n !
2n i

Jy
h
n 0

1 n

2n 1 !
2n 1
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I
Jy
h

2

n 0

1 n

2n !
2n 1 i

Jy
h
n 0

1 n

2n 1 !
2n 1

(7.419)

where I is the 3 3 unit matrix. Using the relations n 0[ 1 n 2n !] 2n cos and

n 0[ 1 n 2n 1 !] 2n 1 sin , we may write

e i Jy h I
Jy
h

2

[cos 1] i
Jy
h
sin (7.420)

Inserting now the matrix expressions for Jy and J2y as listed in (7.415) and (7.416), we obtain

e i Jy h I
1

2

1 0 1

0 2 0

1 0 1

cos 1 i
i

2

0 1 0

1 0 1

0 1 0

sin (7.421)

or

d 1
d 111 d 11 0 d 11 1

d 101 d 100 d 10 1

d 111 d 110 d 11 1

1
2
1 cos 1

2
sin 1

2
1 cos

1

2
sin cos 1

2
sin

1
2
1 cos 1

2
sin 1

2
1 cos

(7.422)

Since 1
2
1 cos cos2 2 and 1

2
1 cos sin2 2 , we have

d 1 e i Jy h

cos2 2 1

2
sin sin2 2

1

2
sin cos 1

2
sin

sin2 2 1

2
sin cos2 2

(7.423)

This method becomes quite intractable when attempting to derive the matrix of d j for

large values of j . In Problem 7.10 we are going to present a simpler method for deriving d j

for larger values of j ; this method is based on the addition of angular momenta.

Problem 7.10

(a) Use the relation

d j
mm

m1m2 m1m2

j1 j2 m1 m2 j m j1 j2 m1 m2 j m d j1
m1m1

d j2
m2m2

for the case where j1 1 and j2
1
2
along with the Clebsch–Gordan coefficients derived in

(7.206) to (7.209), and the matrix elements of d 1 2 and d 1 , which are given by (7.89)

and (7.423), respectively, to find the expressions of the matrix elements of d 3 23
2
3
2

, d 3 23
2
1
2

,

d 3 23
2

1
2

, d 3 23
2

3
2

, d 3 21
2
1
2

, and d 3 21
2

1
2

.

(b) Use the six expressions derived in (a) to infer the matrix of d 3 2 .
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Solution

(a) Using 1 1
2
1 1
2

3
2

3
2

1, d 111 cos2 2 and d 1 21
2
1
2

cos 2 , we

have

d 3 23
2
3
2

1
1

2
1
1

2

3

2

3

2
1
1

2
1
1

2

3

2

3

2
d 111 d 1 21

2
1
2

cos3
2

(7.424)

Similarly, since 1 1
2
0 1
2

3
2

1
2

2 3, 1 1
2
1 1

2
3
2

1
2

1 3, and since

d 110 1 2 sin and d 1 21
2

1
2

sin 2 , we have

d 3 23
2
1
2

1
1

2
1
1

2

3

2

3

2
1
1

2
0
1

2

3

2

1

2
d 110 d 1 21

2
1
2

1
1

2
1
1

2

3

2

3

2
1
1

2
1

1

2

3

2

1

2
d 111 d 1 21

2
1
2

1

3
sin cos

2

1

3
cos2

2
sin

2

3 sin
2
cos2

2
(7.425)

To calculate d 3 23
2

1
2

, we need to use the coefficients 1 1
2
0 1

2
3
2

1
2

2 3 and

1 1
2

1 1
2

3
2

1
2

1 3 along with d 11 1 sin2 2 :

d 3 23
2

1
2

1
1

2
1
1

2

3

2

3

2
1
1

2
1
1

2

3

2

1

2
d 11 1 d 1 21

2
1
2

1
1

2
1
1

2

3

2

3

2
1
1

2
0

1

2

3

2

1

2
d 110 d 1 21

2
1
2

1

3
sin2

2
cos

2

1

3
sin sin

2

3 sin2
2
cos

2
(7.426)

For d 3 23
2

3
2

we have

d 3 23
2

3
2

1
1

2
1
1

2

3

2

3

2
1
1

2
1

1

2

3

2

3

2
d 11 1 d 1 21

2
1
2

sin3
2
(7.427)

because 1 1
2

1 1
2

3
2

3
2

1, d 11 1 sin2 2 , and d 1 21
2

1
2

sin 2 .

To calculate d 3 21
2
1
2

, we need to use the coefficients 1 1
2
0 1
2

3
2

1
2

2 3 and

1 1
2
1 1

2
3
2

1
2

1 3 along with d 11 1 sin2 2 :

d 3 21
2
1
2

1
1

2
1

1

2

3

2

1

2
1
1

2
1

1

2

3

2

1

2
d 111 d 1 21

2
1
2

1
1

2
0
1

2

3

2

1

2
1
1

2
1

1

2

3

2

1

2
d 101 d 1 21

2
1
2
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1
1

2
0
1

2

3

2

1

2
1
1

2
0
1

2

3

2

1

2
d 100 d 1 21

2
1
2

1
1

2
1

1

2

3

2

1

2
1
1

2
0
1

2

3

2

1

2
d 110 d 1 21

2
1
2

1

3
cos3

2

1

3
sin sin

2

2

3
cos cos

2

1

3
sin sin

2

3 cos2
2

2 cos
2

1

2
3 cos 1 cos

2
(7.428)

Similarly, we have

d 3 21
2

1
2

1
1

2
1

1

2

3

2

1

2
1
1

2
1
1

2

3

2

1

2
d 11 1 d 1 21

2
1
2

1
1

2
1

1

2

3

2

1

2
1
1

2
0

1

2

3

2

1

2
d 110 d 1 21

2
1
2

1
1

2
0
1

2

3

2

1

2
1
1

2
1
1

2

3

2

1

2
d 10 1 d 1 21

2
1
2

1
1

2
0
1

2

3

2

1

2
1
1

2
0

1

2

3

2

1

2
d 100 d 1 21

2
1
2

1

3
sin3

2

1

3
sin cos

2

1

3
sin cos

2

2

3
cos sin

2

3 cos2
2

1 sin
2

1

2
3 cos 1 sin

2
(7.429)

(b) The remaining ten matrix elements of d 3 2 can be inferred from the six elements

derived above by making use of the properties of the d-function listed in (7.67). For instance,

using d j
m m 1 m md j

m m , we can verify that

d 3 23
2

3
2

d 3 23
2
3
2

d 3 21
2

1
2

d 3 21
2
1
2

d 3 23
2

1
2

d 3 23
2
1
2

(7.430)

d 3 23
2
1
2

d 3 23
2

1
2

d 3 23
2
3
2

d 3 23
2

1
2

d 3 21
2
1
2

d 3 23
2

1
2

(7.431)

Similarly, using d j
m m 1 m md j

mm we can obtain the remaining four elements:

d 3 21
2
3
2

d 3 23
2
1
2

d 3 21
2
3
2

d 3 23
2

1
2

(7.432)

d 3 21
2

3
2

d 3 23
2
1
2

d 3 21
2

3
2

d 3 23
2

1
2

(7.433)
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Collecting the six matrix elements calculated in (a) along with the ten elements inferred

above, we obtain the matrix of d 3 2 :

cos3
2

3 sin
2
cos2

2
3 sin2

2
cos

2
sin3

2

3 sin
2
cos2

2
1
2
3 cos 1 cos

2
1
2
3 cos 1 sin

2
3 sin2

2
cos

2

3 sin2
2
cos

2
1
2
3 cos 1 sin

2
1
2
3 cos 1 cos

2
3 sin

2
cos2

2

sin3
2

3 sin2
2
cos

2
3 sin

2
cos2

2
cos3

2

(7.434)

which can be reduced to

d3 2
sin

2

cos2 2
sin 2

3 cos
2

3 sin
2

sin2 2
cos 2

3 cos
2

3 cos 1
2 sin 2

3 cos 1
2 cos 2

3 sin
2

3 sin
2

3 cos 1
cos 2

3 cos 1
2 sin 2

3 cos
2

sin2 2
cos 2

3 sin
2

3 cos
2

cos2 2
sin 2

(7.435)

Following the method outlined in this problem, we can in principle find the matrix of any

d-function. For instance, using the matrices of d 1 and d 1 2 along with the Clebsch–Gordan
coefficients resulting from the addition of j1 1 and j2 1, we can find the matrix of d 2 .

Problem 7.11

Consider two nonidentical particles each with angular momenta 1 and whose Hamiltonian is

given by

H
1

h2
L1 L2 L2

2

h2
L1z L2z

2

where 1 and 2 are constants having the dimensions of energy. Find the energy levels and their

degeneracies for those states of the system whose total angular momentum is equal to 2h.

Solution

The total angular momentum of the system is obtained by coupling l1 1 and l2 1: L

L1 L2. This leads to L1 L2
1
2
L2 L21 L22 , and when this is inserted into the system’s

Hamiltonian it yields

H
1

h2
L1 L2 L22

2

h2
L2z

1

2h2
L2 L21 L22

2

h2
L2z (7.436)

Notice that the operators H , L21, L
2
2, L

2, and Lz mutually commute; we denote their joint
eigenstates by l m . The energy levels of (7.436) are thus given by

Elm
1

2
l l 1 l1 l1 1 l2 l2 1 2m

2 1

2
l l 1 2m

2 (7.437)

since l1 l2 1.

The calculation of l m in terms of the states l1 m1 l2 m2 l1 l2 m1 m2 was
carried out in Problem 7.3, page 436; the states corresponding to a total angular momentum of

l 2 are given by

2 2 1 1 1 1 2 1
1

2
1 1 1 0 1 1 0 1

(7.438)
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2 0
1

6
1 1 1 1 2 1 1 0 0 1 1 1 1 (7.439)

From (7.437) we see that the energy corresponding to l 2 and m 2 is doubly degenerate,

because the states 2 2 have the same energy E2 2 3 1 4 2. The two states 2 1

are also degenerate, for they correspond to the same energy E2 1 3 1 2. The energy

corresponding to 2 0 is not degenerate: E20 3 1.

7.6 Exercises

Exercise 7.1

Show that the linear transformation y Rx where

R
cos sin

sin cos
y

y1
y2

x
x1
x2

is a counterclockwise rotation of the Cartesian x1x2 coordinate system in the plane about the
origin with an angle .

Exercise 7.2

Show that the nth power of the rotation matrix

R
cos sin

sin cos

is equal to

Rn
cos n sin n
sin n cos n

What is the geometrical meaning of this result?

Exercise 7.3

Using the space displacement operator U A e i A P h , where P is the linear momentum

operator, show that ei A P h R e i A P h R A.

Exercise 7.4

The components A j (with j x y z) of a vector A transform under space rotations as Ai
Ri j A j , where R is the rotation matrix.

(a) Using the invariance of the scalar product of any two vectors (e.g., A B) under rotations,
show that the rows and columns of the rotation matrix R are orthonormal to each other (i.e.,
show that Rl j Rlk j k).

(b) Show that the transpose of R is equal to the inverse of R and that the determinant of R
is equal to 1.

Exercise 7.5

The operator corresponding to a rotation of angle about an axis n is given by

Un e i n J h
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Show that the matrix elements of the position operator R are rotated through an infinitesimal

rotation like R R n R. (i.e., in the case where is infinitesimal, show that

Un R jUn R j n R j .

Exercise 7.6

Consider the wave function of a particle r 2x 2y z f r , where f r is a

spherically symmetric function.

(a) Is r an eigenfunction of L2? If so, what is the eigenvalue?
(b) What are the probabilities for the particle to be found in the state ml 1, ml 0, and

ml 1?

(c) If r is an energy eigenfunction with eigenvalues E and if f r 3r2, find the
expression of the potential V r to which this particle is subjected.

Exercise 7.7

Consider a particle whose wave function is given by

r
1

5
Y11

1

5
Y1 1

1

2
Y10 f r

where f r is a normalized radial function, i.e., 0 r2 f 2 r dr 1.

(a) Calculate the expectation values of L2, Lz , and Lx in this state.
(b) Calculate the expectation value of V 2 cos2 in this state.

(c) Find the probability that the particle will be found in the state ml 0.

Exercise 7.8

A particle of spin 1
2
is in a d state of orbital angular momentum (i.e., l 2). Work out the

coupling of the spin and orbital angular momenta of this particle, and find all the states and the

corresponding Clebsch–Gordan coefficients.

Exercise 7.9

The spin-dependent Hamiltonian of an electron–positron system in the presence of a uniform

magnetic field in the z-direction (B Bk) can be written as

H S1 S2
eB

mc
S1z S2z

where is a real number and S1 and S2 are the spin operators for the electron and the positron,
respectively.

(a) If the spin function of the system is given by 1
2

1
2
, find the energy eigenvalues and

their corresponding eigenvectors.

(b) Repeat (a) in the case where 0, but B 0.

(c) Repeat (a) in the case where B 0, but 0.

Exercise 7.10

(a) Show that e i Jz 2 e i Jx ei Jz 2 e i Jy .

(b) Prove J e i Jx e i Jx J and then show that e i Jx j m e i j j m .

(c) Using (a) and (b), show that e i J y j m 1 j m j m .
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Exercise 7.11

Using the commutation relations between the Pauli matrices, show that:

(a) ei y
xe i y

x cos 2 z sin 2 ,

(b) ei z xe i z x cos 2 y sin 2 ,

(c) ei x ye i x y cos 2 z sin 2 .

Exercise 7.12

(a) Show how Jx , Jy , and Jz transform under a rotation of (finite) angle about the x-axis.

(b) Using the results of part (a), determine how the angular momentum operator J trans-
forms under the rotation.

Exercise 7.13

(a) Show how the operator J transforms under a rotation of angle about the x-axis.

(b) Use the result of part (a) to show that J e i Jx h e i Jx h J .

Exercise 7.14

Consider a rotation of finite angle about an axis n which transforms unit vector a into another

unit vector b. Show that e i Jb h ei Jn he i Ja he i Jn h .

Exercise 7.15

(a) Show that ei Jy 2h Jxe i Jy 2h Jz .

(b) Show also that ei Jy 2hei Jx he i Jy 2h ei Jz h .

(c) For any vector operator A, show that ei Jz h Axe i Jz h Ax cos Ay sin .

Exercise 7.16

Using J J1 J2 show that

d j
mm

m1m2 m1m2

j1 j2 m1 m2 j m j1 j2 m1m2 j m d j1
m1m1

d j2
m2m2

Exercise 7.17

Consider the tensor A cos sin cos .

(a) Calculate all the matrix elements Am m l m A l m for l 1.

(b) Express A in terms of the components of a spherical tensor of rank 2 (i.e., in terms

of Y2m ).

(c) Calculate again all the matrix elements Am m , but this time using the Wigner–Eckart
theorem. Compare these results with those obtained in (a). (The Clebsch–Gordan coefficients

may be obtained from tables.)

Exercise 7.18

(a) Express xz r2 and x2 y2 r2 in terms of the components of a spherical tensor of
rank 2.

(b) Using the Wigner–Eckart theorem, calculate the values of 1 0 xz r2 1 1 and

1 1 x2 y2 r2 1 1 .

Exercise 7.19

Show that j m e i Jy h J2z e
i Jy h j m m j

m j m
2 d j

m m
2.
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Exercise 7.20

Calculate the trace of the rotation matrix D 1 2 for (a) and (b) and

2 .

Exercise 7.21

The quadrupole moment operator of a charge q is given by Q20 q 3z2 r2 . Write Q20 in
terms of an irreducible spherical tensor of rank 2 and then express j j Q20 j j in terms
of j and the reduced matrix element j r2Y 2 j . Hint: You may use the coefficient
j 2 m 0 j m 1 j m[3m2 j j 1 ] 2 j 1 j j 1 2 j 3 .

Exercise 7.22

Prove the following commutation relations:

(a) Jx [Jx T
k
q ] q T

k
q k q J 2x k q ,

(b) Jx [Jx T
k
q ] Jy [Jy T

k
q ] Jz [Jz T

k
q ] k k 1 h2T k

q .

Exercise 7.23

Consider a spin 1
2
particle which has an orbital angular momentum l 1. Find all the Clebsch–

Gordan coefficients involved in the addition of the orbital and spin angular momenta of this

particle. Hint: The Clebsch–Gordan coefficient j1 j2 j1 j2 j1 j2 j2 is real and

positive.

Exercise 7.24

This problem deals with another derivation of the matrix elements of d 1 . Use the relation

d j
mm

m1m2 m1m2

j1 j2 m1 m2 j m j1 j2 m1 m2 j m d j1
m1m1

d j2
m2m2

for the case where j1 j2
1
2
along with the matrix elements of d 1 2 , which are given

by (7.89), to derive all the matrix elements of d 1 .

Exercise 7.25

Consider the tensor A sin2 cos 2 .

(a) Calculate the reduced matrix element 2 Y2 2 . Hint: You may calculate explicitly
2 1 Y20 2 1 and then use the Wigner–Eckart theorem to calculate it again.

(b) Express A in terms of the components of a spherical tensor of rank 2 (i.e., in terms

of Y2m ).

(c) Calculate Am 1 2 m A 2 1 for m 2, 1, 0. You may need this Clebsch–

Gordan coefficient: j 2 m 0 j m [3m2 j j 1 ] 2 j 1 j j 1 2 j 3 .

Exercise 7.26

(a) Calculate the reduced matrix element 1 Y1 2 . Hint: For this, you may need to
calculate 1 0 Y10 2 0 directly and then from the Wigner–Eckart theorem.

(b) Using the Wigner–Eckart theorem and the relevant Clebsch–Gordan coefficients from

the table, calculate 1 m Y1m 2 m for all possible values of m, m , and m . Hint: You may

find the integral 0 r3R21 r R32 r dr
64a0
15 5

6
5

5
and the following coefficients useful:

j 1 m 0 j 1 m j m j m [ j 2 j 1 ],

j 1 m 1 1 j 1 m j m j m 1 [2 j 2 j 1 ], and

j 1 m 1 1 j 1 m j m j m 1 [2 j 2 j 1 ].
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Exercise 7.27

A particle of spin 1
2
is in a d state of orbital angular momentum (i.e., l 2).

(a) What are its possible states of total angular momentum.

(b) If its Hamiltonian is given by H a bL S cL2, where a, b, and c are numbers, find
the values of the energy for each of the different states of total angular momentum. Express

your answer in terms of a, b, c.

Exercise 7.28

Consider an h-state electron. Calculate the Clebsch–Gordan coefficients involved in the fol-
lowing j m states of the electron: 11

2
9
2
, 11

2
7
2
, 9
2

9
2
, 9
2

7
2
.

Exercise 7.29

Let the Hamiltonian of two nonidentical spin 1
2
particles be

H
1

h2
S1 S2 S1

2

h
S1z S2z

where 1 and 2 are constants having the dimensions of energy. Find the energy levels and their

degeneracies.

Exercise 7.30

Find the energy levels and their degeneracies for a system of two nonidentical spin 1
2
particles

with Hamiltonian

H
0

h2
S21 S22

0

h
S1z S2z

where 0 is a constant having the dimensions of energy.

Exercise 7.31

Consider two nonidentical spin s 1
2
particles with Hamiltonian

H
0

h2
S1 S2

2 0

h2
S1z S2z

2

where 0 is a constant having the dimensions of energy. Find the energy levels and their degen-

eracies.

Exercise 7.32

Consider a system of three nonidentical particles, each of spin s 1
2
, whose Hamiltonian is

given by

H
1

h2
S1 S3 S2

2

h2
S1z S2z S3z

2

where 1 and 2 are constants having the dimensions of energy. Find the system’s energy levels

and their degeneracies.

Exercise 7.33

Consider a system of three nonidentical particles, each with angular momentum 3
2
. Find the

possible values of the total spin S of this system and specify the number of angular momentum
eigenstates corresponding to each value of S.


