

General Aptitude

Q.1 – Q.5 Carry ONE mark Each

Q.1	Despite his initial hesitation, Rehman's to contribute to the success of the project neuron wavered				
	the project never wavered. Select the most appropriate option to complete the above sentence.				
(A)	ambivalence				
(B)	satisfaction				
(C)	resolve				
(D)	revolve				
	GATE 2025				
	17 Roorkee				

Q.2	Bird : Nest :: Bee :
	Select the correct option to complete the analogy.
(A)	Kennel
(B)	Hammock
(C)	Hive
(D)	Lair
	GATE 2025
	117 Roorkee

Q.3	If $Pe^x = Qe^{-x}$ for all real values of x, which one of the following statements is true?
(A)	P = Q = 0
(B)	P = Q = 1
(C)	P = 1; Q = -1
(D)	$\frac{P}{Q} = 0$
	GATE 2025
	117 Roorkee

Q.4 The paper as shown in the figure is folded to make a cube where each square corresponds to a particular face of the cube. Which one of the following options correctly represents the cube? Note: The figures shown are representative. • Δ 0 (A) Δ **(B)** Δ (C) Δ -(D) Δ 117 Roorkee

Q.5	Let p_1 and p_2 denote two arbitrary prime numbers. Which one of the following statements is correct for all values of p_1 and p_2 ?			
(A)	$p_1 + p_2$ is not a prime number.			
(B)	p_1p_2 is not a prime number.			
(C)	$p_1 + p_2 + 1$ is a prime number.			
(D)	$p_1p_2 + 1$ is a prime number.			
	GATE 2025			

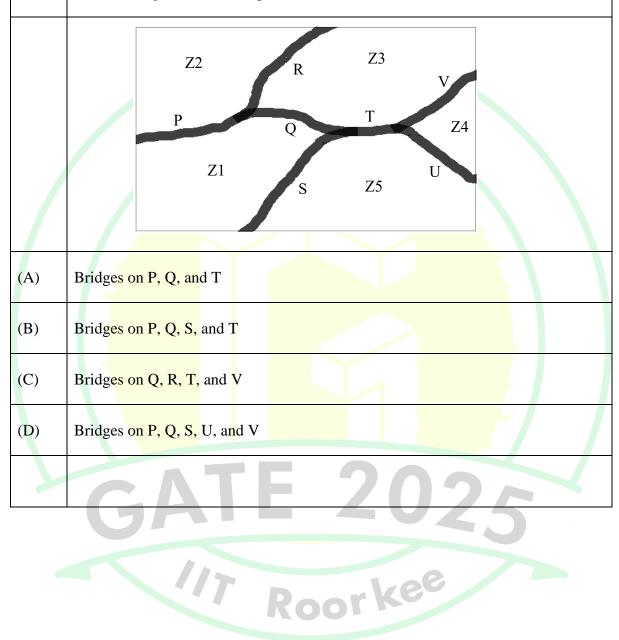
Q.6 – Q.10 Carry TWO marks Each

Q.6	Based only on the conversation below, identify the logically correct inference:				
	"Even if I had known that you were in the hospital, I would not have gone there to see you", Ramya told Josephine.				
(A)	Ramya knew that Josephine was in the hospital.				
(B)	Ramya did not know that Josephine was in the hospital.				
(C)	Ramya and Josephine were once close friends; but now, they are not.				
(D)	Josephine was in the hospital due to an injury to her leg.				
	GATE 2025				
	117 Roorkee				

Q.7	If IMAGE and FIELD are coded as FHBNJ and EMFJG respectively then, which one among the given options is the most appropriate code for BEACH ?
(A)	CEADP
(B)	IDBFC
(C)	JGIBC
(D)	IBCEC
	GATE 2025 '/' Roorkee

Q.8	Which one of the following options is correct for the given data in the table?						
		Iteration (<i>i</i>)	0	1	2	3	
		Input (<i>I</i>)	20	-4	10	15	
		Output (X)	20	16	26	41	
		Output (Y)	20	-80	-800	-12000	
(A)	X(i) = X(i)	-1) + I(i);	Y(i) = Y	Y(i - 1)I(i); i >	0	
(B)	X(i) = X(i -	– 1) <i>I</i> (i); Y((i) = Y(i)	z – 1) + <i>I</i> ((i); i >	0	
(C)	X(i) = X(i - i)	– 1) <i>I</i> (i); Y	(i) = Y(i – 1)I(i)	; i > 0		
(D)	X(i) = X(i - i)	- 1) + I(i);	Y(i) =	Y(i – 1)I	(<i>i</i> – 1);	<i>i</i> > 0	
					1	ļ	/ /
	C	ΔΤ	E	2	0	25	

1/7 Roorkee


In the given figure, PQRS is a square of side 2 cm and PLMN is a rectangle. The Q.9 corner L of the rectangle is on the side QR. Side MN of the rectangle passes through the corner S of the square. What is the area (in cm²) of the rectangle PLMN? Note: The figure shown is representative. Р S M R 0 (A) $2\sqrt{2}$ **(B)** 2 (C) 8 4 (D) 117 Roorkee

Q.10 The diagram below shows a river system consisting of 7 segments, marked P, Q, R, S, T, U, and V. It splits the land into 5 zones, marked Z1, Z2, Z3, Z4, and Z5. We need to connect these zones using the least number of bridges. Out of the following options, which one is correct?

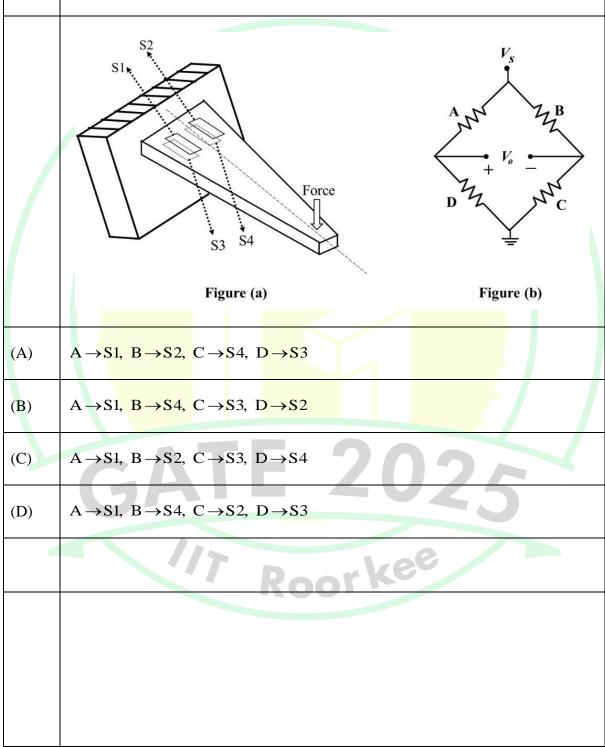
Note: The figure shown is representative.

- 1

Q.11 – Q.35 Carry ONE mark Each

Q.11	A $2n \times 2n$ matrix $A = [a_{ij}]$ has its elements as				
	$a_{ij} = \begin{cases} \beta & \text{if } (i+j) \text{ is odd,} \\ -\beta & \text{if } (i+j) \text{ is even,} \end{cases}$				
	where <i>n</i> is any integer greater than 2 and β is any non-zero real number. The rank of <i>A</i> is				
(A)	1				
(B)	2				
(C)	n				
(D)	2n				
	GATE 2025				
	17 Roorkee				

Q.12	The solution of the differential equation $\frac{dy}{dx} = 9\frac{x}{y}$ represents
(A)	a hyperbola
(B)	a parabola
(C)	an ellipse
(D)	a circle
	GATE 2025 Vir Roorkee

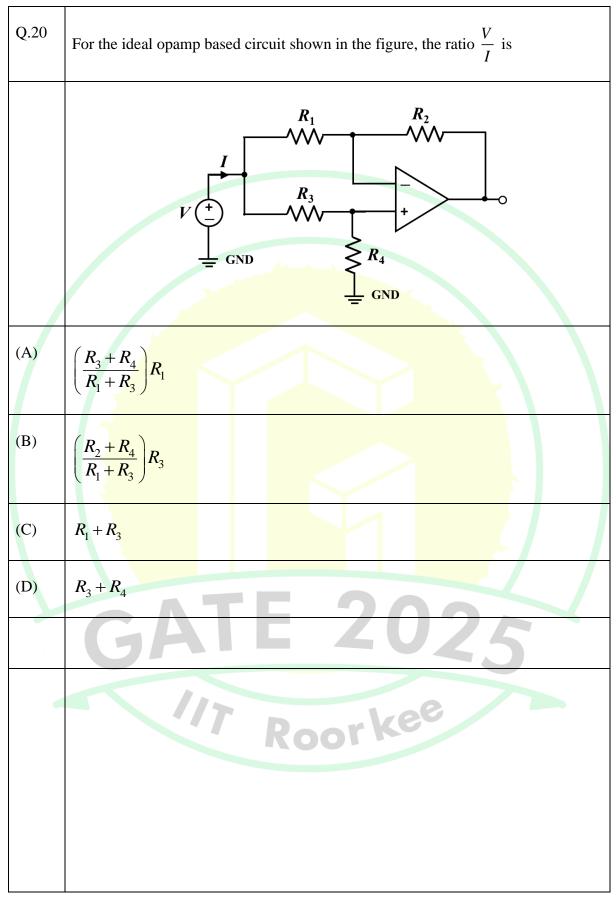

Q.13	The working of the hand-held metal detector most widely used by security personnel for human frisking is based on the principle of			
(A)	change in reluctance of an iron core in presence of a metallic object			
(B)	change in conductance of an iron core in presence of a metallic object			
(C)	electric field induced by a metallic object			
(D)	eddy current generation in a metallic object			
	GATE 2025 '/' Roorkee			

Q.14 The primary coil of a linear variable differential transformer (LVDT) is supplied with AC voltage as shown in the figure. The secondary coils are connected in series opposition and the output is measured using a true RMS voltmeter. The displacement x of the core is indicated in mm on a linear scale. At the null position x = 0, the voltmeter reads 0 V. If the voltmeter reads 0.2 V for a displacement of x = +2 mm, then for a displacement of x = -3 mm, the voltmeter reading, in V, is x (mm)+4 2 - 2 То True RMS Voltmeter core - 0.3 (A) (B) - 0.1 (C) 0.3 0.5 (D) 117 Roorkee

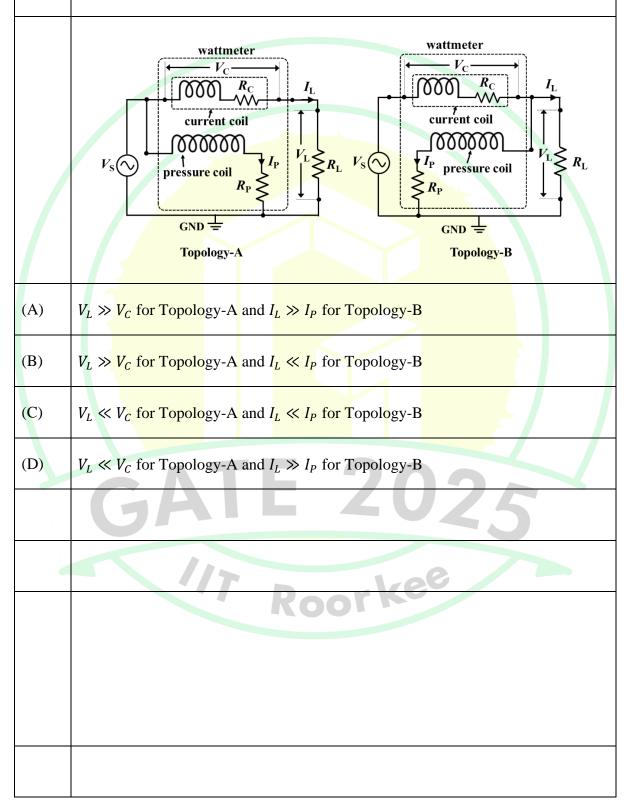
Q.15 In the force transducer shown in Figure (a), four identical strain gauges S1, S2, S3, and S4 are mounted on a cantilever at equal distance from its base. S1 and S2 are mounted on the top surface and S3 and S4 are mounted on the bottom surface, as shown in the Figure (a). These strain gauges are to be connected to form a Wheatstone bridge consisting of four arms A, B, C, and D, as shown in the Figure (b). From the following options, the correct order to maximize the measurement sensitivity is

Q.16	Let a continuous-time signal be $x(t) = e^{j9t} + e^{j5t}$, where $j = \sqrt{-1}$ and t is in seconds. The fundamental period of magnitude of $x(t)$, in seconds, is
(A)	π
(B)	$\frac{\pi}{2}$
(C)	$\frac{\pi}{5}$
(D)	$\frac{\pi}{9}$
	GATE 2025
	117 Roorkee

Q.17	The minimized expression of the Boolean function Y(P, Q, R) implemented by the multiplexer (MUX) circuit shown in the figure is			
	$\begin{array}{c} P \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1$			
(A)	$\mathbf{Y} = \mathbf{R} + (\mathbf{P} \oplus \mathbf{Q})$			
(B)	$\mathbf{Y} = \mathbf{R} \ (\mathbf{P} \oplus \mathbf{Q})$			
(C)	$\mathbf{Y} = \mathbf{R} + (\overline{\mathbf{P} \oplus \mathbf{Q}})$			
(D)	$\mathbf{Y} = \mathbf{R} \oplus (\mathbf{P} \oplus \mathbf{Q})$			
	GATE 2025			
	117 Roorkee			
	ROOT			



Q.18	The 4-bit signed 2's complement form of $(5)_{10} + (5)_{10}$ is
(A)	$(-6)_{10}$
(B)	(-7) ₁₀
(C)	(-5) ₁₀
(D)	(-8) ₁₀
	GATE 2025 77 Roorkee


Q.19 An infinite sheet of uniform charge $\rho_s = 10 \text{ C/m}^2$ is placed on z = 0 plane. The medium surrounding the sheet has a relative permittivity of 10. The electric flux density, in C/m^2 , at a point P(0, 0, 5), is Note: \hat{a} , \hat{b} , and \hat{c} are unit vectors along the *x*, *y*, and *z* directions, respectively. (A) $5\hat{c}$ $0.25\,\hat{c}$ (B) $10\hat{c}$ (C) $0.5\,\hat{c}$ (D) 17 Roorkee

Q.21 In a single-phase AC circuit, the power consumed by load resistance R_L for an excitation V_S is measured using a wattmeter. The same wattmeter is connected in two different topologies, Topology-A and Topology-B, as shown in the figure. Different branch currents and voltage drops are also marked in the figure. Among the following options, the condition that ensures low error in the wattmeter reading for both the topologies is

Q.22	Match the following sensors with the	heir most suitable applications.
	Sensor	Application
	P Rotary Variable Differential Transformer	I Vacuum measurement
	Q Thermocouple	II Force measurement
	R Ionization Gauge	III Angular displacement measurement
	S Strain Gauge	IV Temperature measurement
(A)	P - II, Q - III, R - I, S - IV	
(B)	P - II, Q - IV, R - III, S - I	
(C)	P - III, Q - IV, R - II, S - I	
(D)	P-III, Q-IV, R-I, S-II	Γ
	ATE	200
	GAIE	2025
		Loc I
	· / R	oorkee

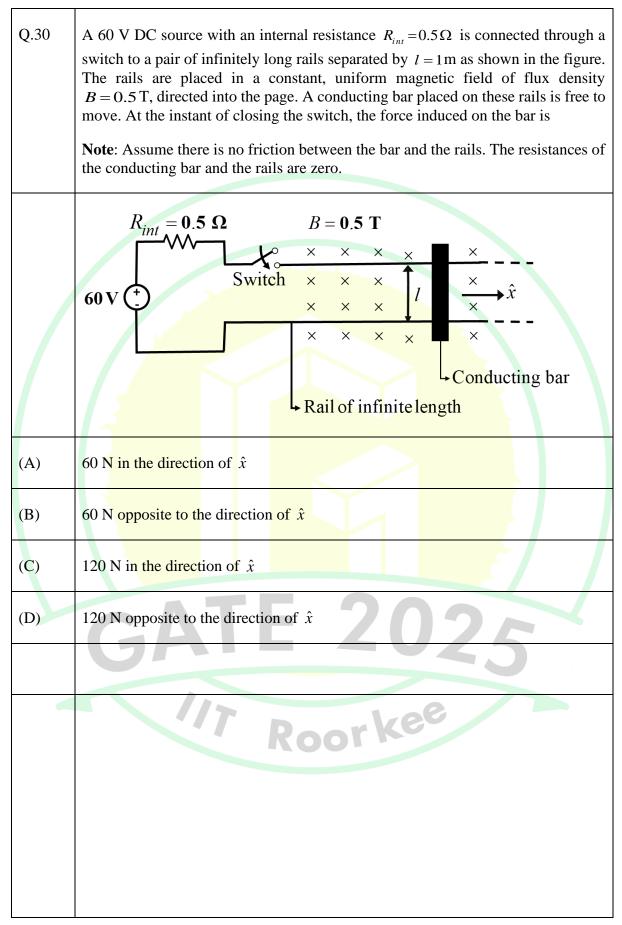
Q.23	A $3\frac{1}{2}$ digit digital voltmeter has a specified accuracy of $\pm (0.5\% + 1)$. If it is used to measure 10 V DC voltage, the error in the measurement would be
	Note: Accuracy of the digital voltmeter is expressed as \pm (% of reading + digit).
(A)	± 0.4 %
(B)	± 1.5 %
(C)	± 0.6 %
(D)	±1%
	GATE 2025 17 Roorkee

Q.24 The circuit shown in Figure (a) can be represented using its equivalent T-model as shown in Figure (b). The values of the inductances L_1 , L_2 , and L_3 in the equivalent T-model are $\stackrel{i_1}{\xrightarrow{}} \stackrel{L_1}{\longrightarrow} \stackrel{L_1}{\longrightarrow} \stackrel{L_1}{\longrightarrow} \stackrel{L_2}{\longrightarrow} \stackrel{L_3}{\longrightarrow} \stackrel{L_4}{\longrightarrow} \stackrel{L_4}{\longrightarrow} \stackrel{L_4}{\longrightarrow} \stackrel{L_5}{\longrightarrow} \stackrel{L_6}{\longrightarrow} \stackrel{$ $\underbrace{I_2}_{i_2} \underbrace{i_2}_{B_1}$ 4 H ◦ **B**₁ зна бан L_3 $A_2 \circ$ $\circ B_2$ $A_2 \circ$ B_2 Figure (a) Figure (b) $L_1 = 7 \text{ H}, \ L_2 = 6 \text{ H}, \ L_3 = -4 \text{ H}$ (A) $L_1 = -1 \text{ H}, \ L_2 = -2 \text{ H}, \ L_3 = 4 \text{ H}$ (B) $L_1 = \frac{3 \text{ H}, L_2 = 2 \text{ H}}{L_3} = 9 \text{ H}$ (C) $L_1 = 1$ H, $L_2 = -2$ H, $L_3 = -4$ H (D) rkee

Q.25	Three parallel admittances $Y_a = -j0.2 \text{ S}$, $Y_b = 0.3 \text{ S}$, and $Y_c = j0.4 \text{ S}$ connected in parallel with a voltage source $V_s = 10 \angle 45^\circ \text{ V}$, draw a total current I_s from the source. The currents flowing through each of these admittances are I_a , I_b , and I_c , respectively. Let $I = I_b + I_c$. The phase relation between I and I_s is
(A)	I leads I_s by 19.44°
(B)	I lags I_s by 19.44°
(C)	I leads I_s by 33.69°
(D)	I lags I_s by 33.69°
	GATE 2025 // Roorkee

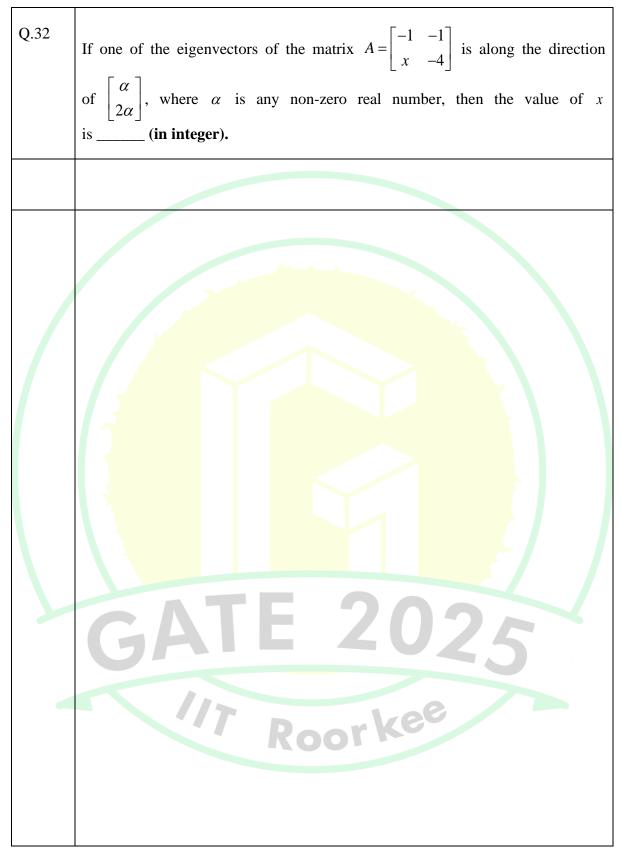
Q.26	An oscilloscope has an input resistance of $1 \text{ M}\Omega$. A 10X passive attenuating probe is connected to it to increase the input voltage range as well as the effective input resistance. The effective input resistance, in M Ω , seen into the probe tip is
(A)	0.9
(B)	9.1
(C)	10
(D)	11
	GATE 2025 Tr Roorkee

Q.27	For the transfer function $G(s) = 1 + \frac{2s-1}{s^3 + 5s^2 + 3s + 22}$, the number of zeros lying in the left half of the <i>s</i> -plane is
(A)	0
(B)	1
(C)	2
(D)	3
	GATE 2025 // Roorkee

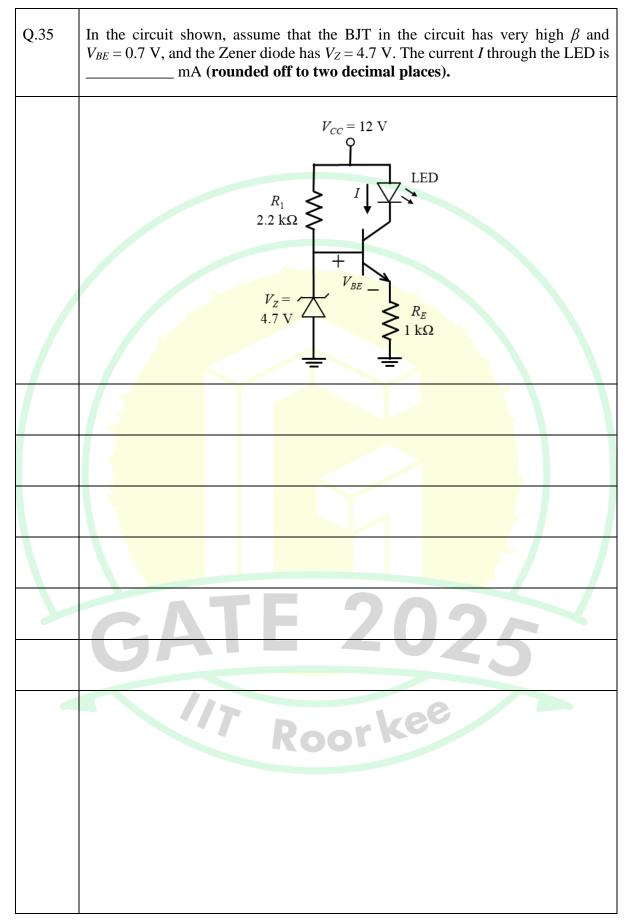


Q.28	Consider the control system block diagram given in Figure (a). The loop transfer function $G(s)H(s)$ does not have any pole on the $j\omega$ -axis. The counterclockwise contour with infinite radius, as shown in Figure (b), encircles two poles of $G(s)H(s)$. Choose the correct statement from the following options for closed loop stability of the system.
	figure (a)
(A)	The locus of $G(s)H(s)$ should encircle the origin twice in the counterclockwise direction
(B)	The locus of $1+G(s)H(s)$ should encircle the origin twice in the clockwise direction
(C)	The locus of $G(s)H(s)$ should encircle the $-1+j0$ point twice in the counterclockwise direction
(D)	The locus of $1+G(s)H(s)$ should encircle the $-1+j0$ point twice in the clockwise direction
	17 Roorkee

Q.29	A Boolean function X is given as $X = \overline{A} \ \overline{B} + \overline{A} \ \overline{C}$. The reduced form of \overline{X} is
(A)	$\overline{A} + \overline{B} + \overline{C}$
(B)	A + B C
(C)	$\overline{A} + \overline{B} + C$
(D)	B + AC
	GATE 2025 Vir Roorkee



Q.31	The circuits mentioned in the following options are realized using ideal opamp. Among these, the circuit(s) performing non-linear operation on the input signal is/are
(A)	Instrumentation amplifier
(B)	Schmitt trigger
(C)	Logarithmic amplifier
(D)	Precision rectifier
/	
	GAIL ZUZS
	1/17 Poorkee
	17 Roorkee



Q.33	Consider the function $f(z) = \frac{2z+1}{z^2-z}$, where z is a complex variable. The sum of the residues at singular points of $f(z)$ is (in integer).
	The sum of the residues at singular points of <i>f</i> (2) is(in integer).

Q.34	A dual-slope ADC has a fixed integration time of 100 ms. The reference voltage of the ADC is -5 V. The time taken by the ADC to measure an input voltage of 1.25 V is ms (rounded off to the nearest integer).
	GATE 2025 1/7 Roorkee

Г

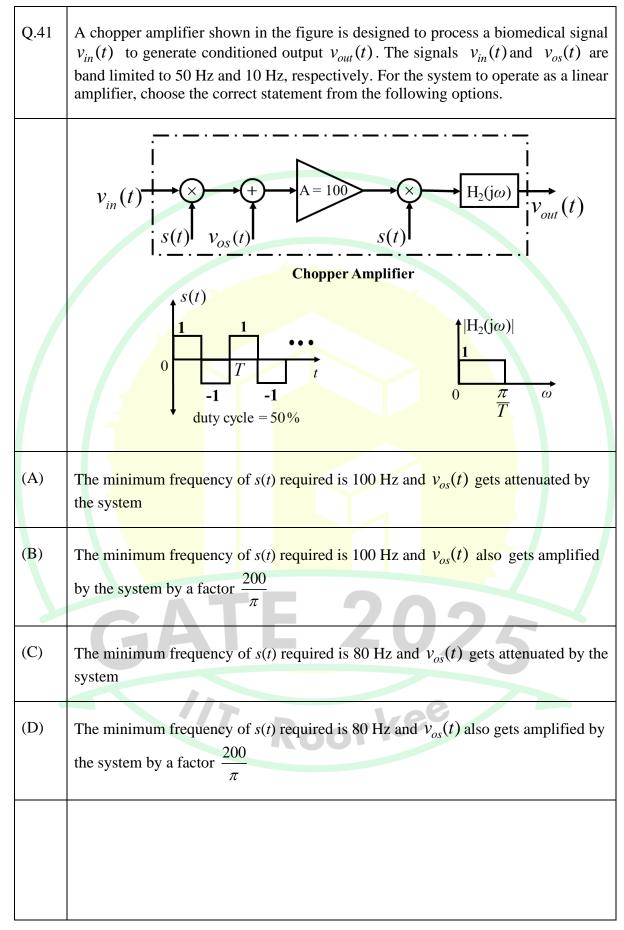
٦

Q.36 – Q.65 Carry TWO marks Each

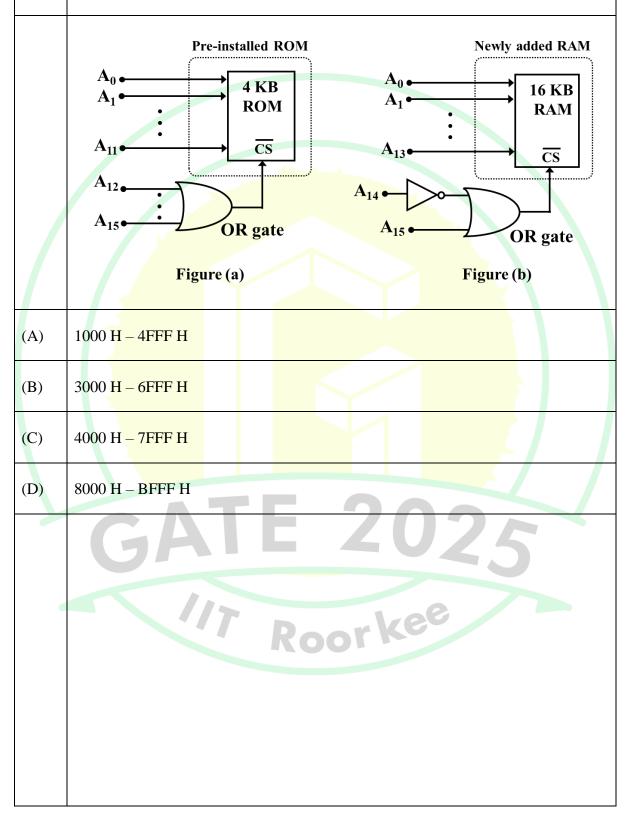
Q.36	The value of the surface integral $\iint_{S} (2x+z) dy dz + (2x+z) dx dz + (2z+y) dx dy$
	over the sphere $S: x^2 + y^2 + z^2 = 9$ is
(A)	72π
(B)	144π
(C)	36π
(D)	432π
	GATE 2025 // Roorkee

Q.37	Newton-Raphson method is used to compute the inverse of the number 1.6. Among the following options, the initial guess of the solution that results in non-convergence of the iterative process is
(A)	0.55
(B)	0.75
(C)	1.15
(D)	1.25
	GATE 2025

Q.38	The value of the integral $\int_{-\pi}^{\pi} (\cos^6 x + \cos^4 x) dx$ is
(A)	$\frac{\pi}{2}$
(B)	$\frac{5\pi}{8}$
(C)	$\frac{11\pi}{8}$
(D)	$\frac{9\pi}{8}$
	GATE 2025 // Roorkee

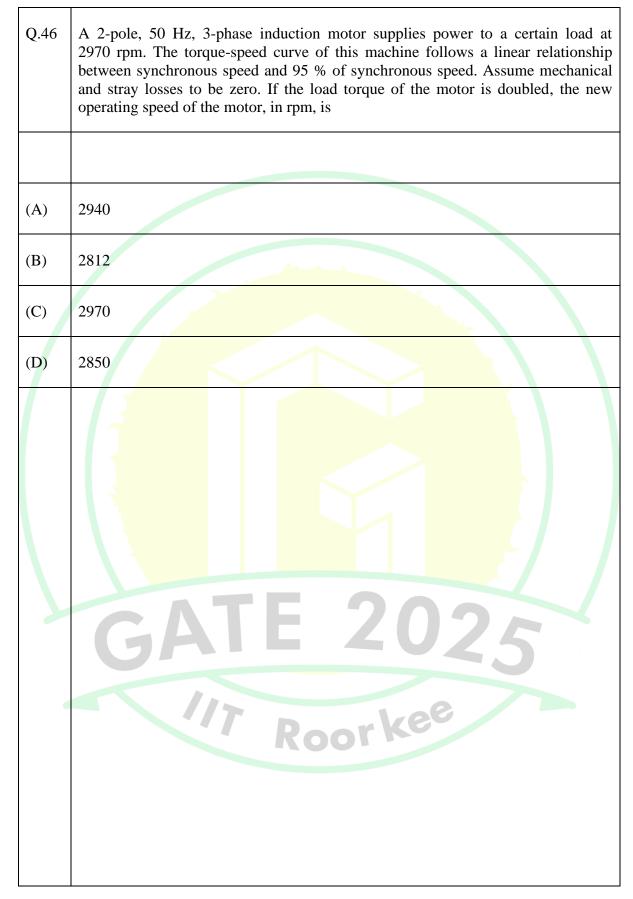

Q.39	Let $y[n] = \frac{1}{\alpha} y[n-1] + x[n]$, where $\alpha > 1$ and real, represent a difference equation of a causal discrete-time linear time invariant system. The system is initially at rest. If $x[n] = \delta[n-p]$ where $p > 10$, the value of $y[p+1]$ is
(A)	0
(B)	1
(C)	$\frac{1}{\alpha}$
(D)	$\frac{1}{\alpha^2}$
	CATE 202
	GALL 222
	17 Roorkee

Q.40 The clock frequency of the digital circuit shown in the figure is 12 MHz. The frequencies of the output (F) corresponding to Control = 0 and Control = 1, respectively, are Q D D Q \overline{O} \overline{Q} ·F Control clock (A) 4 MHz and 6 MHz (B) 6 MHz and 4 MHz (C) 3 MHz and 4 MHz (D) 3 MHz and 6 MHz 17 Roorkee

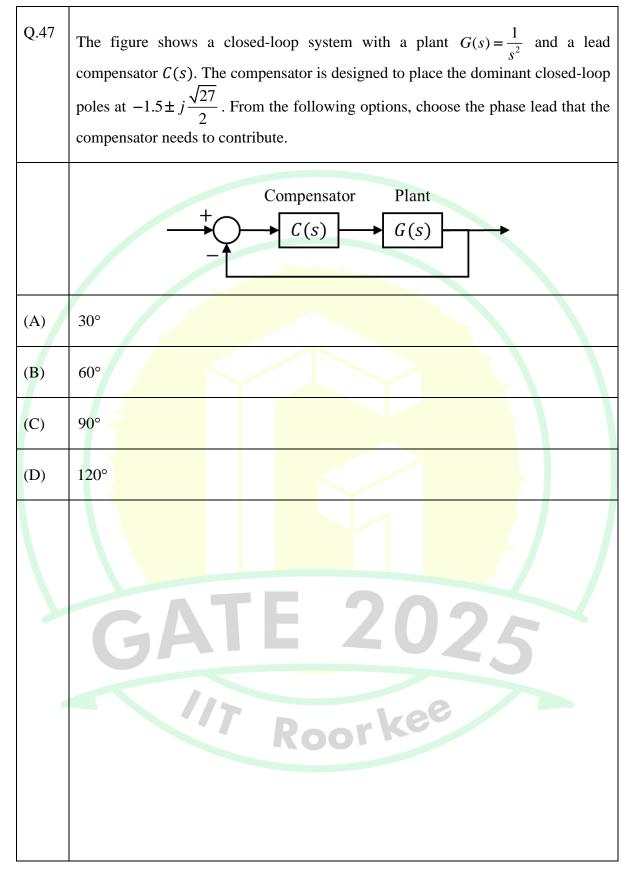


Q.42 An 8-bit microprocessor has 16-bit address bus $(A_{15} - A_0)$ where A_0 is the LSB. As shown in Figure (a), it has a pre-installed 4 KB ROM whose starting address is 0000 H. The processor needs to be upgraded by adding a 16 KB RAM as shown in Figure (b). The address range for the newly added RAM is

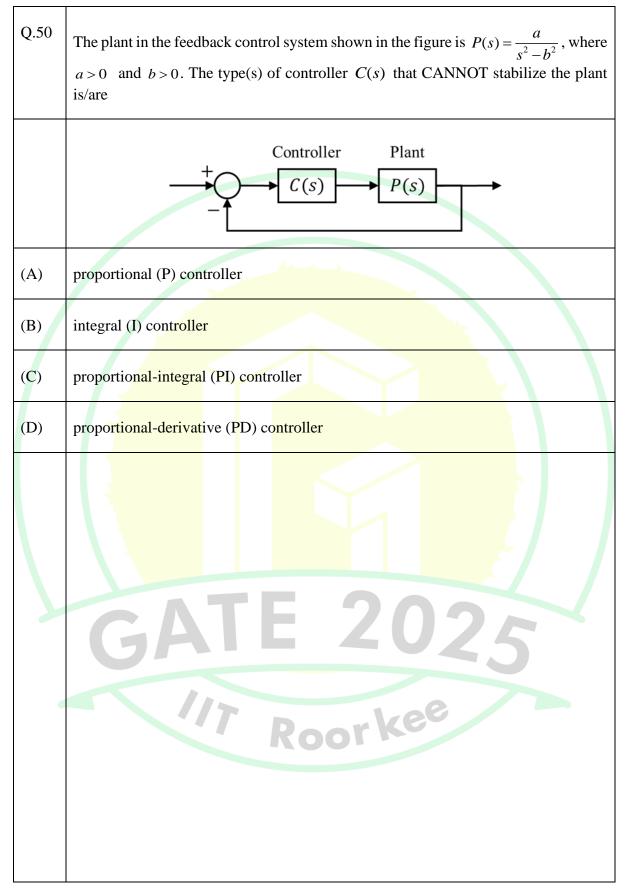
Q.43 A 3-bit DAC is implemented using ideal opamp and switches as shown in the figure. Each of the switches gets closed when its corresponding digital input is at logic 1. For a digital input of 110, the resistance R_{in} seen from the reference source and the current *I*, are D_0 (LSB) 10 kΩ 12 kΩ 6 kΩ Reference Voltage $3 \,\mathrm{k}\Omega$ 6 V GND **R**_{in} **GND** D_2 (MSB) (A) $R_{\rm in} = 2 \ {\rm k}\Omega$ and $I = 3 \ {\rm mA}$ (B) $R_{\rm in} = 12 \text{ k}\Omega \text{ and } I = 0.5 \text{ m}A$ (C) $R_{\rm in} = \infty \Omega$ and I = 1 mA (D) $R_{\rm in} = \infty \ \Omega \text{ and } I = 3 \text{ mA}$ 117 Roorkee



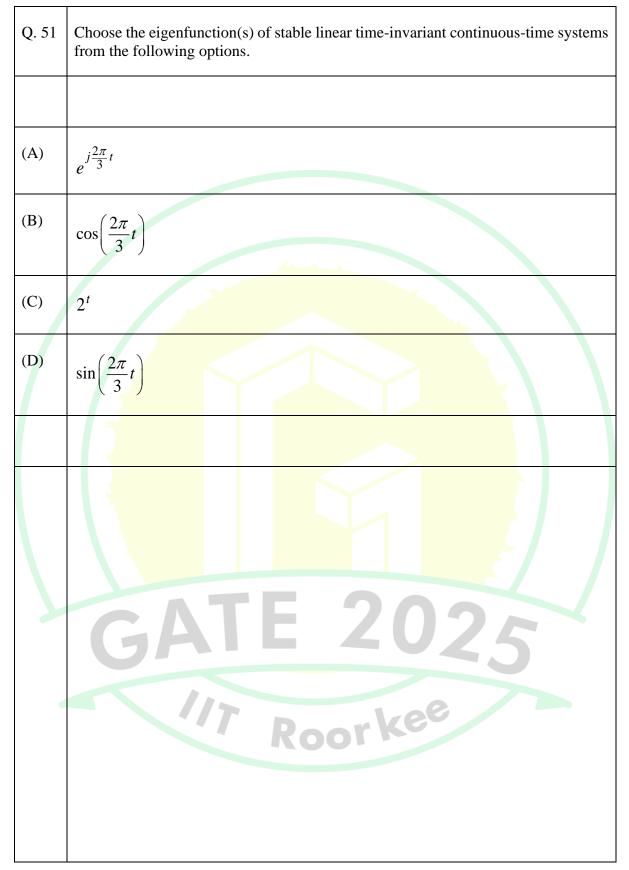
Q.44	Power consumed by a three-phase balanced load is measured using two-wattmeter method. The per-phase average power drawn by the load is 30 kW at $\frac{\sqrt{3}}{2}$ lagging power factor. The readings of the wattmeters will be
(A)	15 kW and 15 kW
(B)	22.5 kW and 7.5 kW
(C)	60 kW and 30 kW
(D)	45 kW and 45 kW
	GATE 2025 Vir Roorkee



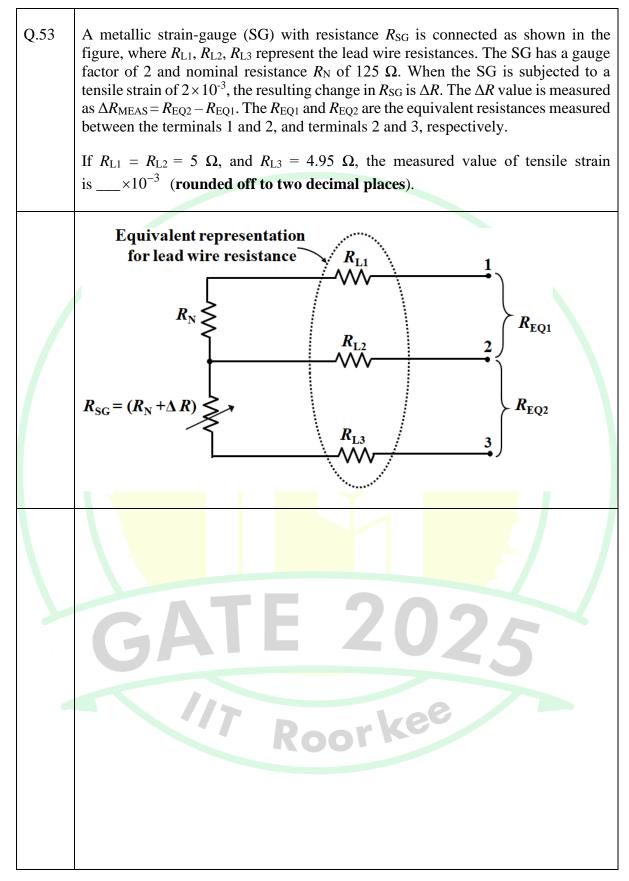
Q.45 The bridge circuit, shown in Figure (a), can be equivalently represented using the circuit shown in Figure (b). The values of R_1 , R_2 , and V_C in the equivalent circuit are 18 V DC R_1 $V_{\rm H}$ ^{3 kΩ}γ $\mathcal{Z}_{\mathcal{L}}^{6 k\Omega}$ $V_{\rm H}$ $V_1 = 3 V$ $6 k\Omega \mathcal{J}$ $V_2 = 3 V$. 3 kΩ $V_{\rm C}$ $V_{\rm L}$ GND **⊥** GND R_2 Figure (a) Figure (b) (A) $R_1 = 6 \text{ k}\Omega, R_2 = 3 \text{ k}\Omega, \text{ and } V_C = 9 \text{ V}$ $R_1 = 3 \text{ k}\Omega, R_2 = 6 \text{ k}\Omega, \text{ and } V_C = 4.5 \text{ V}$ (B) (C) $R_1 = 2 \text{ k}\Omega, R_2 = 2 \text{ k}\Omega, \text{ and } V_C = 9 \text{ V}$ (D) $R_1 = 2 \text{ k}\Omega, R_2 = 2 \text{ k}\Omega, \text{ and } V_C = 4.5 \text{ V}$ 17 Roorkee

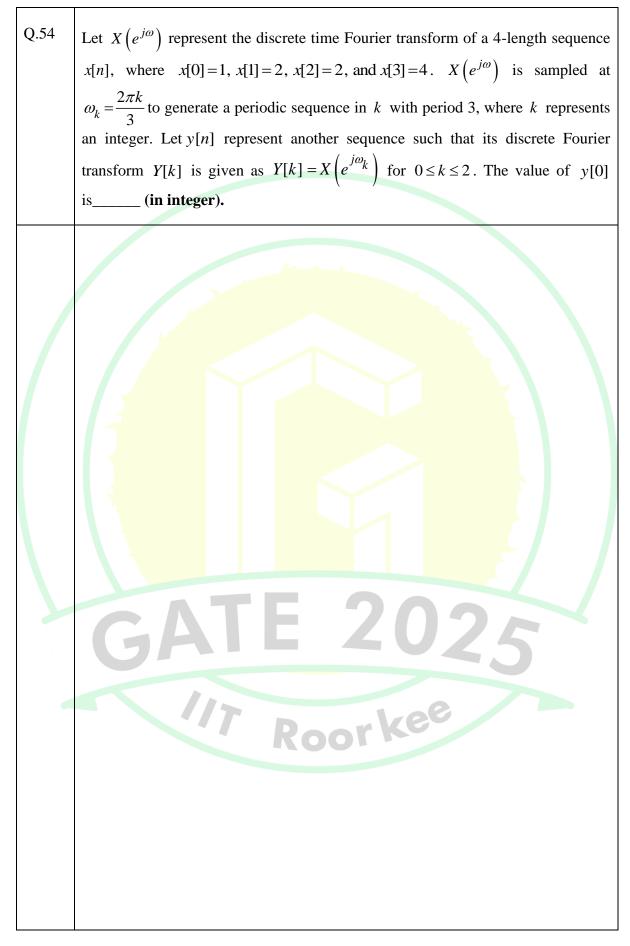


Q.48	Let $f(t)$ and $g(t)$ represent continuous-time real-valued signals. If $h(t)$ denotes cross-correlation between $f(t)$ and $g(-t)$, its continuous-time Fourier transform $H(j\omega)$ equals Note: $F(j\omega)$ and $G(j\omega)$ denote the continuous-time Fourier transforms of $f(t)$ and $g(t)$, respectively.					
(A)	$F(j\omega)G(j\omega)$					
(B)	$F(-j\omega)G(j\omega)$					
(C)	$F(j\omega)G(-j\omega)$					
(D)	$-F(j\omega)G(-j\omega)$					
	GATE 2025 17 Roorkee					

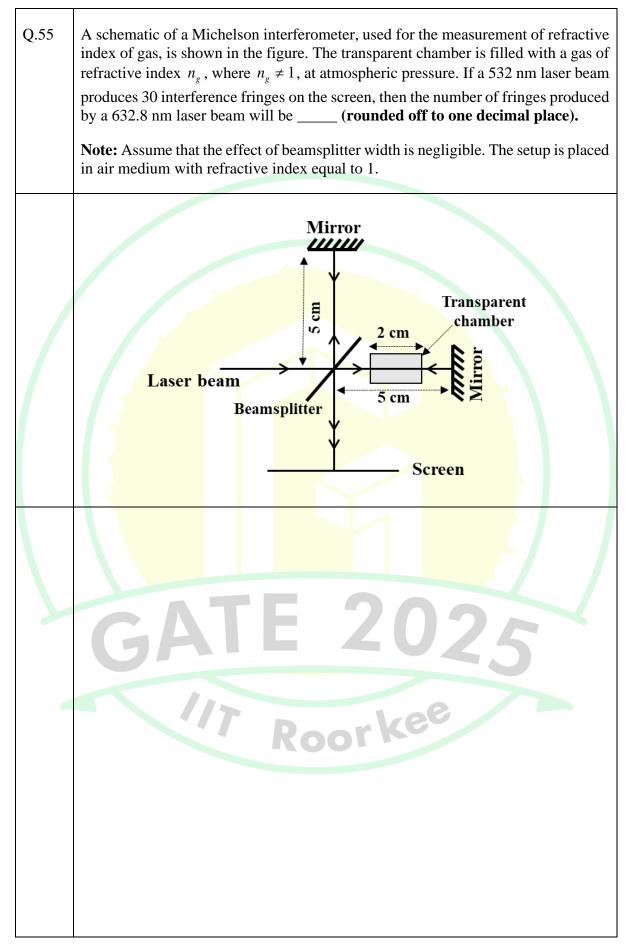


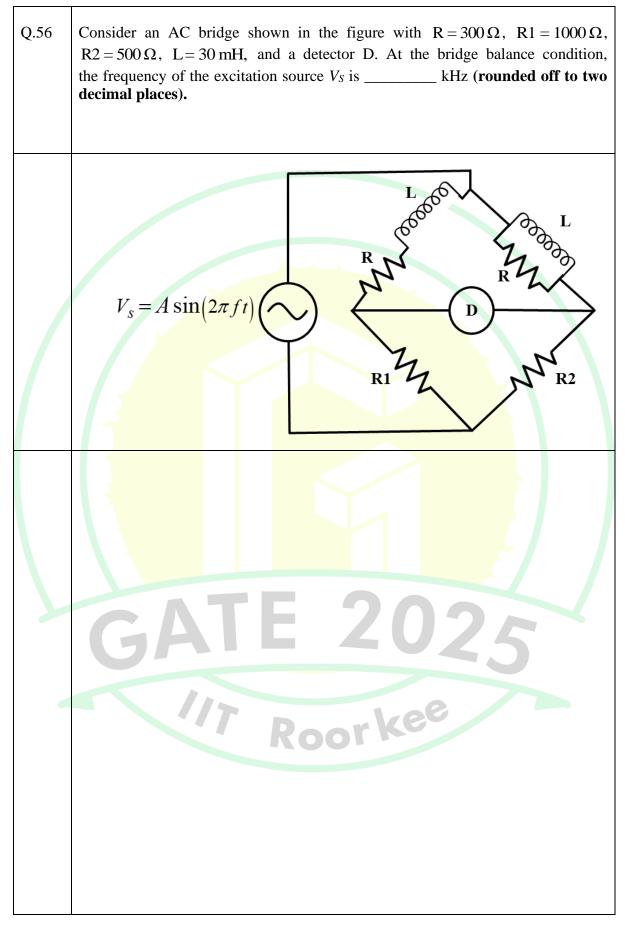
Q.49	Choose the correct statement(s) from the following options, regarding Cauchy's theorem on complex integration $\oint_C f(z) dz$ where <i>C</i> is a simple closed path in a simply connected domain <i>D</i> .				
(A)	Cauchy's theorem cannot be directly applied to conclude that $\oint_C f(z) dz = 0$ when $f(z) = \frac{1}{z^2}$, and <i>C</i> is the unit circle				
(B)	If $f(z)$ is analytic in D , then it can be concluded that $\oint_C f(z) dz = 0$ for any simple closed path C in D				
(C)	The function $f(z)$ must be analytic in D to conclude $\oint_C f(z) dz = 0$ for any simple closed path C in D				
(D)	$\oint_C f(z) dz \neq 0$ when $f(z) = \frac{1}{z^2}$, since the function is not analytic at $z = 0$				
	GATE 2025 ''' Roorkee				

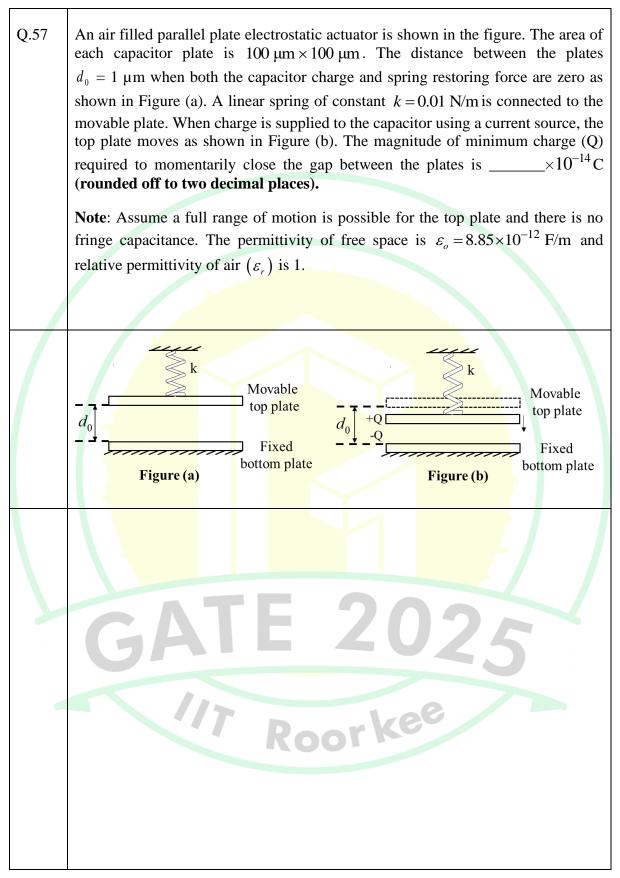


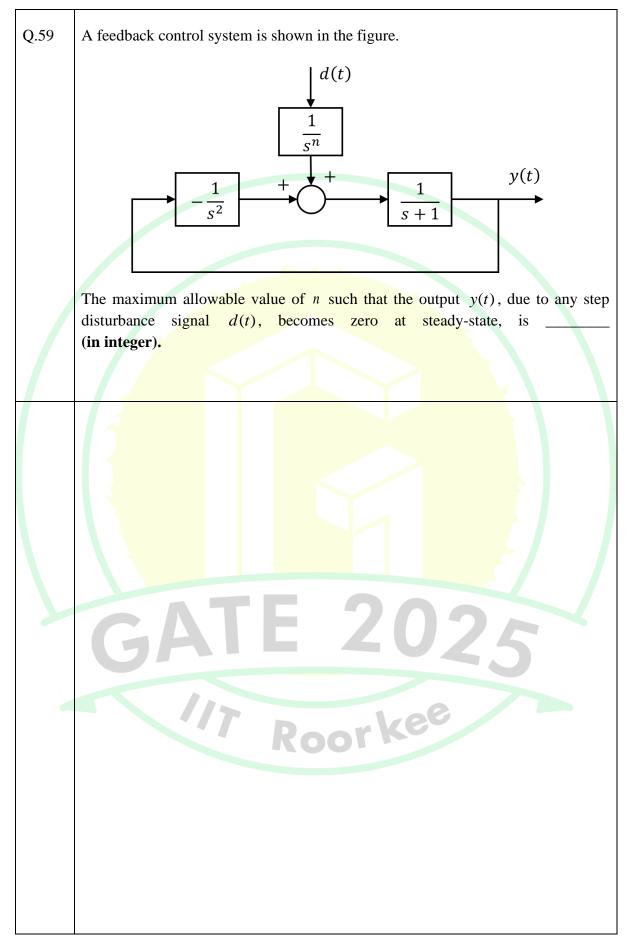


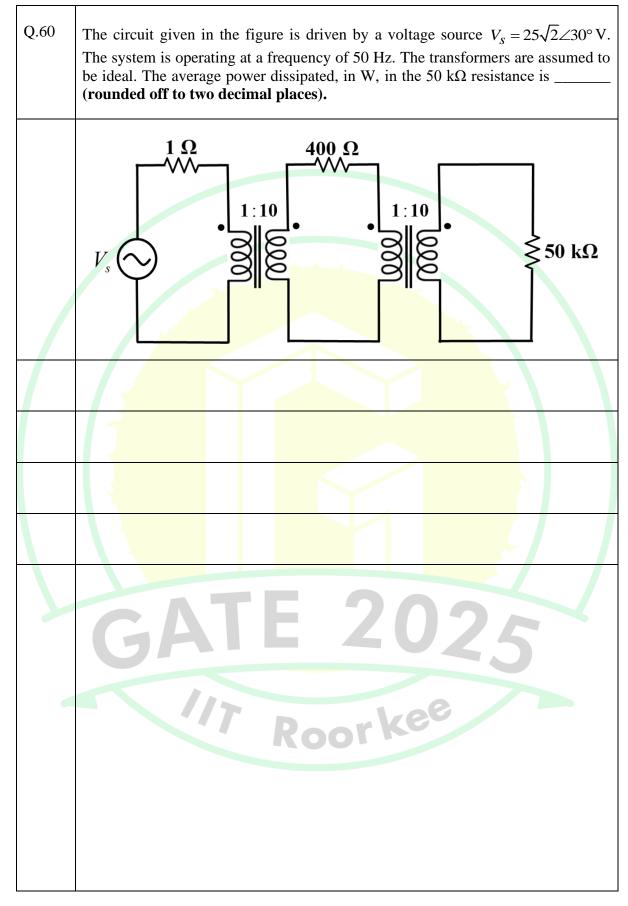
Q.52	The probability of a student missing a class is 0.1. In a total number of 10 classes, the probability that the student will not miss more than one class is (rounded off to two decimal places).
	GATE 2025 // Roorkee



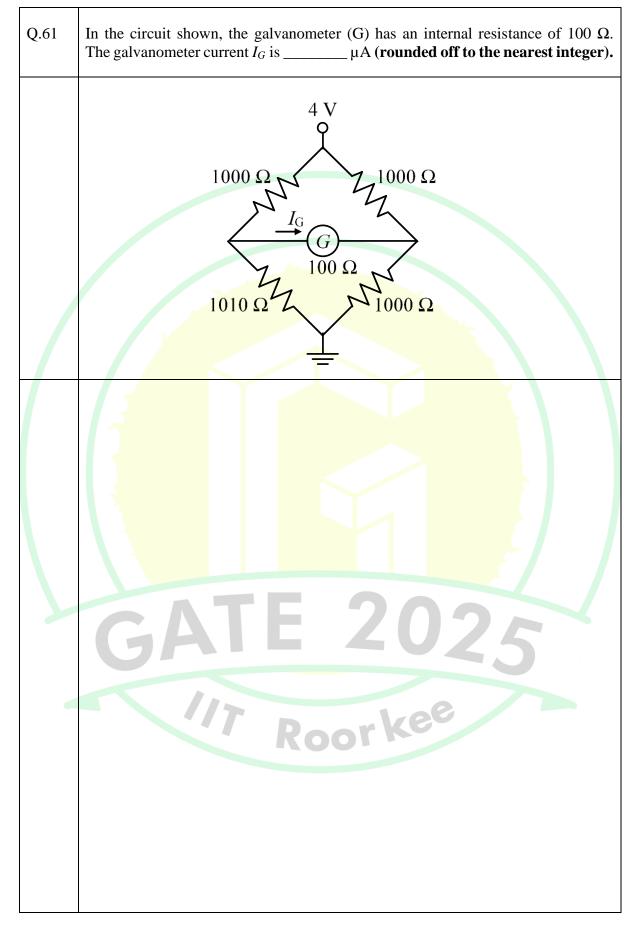


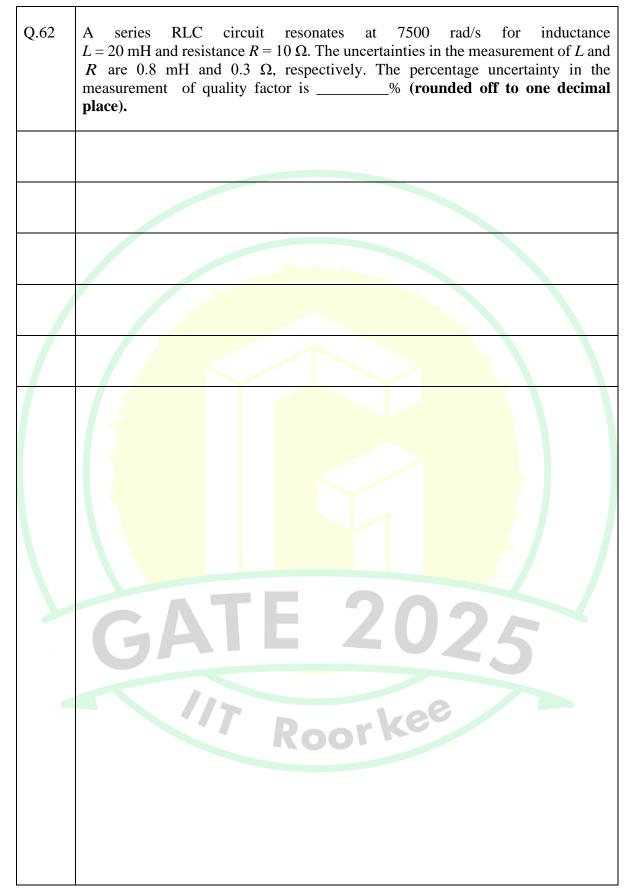


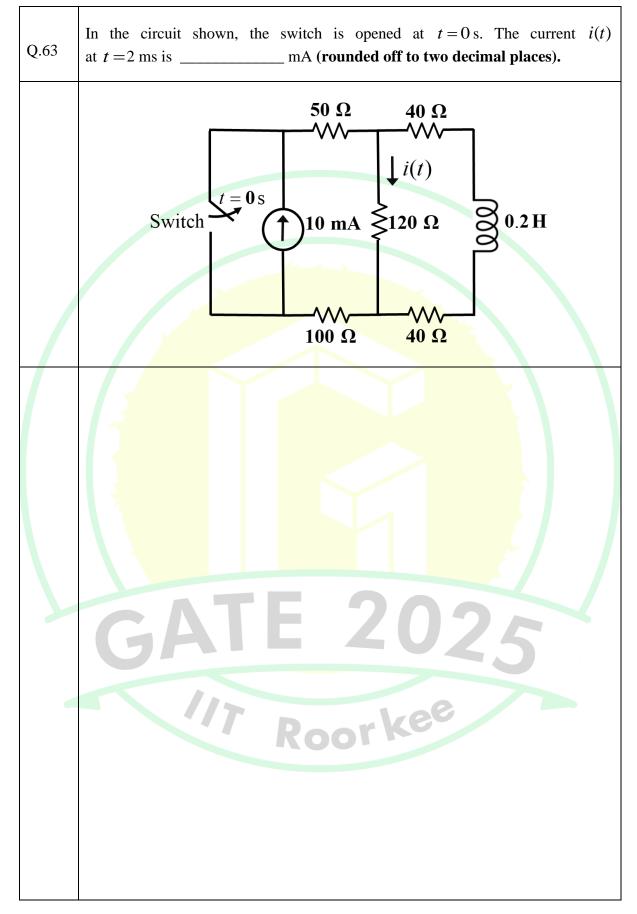


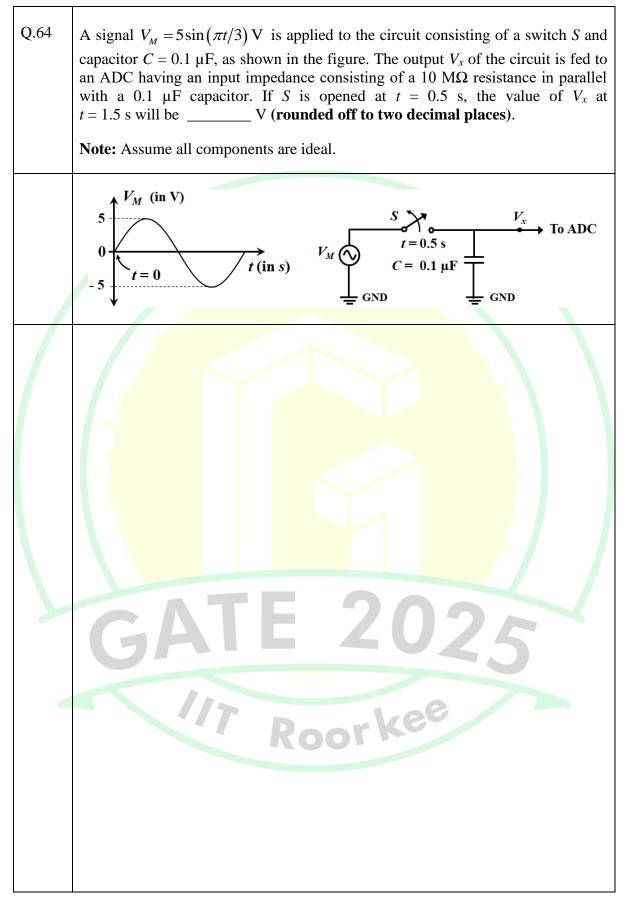


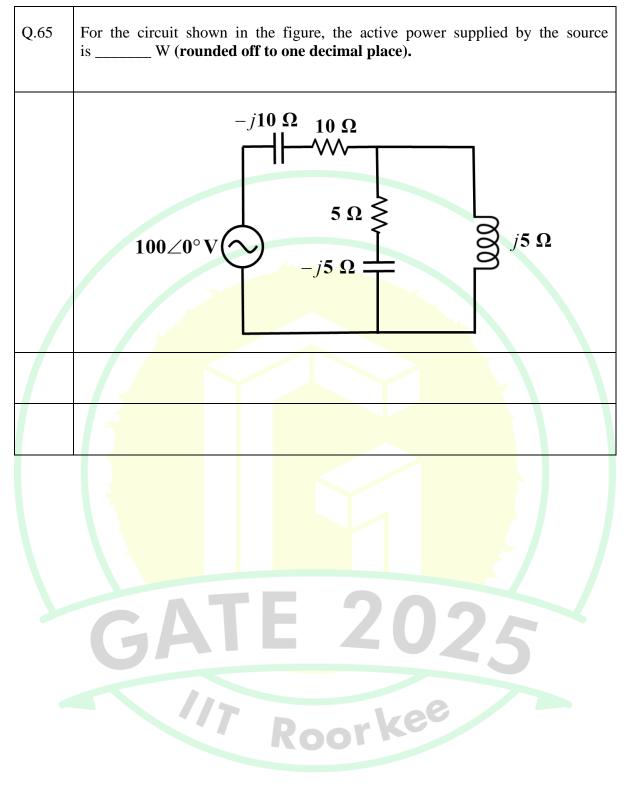
Q.58	The resistance of a thermistor is measured to be 2.25 k Ω at 30 °C and 1.17 k Ω at 60 °C. Its material constant β is K (rounded off to two decimal places).
	GATE 2025 '/' Roorkee











GRADUATE APTITUDE TEST IN ENGINEERING 2025 अभियांत्रिकी स्नातक अभिक्षमता परीक्षा २०२५ Organising Institute: INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

Answer Key for Instrumentation Engineering (IN)

	-			-	
Q. No.	Session	Q. Type	Section	Key/Range	Marks
1	2	MCQ	GA	С	1
2	2	MCQ	GA	С	1
3	2	MCQ	GA	А	1
4	2	MCQ	GA	А	1
5	2	MCQ	GA	В	1
6	2	MCQ	GA	В	2
7	2	MCQ	GA	В	2
8	2	MCQ	GA	A	2
9	2	MCQ	GA	D	2
10	2	MCQ	GA	С	2
11	2	MCQ	IN	A	1
12	2	MCQ	IN	A	1
13	2	MCQ	IN	D	1
14	2	MCQ	IN	С	1
15	2	MCQ	IN	D	1
16	2	MCQ	IN	В	1
17	2	MCQ	IN	А	1
18	2	MCQ	IN	А	1
19	2	MCQ	IN	А	1
20	2	MCQ	IN	А	1
21	2	MCQ	IN	А	1
22	2	MCQ	IN	D	1
23	2	MCQ	IN	С	1
24	2	MCQ	IN	А	1
25	2	MCQ	IN	А	1
26	2	MCQ	IN	С	1
27	2	MCQ	IN	D	1
28	2	MCQ	IN	В	1
29	2	MCQ	IN	В	1
30	2	MCQ	IN	А	1

31	2	MSQ	IN	B;C;D	1
32	2	NAT	IN	2 to 2	1
33	2	NAT	IN	2 to 2	1
34	2	NAT	IN	125 to 125	1
35	2	NAT	IN	3.90 to 4.10	1
36	2	MCQ	IN	В	2
37	2	MCQ	IN	D	2
38	2	MCQ	IN	С	2
39	2	MCQ	IN	С	2
40	2	MCQ	IN	А	2
41	2	MCQ	IN	А	2
42	2	MCQ	IN	С	2
43	2	MCQ	IN	А	2
44	2	MCQ	IN	С	2
45	2	MCQ	IN	С	2
46	2	MCQ	IN	А	2
47	2	MCQ	IN	В	2
48	2	MCQ	IN	А	2
49	2	MSQ	IN	A;B	2
50	2	MSQ	IN	A;B;C	2
51	2	MSQ	IN	A;C	2
52	2	NAT	IN	0.72 to 0.76	2
53	2	NAT	IN	1.75 to 1.85	2
54	2	NAT	IN	5 to 5	2
55	2	NAT	IN	24.5 to 25.5	2
56	2	NAT	IN	1.55 to 1.65	2
57	2	NAT	IN	4.00 to 4.40	2
58	2	NAT	IN	2160 to 2210	2
59	2	NAT	IN	MTA*	2
60	2	NAT	IN	31.00 to 31.50	2
61	2	NAT	IN	9 to 9	2
62	2	NAT	IN	4.5 to 5.5	2
63	2	NAT	IN	4.60 to 5.00	2
64	2	NAT	IN	1.50 to 1.54	2
65	2	NAT	IN	590 to 610	2
*MTA= Ma	rks To All				

*MTA= Marks To All