
Circle

Exercise 90:

Solution 1:

• Centre of the circle: Point C

Diameters of the circle: Seg PQ and Seg RS Chord of the circle: Seg RQ

- Points in the interior of the circle: Points C and M.
- Points in the exterior of the circle: Points K and N.
- Points on the circle: Points P, R, Q and S.

Exercise 91:

Solution 1:

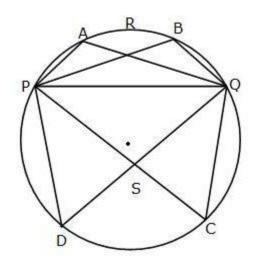
- 1. The two segments of the circle made by the diameter are called <u>semicircular</u> region.
- 2. The measure of an angle in a semicircular region is <u>90</u> degrees.
- 3. All the points on the circle and all points in the interior of the circle together form the <u>circular region</u>.

Solution 2:

• False.

Correct statement: An angle in a semicircular region is a right angle.

• False.


Correct statement: The angle in a minor segment of a circle is an obtuse angle.

• False.

Correct statement: The angle in a major segment of a circle is an acute angle.

• True.

Solution 3:

- The angles in the minor segment are $\angle PAQ$ and $\angle PBQ$.
- The angles in the major segment are $\angle PDQ$ and $\angle PCQ$.
- The pairs of angles in the minor segment PRQ are ∠PAQ and ∠PBQ and the pairs of angles in the major segment are ∠PDQ and ∠PCQ.

Solution 4:

• Seg SK is the diameter of the given circle, and hence divides the circle into two semicircular regions.

Now, an angle in a semicircular region is a right angle.

Hence, m∠STK = 90°

• ∠SMK also is an angle in the semicircular region.

Hence, m∠SMK = 90°

Solution 5:

 \angle XYZ and \angle XPZ are the angles in the same segment and angles in the same segment are congruent. Hence \angle XYZ and \angle XPZ have equal measures.

 \therefore m \angle XYZ = m \angle XPZ = 100°

Solution 6:

 \angle XYZ and \angle XPZ are the angles in the same segment and angles in the same segment are congruent.

Hence $\angle XYZ$ and $\angle XPZ$ have equal measures.

 \therefore m∠XYZ = m∠XPZ = 100°