Prepare N/20 Mohr's salt Solution. Using this Solution, Determine the Normality & Strength of the Given Potassium Permanganate Solution

Chemical Equations

Molecular equations

Indicator

KMnO₄ is a self-indicator.

End Point

Colourless to permanent pink (KMnO₄ in burette).

Procedure

- 1. Rinse and fill the burette with the given KMnO₄ solution.
- 2. Weigh exactly 4.90 g of Mohr's salt crystals and dissolve in water to prepare exactly 250 ml of solution using a 250 ml measuring flask. Rinse the pipette with the N/20 Mohr's salt solution and pipette out 20.0 ml of it in a washed titration flask.
- 3. Add one test-tube (~ 20 ml) full of dilute sulphuric acid (~ 4 N) to the solution in titration flask.
- 4. Note the initial reading of the burette.
- 5. Now add KMnO₄ solution from the burette till a permanent light pink colour is imparted to the solution in the titration flask on addition of a last single drop of KMnO₄ solution.
- 6. Note the final reading of the burette.
- 7. Repeat the above steps 4-5 times to get three concordant readings.

Observations

Normality of Mohr's salt solution = N/20

Volume of Mohr's salt solution taken for each titration = 20.0 ml

S. No.	Initial reading of the burette	Final reading of the burette	Volume of the KMnO ₄ solution used
1.	_	_	ml
2.	<u> </u>	_	— ml
3.	_	_	— ml
4.	_	_	-ml

Concordant volume = x ml (say).

Calculations

(a) Normality of the KMnO₄ solution

x ml of the given $KMnO_4$ solution are equivalent to 20 ml of N/20 Mohr's salt solution. Applying normality equation.

$$\begin{aligned} \mathbf{N_1V_1} &= & \mathbf{N_2V_2} \\ \mathbf{Mohr's \ salt} && \mathbf{KMnO_4} \end{aligned}$$
$$\frac{1}{20} \times 20 = \mathbf{N_2} \times x$$
$$\mathbf{N_2} = \frac{1}{r} \; .$$

:. Normality of KMnO₄,

(b) Strength of the KMnO₄ solution

Strength (in g/litre) = Normality × Eq. mass

$$=\frac{1}{x}\times31.6$$

[: Eq. mass of $KMnO_4 = 31.6$]

Instructions for the Preparation of Solutions

Provide the following solutions:

- 1. Mohr's salt crystals
- 2. N/20 KMnO₄ solution (1.58 g/litre)
- $3.4N H_2SO_4$.