Sample Question Paper - 4 Class- IX Session- 2021-22 TERM 1 **Subject- Mathematics**

Time Allowed: 1 hour and 30 minutes

General Instructions:

- 1. The question paper contains three parts A, B and C.
- 2. Section A consists of 20 questions of 1 mark each. Attempt any 16 questions.
- 3. Section B consists of 20 questions of 1 mark each. Attempt any 16 questions.
- 4. Section C consists of 10 questions based on two Case Studies. Attempt any 8 questions.
- 5. There is no negative marking.

Section A Attempt any 16 questions

1.	$rac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}+rac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}=$		[1]
	a) 8	b) -10	
	c) 10	d) -8	
2.	The equation y = 2x - 7 has		[1]
	a) no solution	b) two solutions	

- c) one solution d) many solutions
- 3. The sides BC, BA and CA of \triangle ABC have been produced to D, E and F respectively, as shown in [1] the give figure, Then, $\angle B$?

Maximum Marks: 40

4.

5.

	c) 0.003162	d) 3.162	
6.	x = 5 and y = -2 is the solution of the linear e	equation.	[1]
	a) x + 3y = 1	b) 2x + y = 9	
	c) 3x + y = 0	d) 2x – y = 12	
7.	In the given figure, AB DC, \angle BAD = 90°, \angle	CBD = 28° and \angle BCE = 65°. Then \angle ABD = ?	[1]
	a) 43°	b) 53°	
	c) 32°	d) 37°	
	$\triangle AFE \cong \triangle CBD$		
	a) SSS	b) AAS	
	c) ASA	d) SAS	
9.	If x = $2+\sqrt{3}$, then $x+rac{1}{x}$ =		[1]
	a) 4	b) -5	
	c) -4	d) 5	
10.	Which one of the following is not the graph	ical representation of statistical data?	[1]
	a) Histogram	b) Cumulative frequency distribution	
	c) Frequency polygon	d) Bar graph	
11.	Side BC of \triangle ABC has been produced to D on that \angle ABD = 125° and \angle ACE = 130°. Then \angle	n left-hand side and to E on right-hand side such [A = ?	[1]
	a) 55°	b) 50°	
	c) 75°	d) 65°	
	(a) 2		547

12. If
$$(3^3)^2 = 9^x$$
 then $5^x = ?$
a) 25 b) 5

[1]

	c) 1	d) 125	
13.	After rationalising the denominator of $rac{1}{3\sqrt{3}}$	$rac{7}{3-2\sqrt{2}}$, we get the denominator as	[1]
	a) 5	b) 35	
	c) 19	d) 13	
14.	In the adjoining figure, the three lines AB, 90° and x:y = 2:1 then \angle BOD and \angle COE:-	, CD and EF all pass through the point O. If \angle EOB =	[1]
	E		
	a) 60°, 60°	b) 30°, 60°	
	c) 80°, 20°	d) 45°, 45°	
15.	The point on the graph of the linear equat abscissa is	tion 2x + 5y = 19, whose ordinate is 1½ times its	[1]
	a) (-2, -3)	b) (2, 3)	
	c) none of these	d) (4, 6)	
16.	Mode of a set of observations is the value	which	[1]
	a) is the sum of the observations	b) divides the observations into two equal parts	
	c) is the mean of the middle two observations	d) occurs most frequently	
17.	The sides of a triangle are 11 m, 60 m and	61 m. The altitude to the smallest side is	[1]
	a) 60 m	b) 66 m	
	c) 11 m	d) 50 m	
18.	The class marks of a frequency distribution corresponding to the class mark 20 is	on are given as follows 15, 20, 25 the class	[1]
	a) 19.5 - 20.5	b) 12.5 - 17.5	
	c) 18.5 - 21.5	d) 17.5 - 22.5	
19.	The simplest rationalising factor of $2\sqrt{5}$ -	$-\sqrt{3}$,is	[1]
	a) $\sqrt{5}+\sqrt{3}$	b) $2\sqrt{5}+3$	
	c) $\sqrt{5}-\sqrt{3}$	d) $2\sqrt{5}+\sqrt{3}$	
20.	AB and CD are two parallel lines. PQ cuts a of \angle FEB. If \angle LEB = 35°, then \angle CFQ will be	AB and CD at E and F respectively. EL is the bisector e	[1]
	a) 130°	b) 70°	
	c) 110°	d) 55°	

```
Section B
```

	Attempt any 16 questions			
21.	If (4, 19) is a solution of the equation y = ax +	3, then a =	[1]	
	a) 4	b) 6		
	c) 3	d) 5		
22.	The product of difference of semi-perimeter m^2 .The area of $ riangle ABC$, if its semi-perimeter	& respective sides of $ riangle ABC$ are given as 13200 r is 132 m, is given by	[1]	
	a) 1320 m^2	b) $13200 \; m^2$		
	c) $132 \; m^2$	d) $20\sqrt{33}~m^2$		
23.	The point of the form (a, -a), where a lies on		[1]	
	a) the x-axis	b) the line x = y		
	c) the line y + x = 0	d) the y-axis		
24.	Two angles measure $(70 + 2x)^0$ and $(3x - 15)^0$ then the value of x is :	. If each angle is the supplement of the other,	[1]	
	a) 30	b) 20		
	c) 250 ⁰	d) 25		
25.	The value of x - y^{x-y} when x = 2 and y = -2, is		[1]	
	a) 14	b) -18		
	c) 18	d) -14		
26.	Each side of an equilateral triangle is 10 cm l	ong. The height of the triangle is	[1]	
	a) $10\sqrt{3}\mathrm{cm}$	b) $10\sqrt{2}\mathrm{cm}$		
	c) $5\sqrt{3}\mathrm{cm}$	d) 5 cm		
27.	The mean of first n natural numbers is		[1]	
	a) $\frac{n-1}{2}$	b) $\frac{n(n+1)}{2}$		
	c) $\frac{n+1}{2}$	d) $\frac{n(n-1)}{2}$		
28.	The value of $\sqrt{20} imes\sqrt{5}$ is	2	[1]	
	a) $20\sqrt{5}$	b) $4\sqrt{5}$		
	c) $2\sqrt{5}$	d) 10		
29.	In the adjoining figure, the bisectors of $\angle CBI$ then $\angle BOC$ is equal to :-) and \angle BCE meet at the point O. If \angle BAC = 70°,	[1]	
	oV			

d) 35°

a) 11°	b) 55°

c) 70°

30. A grouped frequency distribution table with classes of equal sizes using 105-120 (120 not included) as one of the class intervals is constructed for the following data: The number of classes in the distribution will be

	125	126	140	98	128	78	108	67	
	87	149	102	136	145	112	103	84	1
	123	130	120	89	103	65	96	65	1
	a) 7	*	2	b)	4	7	7	7	
	c) 5			d)	6				
31.	Area of an i	sosceles triai	ngle ABC wit	h AB = a = A	C and BC = b	is			[1]
	a) $rac{1}{4}b\sqrt{4}$	$a^2 - b^2$		b)	$\frac{1}{4}b\sqrt{a^2-b}$	2			
	c) $\frac{1}{2}b\sqrt{4}$	$\overline{a^2 - b^2}$		d)	$\frac{1}{2}b\sqrt{a^2-b}$	$\overline{2}$			
32.	The value of	${ m f}\left(x^{a-b} ight)^{a+b}$	$ imes \left(x^{b-c} ight)^{b+c}$	$^{c} imes \left(x^{c-a} ight)^{c+1}$	^{-a} is				[1]
	a) 3			b)	2				
	c) 1			d)	0				
	$\angle BAE + 2$	$\angle CBF + \angle A$	ACD = ?	ive neeri hio		L anu i Tesp	ectively.		[1]
	a) ₂₄₀ 0			b)	360 ⁰				
	c) 300 ₀			d)	320 ^o				
34.	Tally are us	Tally are usually marked in a bunch of						[1]	
	a) 5			b)	4				
	c) 3			d)	6				
35.	If $\angle A = 4 \angle B$	$B = 6 \angle C$, then	A : B : C ?						[1]
	a) 3 : 4 : 6	3		b)	2:3:4				
	c) 6 : 4 : 3	3		d)	12:3:2				
36.	The line rep	presented by h the point (2	the equatior 2, 14)	n x + y = 16 p	asses throug	sh (2, 14). Ho	w many mo	re lines	[1]

a) 10	b) 2
c) many	d) 100

[1]

Attempt any 8 questions

Question No. 41 to 45 are based on the given text. Read the text carefully and answer the questions:

In the middle of the city, there was a park ABCD in the form of a parallelogram form so that AB = CD, AB | | CD and AD = BC, AD | | BC

Municipality converted this park into a rectangular form by adding land in the form of Δ APD and Δ BCQ. Both the triangular shape of land were covered by planting flower plants.

41. What is the value of $\angle x$?

a) 70°	b) 100°
c) 90°	d) 110°

42. \triangle APD and \triangle BCQ are congruent by which criteria?

a) ASA	b) SSS

c) RHS d) SAS

[1]

[1]

43.	PD is equal to which side?		[1]
	a) BQ	b) DC	
	c) AB	d) BC	
44.	Δ ABC and Δ ACD are congruent by which crit	iteria?	[1]
	a) ASA	b) RHS	
	c) SSS	d) SAS	
45.	What is the value of \angle m?		[1]
	a) 70°	b) 110°	
	c) 90°	d) 20°	

Question No. 46 to 50 are based on the given text. Read the text carefully and answer the questions:

Rohit was putting up one of his paintings in his living room. Before this Rohit had put a grid on the wall where each unit measured equal to a foot. The upper-left corner of the frame is at point C (1, 8) and the upper-right corner at D (7, 8). The bottom-left corner is at A (1, 2) and the bottom-right corner at B (7, 2).

46.	What is the width of the painting plus frame	?	[1]
	a) 6 feet	b) 9 feet	
	c) 8 feet	d) 5 feet	
47.	What is the length of the painting plus frame	?	[1]
	a) 6 feet	b) 9 feet	
	c) 8 feet	d) 5 feet	
48.	Which sides of the painting are parallel to x-a	axis?	[1]
	a) Diagonals AD and BC	b) AB and CD	
	c) AC and BD	d) No one	
49.	Which sides of the painting are parallel to y-a	axis?	[1]
	a) No one	b) Diagonals AC and BD	
	c) AB and CD	d) AC and BD	
50.	Point A, B, C and D lie in which quadrant?		[1]
	a) II	b) III	

Solution

Section A

1. **(c)** 10

Explanation:
$$\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}} + \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$$

 $\Rightarrow \frac{(\sqrt{3}+\sqrt{2})^2 + (\sqrt{3}-\sqrt{2})^2}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}$
 $\Rightarrow \frac{(3+2+2\sqrt{6})+3+2-2\sqrt{6}}{3-2}$
 $\Rightarrow 10$

2. (d) many solutions

Explanation: y = 2x - 7

Has many solution because for different value of x we have different value of y for example. At x = 1

y = 2 (1) - 7 y = 2 - 7 y = -5 at x = 2 y = 2(2) - 7 y = 4 - 7 y = -3

So we can say for many value of **x** there is many value of **y**.

3. **(c)** 75°

Explanation: \angle FAE = \angle BAC(VOA) \angle BAC = 35° \angle ACB + \angle ACD = 180° (Linear Pair) \angle ACB + 110° = 180° \angle ACB = 180° - 110° \angle ACB = 70° \angle BAC + \angle B + \angle ACB = 180° 35° + \angle B + 70° = 180° \angle B + 105° = 180° \angle B = 75°

4. (a) largest

Explanation:

Length of the perpendicular drawn on the smallest side of the scalene triangle is largest.

5. **(a)** 0.3162

 $= \frac{3.162}{10} \\ = 0.3162$

6. **(d)** 2x - y = 12

Explanation: x = 5 and y = -2 is the solution of the linear equation 2x - y = 122x - y = 12LHS = 2x - y2.5 - (-2)10 + 212RHS = 12LHS = RHS It means that x = 5 and y = -2 is the solution of the linear equation 2x - y = 12.

7. **(d)** 37°

Explanation: In \triangle DBC \angle BCE = \angle DBC + \angle BDC (Exterior angle property) 65° = 28° + \angle BDC \angle BDC = 37 As, AB is parallel to CD \angle ABD = \angle BDC = 37° (Alternate interior angle)

8. (d) SAS

Explanation: In \triangle DBC and \triangle AEF, we have AB = FC (given)by adding BF on both sides AF = CB \angle AFE = \angle CBD (given) EF = BD (given) Hence, $\triangle AFE \cong \triangle CBD$ by SAS as the corresponding sides and their included angles are equal.

9. **(a)** 4

Explanation:
$$x + \frac{1}{x}$$

 $\Rightarrow \frac{x^2+1}{x}$
now, put $x = 2 + \sqrt{3}$
we have,
 $\frac{(2+\sqrt{3})^2+1}{2+\sqrt{3}}$
 $\Rightarrow \frac{4+3+2(2\sqrt{3})+1}{2+\sqrt{3}}$
 $\Rightarrow \frac{4+4\sqrt{3}}{2+\sqrt{3}}$
 $\Rightarrow \frac{8+4\sqrt{3}}{2+\sqrt{3}}$
 $\Rightarrow \frac{4(2+\sqrt{3})}{2+\sqrt{3}}$
 $= 4$

- (b) Cumulative frequency distribution
 Explanation: Technically, a cumulative frequency distribution is the sum of the class and all classes below it in a frequency distribution.
- 11. **(c)** 75°

```
Explanation: \angle ABD + \angle ABC = 180^{\circ} (Linear Pair)
\angle ABC = 180^{\circ} - 125^{\circ} = 55^{\circ}
\angle ACE + \angle ACB = 180^{\circ} (Linear Pair)
\angle ACB = 180^{\circ} - 130^{\circ} = 50^{\circ}
In \triangle ABC
\angle ABC + \angle ACB + \angle BAC = 180^{\circ} (Angle sum property)
\angle BAC = 180^{\circ} - 50^{\circ} - 55^{\circ}
\angle BAC = 75^{\circ}
```

12. (d) 125

Explanation: $(3^3)^2 = 9^x$ $(3^2)^3 = 9^x$ $9^3 = 9^x$ \Rightarrow x=3 $\therefore 5^3 = 125$

(c) 19 13.

Explanation: After rationalizing: $-3\sqrt{3}+2\sqrt{2}$

$$\frac{7}{3\sqrt{3}-2\sqrt{2}} = \frac{7}{3\sqrt{3}-2\sqrt{2}} \times \frac{3\sqrt{3}+2\sqrt{2}}{3\sqrt{3}+2\sqrt{2}}$$
$$= \frac{7(3\sqrt{3}+2\sqrt{2})}{(3\sqrt{3})^2 - (2\sqrt{2})^2}$$
$$= \frac{7(3\sqrt{3}+2\sqrt{2})}{\frac{27-8}{27-8}}$$
$$= \frac{7(3\sqrt{3}+2\sqrt{2})}{19}$$

(b) 30°, 60° 14.

> **Explanation:** x + y + 90° = 180° (Linear Pair) 2a + a + 90° = 180° (Since, x:y = 2:1) a = 30° x = 2a = \angle COE = 60° (Vertically opposite angles) y = \angle BOD = 30° (Vertically opposite angles)

15. (b) (2, 3)

> Explanation: Ordinate means y-coordinate. It means we need to find a point on the given line where ycoordinte = 3/2 (x-coordinate). Just put y = [(3/2).x] in the given eqn.

$$2x + 5 \cdot \frac{3}{2}x = 19$$

$$2x + \frac{15}{2}x = 19$$

$$\frac{4x + 15x}{2} = 19$$

$$\frac{19x}{2} = 19$$

$$x = \frac{19 \times 2}{19}$$

$$y = \frac{3}{2}x$$

$$y = \frac{3}{2} \times 2$$

$$y=3$$

so the co-ordinate are (2,3)

(d) occurs most frequently 16.

> **Explanation:** In statistics, the mode in a list of numbers refers to the integers that occurs most number of times.

17. (a) 60 m

> **Explanation:** Area of $\Delta = \frac{1}{2}$ Base \times Height The smallest side is 11 m Area = $\frac{1}{2} \times 11 \times$ Height .. (i) Area by Heron's Formula = $\sqrt{s(s-a)(s-b)(s-c)}$ s $\frac{11+60+61}{2}$ = 66 m Area = $\sqrt{66 \times 55 \times 6 \times 5}$ = 330 m² From eq (i) $330 = \frac{1}{2} \times 11 \times \text{height}$ Height = $\frac{2 \times 330}{11}$ = 60 m

18. (d) 17.5 - 22.5

Explanation: Clearly, Lower limit of the class corresponding to class mark $20 = \frac{\text{Class mark of preceding class}+20}{2}$

 $=rac{15+20}{2}=17.5$

Upper limit of the class corresponding to the class mark 20 = $\frac{20 + \text{Class mark of succeeding class}}{2}$ = $\frac{20+25}{2} = \frac{45}{2} = 22.5$

Hence the required class is 17.5 - 22.5

- 19. **(d)** $2\sqrt{5} + \sqrt{3}$
 - Explanation: $2\sqrt{5} \sqrt{3}$ = $(2\sqrt{5} - \sqrt{3})(2\sqrt{5} + \sqrt{3})$ = $(2\sqrt{5})^2 - (\sqrt{3})^2$ = 20 - 3 = 17 17 is rational number
 - \because rationalizing factor of $2\sqrt{5}-\sqrt{3}$ is $2\sqrt{5}+\sqrt{3}$
- 20. **(c)** 110°
 - **Explanation:**

It is given that, AB \mid | CD with PQ as transversal.

Also, EL is the bisector $\angle BEF$ and $\angle LEB$ = 35° We need to find $\angle CFQ$ Therefore, $\angle BEF = 2(\angle LEB)$ $\angle \mathrm{BEF} = 2\,(35^\circ)$ $\angle BEF = 70^{\circ}$ (i) We have AB $\|CD$, $\angle BEF$ and $\angle DFE$ are consecutive interior angles, which must be supplementary. $\angle BEF + \angle DFE = 180^{\circ}$ From equation (i), we get: $70^\circ + igtriangle DFE = 180^\circ$ $\angle DFE = 180^{\circ} - 70^{\circ}$ $\angle DFE = 110^{\circ}$ (ii) We have $\angle CFQ$ and $\angle DFE$ as vertically opposite angles. Therefore, $\angle \mathrm{CFQ} = \angle \mathrm{DFE}$ $\angle CFQ = 110^{\circ}$

Section **B**

21. **(a)** 4

Explanation: Given, (4, 19) is a solution of the equation y=ax+3=19 = 4a + 3 = a = 4

22. **(a)** 1320 m^2

Explanation: Given: (s - a)(s - b)(s - c) = 13200 m and s = 132 m Area of triangle = $\sqrt{s(s - a)(s - b)(s - c)}$ = $\sqrt{13200 \times 132}$ = 1320 sq. m 23. (c) the line y + x = 0Explanation: The point (a,-a) lies on line x + y = 0 Here is the verification Put x = a in equation x + y = 0a + y = 0 y = -a Hence it is prove that (a,-a) is a solution of x + y = 024. (d) 25 **Explanation:** 70 + 2x + 3x - 15 = 180 (Supplimentary angles) 5x = 180 - 55 x = 25 25. (d) -14

Explanation: x = 2, y = -2

 $x - y^{x-y} = 2 - (-2)^{2-(-2)}$

- $= 2 (-2)^{2+2}$
- $= 2 (-2)^4$
- = 2- (+16)
- = 2 16
- = -14
- (c) $5\sqrt{3}$ cm 26.

Explanation: Height of equilateral triangle $=\frac{\sqrt{3}}{2}$ × Side

 $=rac{\sqrt{3}}{2} imes 10 \ =5\sqrt{3} ext{cm}$

(c) $\frac{n+1}{2}$ 27.

> Explanation: The mean is equal to the sum of all the values in the data set divided by the number of values in the data set.

Sum of first n natural numbers is $\frac{n(n+1)}{2}$ So, mean of first n natural numbers is $\frac{\frac{n(n+1)}{2}}{n} = \frac{(n+1)}{2}$

28. (d) 10

Explanation: $\sqrt{20} imes \sqrt{5}$ = $2\sqrt{5} \times \sqrt{5}$ $= 2 \times 5$ =10

(b) 55° 29.

> **Explanation:** $\angle BOC = 90^\circ - \frac{1}{2} \angle BAC$ ∠BOC = 90° - 35° = 55°

30. (d) 6

Explanation: Maximum value of the observation is 149 & minimum value is 65. This range of data need to grouped into classes of equal sizes with 105-120 as one class. Thus we need to construct classes of width 15. Below 6 classes can be constructed 60-75, 75-90, 90-105, 105-120, 120-135, 135-150

31. **(a)**
$$\frac{1}{4}b\sqrt{4a^2-b^2}$$

Explanation: Here s = $\frac{a+a+b}{2} = \frac{2a+b}{2}$
Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$
= $\sqrt{\frac{2a+b}{2}\left(\frac{2a+b}{2}-a\right)\left(\frac{2a+b}{2}-a\right)\left(\frac{2a+b}{2}-a\right)}$

$$= \sqrt{\frac{2a+b}{2} \left(\frac{b}{2}\right) \left(\frac{b}{2}\right) \left(\frac{2a-b}{2}\right)}$$
$$= \frac{b}{4}\sqrt{4a^2 - b^2}$$

32. **(c)** 1

Explanation:
$$(x^{a-b})^{a+b} \times (x^{b-c})^{b+c} \times (x^{c-a})^{c+a}$$

 $\Rightarrow x^{a^2-b^2} \times x^{b^2-c^2} \times x^{c^2-a^2}$
 $\Rightarrow x^{a^2-b^2+b^2-c^2+c^2-a^2}$
 $\Rightarrow x^0 = 1$

33. **(b)** 360^o

Explanation: We have : $\angle 1 + \angle BAE = 180^{\circ} \dots (i)$ $\angle 2 + \angle CBF = 180^{\circ} \dots (ii)$ $\angle 3 + \angle ACD = 180^{\circ} \dots (iv)$ Adding (i),(ii) and (iii), we get: $(\angle 1 + \angle 2 + \angle 3) + (\angle BAE + \angle CBF + \angle ACD) = 540^{\circ}$ $\Rightarrow 180^{\circ} + \angle BAE + \angle CBF + \angle ACD = 540^{\circ} [\because \angle 1 + \angle 2 + \angle 3 = 180^{\circ}]$ $\Rightarrow \angle BAE + \angle CBF + \angle ACD = 360^{\circ}.$

34. **(a)** 5

Explanation: Tally are usually marked in a bunch of 5: 4 in a vertical line and one is placed diagonally.

35. **(d)** 12 : 3 : 2

Explanation: Let A be x B = $\frac{1}{4}$ x C = $\frac{1}{6}$ x A : B : C x : $\frac{1}{4}$ x : $\frac{1}{6}$ x LCM of 4 and 6 is 12 12 : 3 : 2

36. **(c)** many

Explanation: There are many lines pass through the point (2, 14).

For example x - y = -122x + y = 18and many more.

37. **(d)** 47

Explanation: Let if $l_1 | | l_2$ and AB is tranverse to it

Then,

 \angle PBA should be equal to \angle BAS (Alternate angles)

So if $l_1 | | l_2$, then $\angle BAS = 70^\circ$

 $\begin{array}{l} \Rightarrow \angle BAC = 78^{\circ} - 35^{\circ} = 43^{\circ}..(i) \\ \text{Now, in } \triangle ABC \\ x^{\circ} + \angle C + \angle BAC = 180^{\circ} \\ \Rightarrow x^{\circ} + 90^{\circ} + 43^{\circ} = 180^{\circ} \\ \Rightarrow x^{\circ} = 180^{\circ} - 90^{\circ} - 43^{\circ} = 47^{\circ} \\ \Rightarrow x^{\circ} = 47^{\circ} \\ \text{So if } x^{\circ} = 47^{\circ} \text{ then } l_{1} \mid \mid l_{2} \end{array}$

38. (a) $\frac{4}{3}$

Explanation: $\frac{\sqrt{48}+\sqrt{32}}{\sqrt{27}+\sqrt{18}}$

$$= \frac{\sqrt{4 \times 4 \times 3} + \sqrt{4 \times 4 \times 22}}{\sqrt{3 \times 3 \times 3} + \sqrt{3 \times 3 \times 22}}$$

= $\frac{4\sqrt{3} + 4\sqrt{22}}{3\sqrt{3} + 3\sqrt{22}}$
= $\frac{4(\sqrt{3} + \sqrt{22})}{3(\sqrt{3} + \sqrt{22})}$
= $\frac{4}{3}$

39. **(b)** horizontal axis and vertical axis

Explanation: In a histogram the class limits are marked on the horizontal axis and the frequency is marked on the vertical axis. Thus, a rectangle is constructed on each class interval.

40. **(d)** 0

Explanation: If \overline{X} be the mean of the n observations q X_i, ..., X_n then we have

$$\overline{X}$$
 = $rac{1}{n}\sum_{i=1}^n X_i$
 $\Rightarrow \sum_{i=1}^n X_i = nar{X}$

Let \overline{X} be the mean of n values X_i , ..., X_n . So, we have

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
$$\Rightarrow \sum_{i=1}^{n} X_i = n\overline{X}$$

The sum of the deviations of n values X_i, ..., X_n from their mean \overline{X} is

$$(\mathbf{x}_{1} - \overline{X}) + (\mathbf{x}_{2} - \overline{X}) + \dots + (\mathbf{x}_{n} - \overline{X})$$
$$= \sum_{i=1}^{n} (x_{i} - \overline{X})$$
$$= \sum_{i=1}^{n} x_{i} - \sum_{i=1}^{n} \overline{X}$$
$$= n\overline{X} - n\overline{X}$$
$$= 0$$

Section C

- 41. (a) 70° Explanation: 70°
- 42. (a) ASA Explanation: ASA
- 43. (a) BQ Explanation: BQ
- 44. (c) SSS Explanation: SSS
- 45. **(d)** 20° **Explanation:** 20°
- 46. (a) 6 feet Explanation: 6 feet
- 47. (a) 6 feet Explanation: 6 feet
- 48. **(b)** AB and CD **Explanation:** AB and CD
- 49. **(d)** AC and BD **Explanation:** AC and BD

50. (c) I Explanation: I