

UNIT 3

 97

Chapter 1

Getting Started

After studying this lesson, students will be able to:

 Appreciate the use of Graphical User interface and Integrated Development

Environment for creating Python programs.

 Work in interactive & Script mode for programming.

 Create and assign values to variables.

 Understand the concept and usage of different data types in python.

 Appreciate the importance and usage of different types of operator (arithmetic, Relation

and logical)

 Create Python expression(s) and statement(s).

Introduction

In order to tell the computer „what you want to do‟, we write a program in a language

which computer can understand. Though there are many different programming

languages such as BASIC, Pascal, C, C++, Java, Haskell, Ruby, Python, etc. but we will

study Python in this course.

Before learning the technicalities of Python, let‟s get familiar with it.

Python was created by Guido Van Rossum when he was working at CWI (Centrum

Wiskunde & Informatica) which is a National Research Institute for Mathematics and

Computer Science in Netherlands. The language was released in I991. Python got its

name from a BBC comedy series from seventies- “Monty Python‟s Flying Circus”.

Python can be used to follow both Procedural approach and Object Oriented approach

of programming. It is free to use.

Some of the features which make Python so popular are as follows:

 It is a general purpose programming language which can be used for both

scientific and non scientific programming.

 It is a platform independent programming language.

 98

 It is a very simple high level language with vast library of add-on modules.

 It is excellent for beginners as the language is interpreted, hence gives immediate

results.

 The programs written in Python are easily readable and understandable.

 It is suitable as an extension language for customizable applications.

 It is easy to learn and use.

The language is used by companies in real revenue generating products, such as:

 In operations of Google search engine, youtube, etc.

 Bit Torrent peer to peer file sharing is written using Python

 Intel, Cisco, HP, IBM, etc use Python for hardware testing.

 Maya provides a Python scripting API

 i–Robot uses Python to develop commercial Robot.

 NASA and others use Python for their scientific programming task.

First Step with Python

We are continuously saying that Python is a programming language but don‟t know

what a program is? Therefore, let‟s start Python by understanding Program.

A program is a sequence of instructions that specifies how to perform a Computation.

The Computation might be mathematical or working with text.

To write and run Python program, we need to have Python interpreter installed in our

computer. IDLE (GUI integrated) is the standard, most popular Python development

environment. IDLE is an acronym of Integrated Development Environment. It lets edit,

run, browse and debug Python Programs from a single interface. This environment

makes it easy to write programs.

We will be using version 2.7 of Python IDLE to develop and run Python code, in this

course. It can be downloaded from www.python.org

Python shell can be used in two ways, viz., interactive mode and script mode. Where

Interactive Mode, as the name suggests, allows us to interact with OS; script mode let us

http://www.python.org/

 99

create and edit python source file. Now, we will first start with interactive mode. Here,

we type a Python statement and the interpreter displays the result(s) immediately.

Interactive Mode

For working in the interactive mode, we will start Python on our computer. You can

take the help of your Teacher.

When we start up the IDLE following window will appear:

What we see is a welcome message of Python interpreter with revision details and the

Python prompt, i.e., „>>>‟. This is a primary prompt indicating that the interpreter is

expecting a python command. There is secondary prompt also which is „…‟ indicating

that interpreter is waiting for additional input to complete the current statement.

Interpreter uses prompt to indicate that it is ready for instruction. Therefore, we can

say, if there is prompt on screen, it means IDLE is working in interactive mode.

We type Python expression / statement / command after the prompt and Python

immediately responds with the output of it. Let‟s start with typing print “How are you”

after the prompt.

>>>print “How are you?”

How are you?

What we get is Python‟s response. We may try the following and check the response:

i) print 5+7

 100

ii) 5+7

iii) 6*250/9

iv) print 5-7

It is also possible to get a sequence of instructions executed through interpreter.

Example 1 Example 2

>>> x=2

>>> y=6

>>> z = x+y

>>> print z

8

>>> a=3

>>> a+1, a-1

(4,2) #result is tuple of 2 values

#result is tuple of 2 values, is a comment statement. We will talk about it in the later

part of chapter.

Now we are good to write a small code on our own in Python. While writing in Python,

remember Python is case sensitive. That means x & X are different in Python.

Note: If we want to repeat prior command in interactive window, you can use „ ‟ key

to scroll backward through commands history and „ ‟ key to scroll forward. Use Enter

key to select it. Using these keys, your prior commands will be recalled and displayed,

and we may edit or rerun them also.

^D (Ctrl+D) or quit () is used to leave the interpreter.

^F6 will restart the shell.

Help of IDLE can be explored to know about the various menu options available for

Programmer.

Apart from writing simple commands, let‟s explore the interpreter more.

 101

Type Credits after the prompt and what we get is information about the organization

involved in Python development. Similarly, Copyright and Licenses command can be

used to know more about Python. Help command provides help on Python. It can be

used as….. help() with nothing in parenthesis will allow us to enter an interactive help

mode. And with a name (predefined) in bracket will give us details of the referred

word.

To leave the help mode and return back to interactive mode, quit command can be

used.

Script Mode

In script mode, we type Python program in a file and then use the interpreter to execute

the content from the file. Working in interactive mode is convenient for beginners and

for testing small pieces of code, as we can test them immediately. But for coding more

than few lines, we should always save our code so that we may modify and reuse the

code.

Note: Result produced by Interpreter in both the modes, viz., Interactive and script

mode is exactly same.

Python, in interactive mode, is good enough to learn, experiment or explore, but its only

drawback is that we cannot save the statements for further use and we have to retype

all the statements to re-run them.

To create and run a Python script, we will use following steps in IDLE, if the script

mode is not made available by default with IDLE environment.

1. File>Open OR File>New Window (for creating a new script file)

2. Write the Python code as function i.e. script

3. Save it (^S)

4. Execute it in interactive mode- by using RUN option (^F5)

 Otherwise (if script mode is available) start from Step 2

Note: For every updation of script file, we need to repeat step 3 & step 4

 102

If we write Example 1 in script mode, it will be written in the following way:

Step 1: File> New Window

Step 2:

def test():

 x=2

 y=6

 z = x+y

 print z

Step 3:

Use File > Save or File > Save As - option for saving the file

(By convention all Python program files have names which end with .py)

Step 4:

For execution, press ^F5, and we will go to Python prompt (in other window)

 >>> test()

 8

Alternatively we can execute the script directly by choosing the RUN option.

Note: While working in script mode, we add „print‟ statement in our program to see

the results which otherwise were displayed on screen in interactive mode without

typing such statements.

Variables and Types

When we create a program, we often like to store values so that it can be used later. We

use objects to capture data, which then can be manipulated by computer to provide

information. By now we know that object/ variable is a name which refers to a value.

Every object has:

A. An Identity, - can be known using id (object)

 103

B. A type – can be checked using type (object) and

C. A value

Let us study all these in detail

A. Identity of the object: It is the object's address in memory and does not change

once it has been created.

 (We would be referring to objects as variable for now)

B. Type (i.e data type): It is a set of values, and the allowable operations on those

values. It can be one of the following:

 1. Number

 Number data type stores Numerical Values. This data type is immutable i.e. value

of its object cannot be changed (we will talk about this aspect later). These are of

three different types:

 a) Integer & Long

 b) Float/floating point

 c) Complex

Range of an integer in Python can be from -2147483648 to 2147483647, and long

integer has unlimited range subject to available memory.

 1.1 Integers are the whole numbers consisting of + or – sign with decimal digits

like 100000, -99, 0, 17. While writing a large integer value, don‟t use commas

to separate digits. Also integers should not have leading zeros.

 104

 When we are working with integers, we need not to worry about the size of

integer as a very big integer value is automatically handled by Python. When

we want a value to be treated as very long integer value append L to the

value. Such values are treated as long integers by python.

 >>> a = 10

 >>> b = 5192L #example of supplying a very long value to a variable

 >>> c= 4298114

 >>> type(c) # type () is used to check data type of value

 <type 'int'>

 >>> c = c * 5669

 >>> type(c)

 <type 'long'>

We can know the largest integer in our version of Python by following the

given set of commands:

>>> import sys

>>> print sys.maxint

Integers contain Boolean Type which is a unique data type, consisting of two

constants, True & False. A Boolean True value is Non-Zero, Non-Null and

Non-empty.

 Example

 >>> flag = True

 >>> type(flag)

 <type 'bool'>

 1.2 Floating Point: Numbers with fractions or decimal point are called floating

point numbers.

 105

 A floating point number will consist of sign (+,-) sequence of decimals digits

and a dot such as 0.0, -21.9, 0.98333328, 15.2963. These numbers can also be

used to represent a number in engineering/ scientific notation.

 -2.0X 105 will be represented as -2.0e5

 2.0X10-5 will be 2.0E-5

 Example

 y= 12.36

A value when stored as floating point in Python will have 53 bits of

precision.

 1.3 Complex: Complex number in python is made up of two floating point

values, one each for real and imaginary part. For accessing different parts of

variable (object) x; we will use x.real and x.image. Imaginary part of the

number is represented by „j‟ instead of „i‟, so 1+0j denotes zero imaginary

part.

 Example

 >>> x = 1+0j

 >>> print x.real,x.imag

 1.0 0.0

 Example

 >>> y = 9-5j

 >>> print y.real, y.imag

 9.0 -5.0

 2. None

 This is special data type with single value. It is used to signify the absence of

value/false in a situation. It is represented by None.

 106

 3. Sequence

 A sequence is an ordered collection of items, indexed by positive integers. It is

combination of mutable and non mutable data types. Three types of sequence data

type available in Python are Strings, Lists & Tuples.

 3.1 String: is an ordered sequence of letters/characters. They are enclosed in

single quotes („ ‟) or double („‟ “). The quotes are not part of string. They only

tell the computer where the string constant begins and ends. They can have

any character or sign, including space in them. These are immutable data

types. We will learn about immutable data types while dealing with third

aspect of object i.e. value of object.

 Example

 >>> a = 'Ram'

 A string with length 1 represents a character in Python.

 Conversion from one type to another

 If we are not sure, what is the data type of a value, Python interpreter can tell

us:

 >>> type („Good Morning‟)

 <type „str‟>

 >>> type („3.2‟)

 <type „str‟>

 It is possible to change one type of value/ variable to another type. It is

known as type conversion or type casting. The conversion can be done

explicitly (programmer specifies the conversions) or implicitly (Interpreter

automatically converts the data type).

 For explicit type casting, we use functions (constructors):

 int ()

 float ()

 str ()

 bool ()

 107

 Example

 >>> a= 12.34

 >>> b= int(a)

 >>> print b

 12

 Example

 >>>a=25

 >>>y=float(a)

 >>>print y

 25.0

 3.2 Lists: List is also a sequence of values of any type. Values in the list are called

elements / items. These are mutable and indexed/ordered. List is enclosed in

square brackets.

 Example

 l = [„spam‟, 20.5,5]

 3.3 Tuples: Tuples are a sequence of values of any type, and are indexed by

integers. They are immutable. Tuples are enclosed in (). We have already seen

a tuple, in Example 2 (4, 2).

 4. Sets

 Set is an unordered collection of values, of any type, with no duplicate entry. Sets

are immutable.

 Example

 s = set ([1,2,34])

 5. Mapping

 This data type is unordered and mutable. Dictionaries fall under Mappings.

 108

 5.1 Dictionaries: Can store any number of python objects. What they store is a

key – value pairs, which are accessed using key. Dictionary is enclosed in

curly brackets.

 Example

 d = {1:'a',2:'b',3:'c'}

C. Value of Object (variable) – to bind value to a variable, we use assignment

operator (=). This is also known as building of a variable.

 Example

 >>> pi = 31415

 Here, value on RHS of „=‟ is assigned to newly created „pi‟ variable.

Mutable and Immutable Variables

A mutable variable is one whose value may change in place, whereas in an immutable

variable change of value will not happen in place. Modifying an immutable variable

will rebuild the same variable.

Example

 >>>x=5

 Will create a value 5 referenced by x

 x 5

 >>>y=x

 This statement will make y refer to 5 of x

 x

 5

 y

 >>> x=x+y

As x being integer (immutable type) has been rebuild.

In the statement, expression on RHS will result into value 10 and when this is assigned

to LHS (x), x will rebuild to 10. So now

 109

 x 10 and

 y 5

After learning about what a variable can incorporate, let‟s move on with naming them.

Programmers choose the names of the variable that are meaningful. A variable name:

1. Can be of any size

2. Have allowed characters, which are a-z, A-Z, 0-9 and underscore (_)

3. should begin with an alphabet or underscore

4. should not be a keyword

It is a good practice to follow these identifier naming conventions:

1. Variable name should be meaningful and short

2. Generally, they are written in lower case letters

Keywords

They are the words used by Python interpreter to recognize the structure of program.

As these words have specific meaning for interpreter, they cannot be used for any other

purpose.

A partial list of keywords in Python 2.7 is

and del from not

while as elif global

or with assert else

if pass yield break

except import print class

exec in raise continue

finally is return def

for lambda try

 110

Remember:

 Variables are created when they are first assigned a value.

 Variables must be assigned a value before using them in expression,

 Variables refer to an object and are never declared ahead of time.

Operators and Operands

Operators are special symbols which represents computation. They are applied on

operand(s), which can be values or variables. Same operator can behave differently on

different data types. Operators when applied on operands form an expression.

Operators are categorized as Arithmetic, Relational, Logical and Assignment. Value and

variables when used with operator are known as operands.

Following is the partial list of operators:

Mathematical/Arithmetic Operators

Symbol Description Example 1 Example 2

+ Addition >>>55+45

100

>>> „Good‟ + „Morning‟

GoodMorning

- Subtraction >>>55-45

10

>>>30-80

-50

* Multiplication >>>55*45

2475

>>> „Good‟* 3

GoodGoodGood

/ Division >>>17/5

3

>>>17/5.0

3.4

>>> 17.0/5

3.4

>>>28/3

9

 111

% Remainder/

Modulo

>>>17%5

2

>>> 23%2

1

** Exponentiation >>>2**3

8

>>>16**.5

4.0

>>>2**8

256

// Integer

Division

>>>7.0//2

3.0

>>>3/ / 2

1

Note: Division is Implementation Dependent

Relational Operators

Symbol Description Example 1 Example 2

< Less than >>>7<10

True

>>> 7<5

False

>>> 7<10<15

True

>>>7<10 and 10<15

True

>>>„Hello‟< ‟Goodbye‟

False

>>>'Goodbye'< 'Hello'

True

> Greater than >>>7>5

True

>>>10<10

False

>>>„Hello‟> „Goodbye‟

True

>>>'Goodbye'> 'Hello'

False

<= less than equal to >>> 2<=5 >>>„Hello‟<= „Goodbye‟

 112

True

>>> 7<=4

False

False

>>>'Goodbye' <= 'Hello'

True

>= greater than equal

to

>>>10>=10

True

>>>10>=12

False

>>>‟Hello‟>= „Goodbye‟

True

>>>'Goodbye' >= 'Hello'

False

! =, <> not equal to >>>10!=11

True

>>>10!=10

False

>>>‟Hello‟!= „HELLO‟

True

>>> „Hello‟ != „Hello‟

False

== equal to >>>10==10

True

>>>10==11

False

>>>„Hello‟ == „Hello‟

True

>>>‟Hello‟ == „Good Bye‟

False

Note: Two values that are of different data type will never be equal to each other.

Logical Operators

Symbol Description

or If any one of the operand is true, then the condition becomes true.

and If both the operands are true, then the condition becomes true.

not Reverses the state of operand/condition.

 113

Assignment Operators

Assignment Operator combines the effect of arithmetic and assignment operator

Symbol Description Example Explanation

=
Assigned values from right side

operands to left variable

>>>x=12*

>>>y=‟greetings‟

(*we will use it as initial value of x for following examples)

+=
added and assign back the result

to left operand
>>>x+=2

The operand/

expression/

constant written on

RHS of operator is

will change the

value of x to 14

-=
subtracted and assign back the

result to left operand
x-=2 x will become 10

*=
multiplied and assign back the

result to left operand
x*=2 x will become 24

/=
divided and assign back the

result to left operand

x/=2

x will become 6

%=

taken modulus using two

operands and assign the result

to left operand

x%=2

x will become 0

**=

performed exponential (power)

calculation on operators and

assign value to the left operand

x**=2

x will become 144

//=

performed floor division on

operators and assign value to

the left operand

x / /= 2 x will become 6

 114

Note:

1. Same operator may perform a different function depending on the data type of

the value to which it is applied.

2. Division operator „/‟ behaves differently on integer and float values.

Expression and Statements

An expression is a combination of value(s) (i.e. constant), variable and operators. It

generates a single value, which by itself is an expression.

Example

The expression is solved by Computer and gets it value. In the above example, it will be

4, and we say the expression is evaluated.

Note: Expression values in turn can act as, Operands for Operators

We have seen many such expressions (with list of operator as example). 10+5 and 9+4+2

are two expressions which will result into value 15. Taking another example, 5.0/4+ (6-

3.0) is an expression in which values of different data types are used. These type of

expressions are also known as mixed type expressions.

When mixed type expressions are evaluated, Python promotes the result of lower data

type to higher data type, i.e. to float in the above example. This is known as implicit

type casting. So the result of above expression will be 4.25. Expression can also contain

another expression. As we have already seen in 9+4+2. When we have an expression

consisting of sub expression(s), how does Python decide the order of operations?

 Value/ Operands

 2 + 2

Operator

 115

It is done based on precedence of operator. Higher precedence operator is worked on

before lower precedence operator. Operator associativity determines the order of

evaluation when they are of same precedence, and are not grouped by parenthesis. An

operator may be Left-associative or Right –associative. In left associative, the operator

falling on left side will be evaluated first, while in right assosiative operator falling on

right will be evaluated first.

Note: In python „=‟ and „**‟ are Right Associative.

Precedence of operator - Listed from high precedence to low precedence.

Operator Description

** Exponentiation (raise to the power)

 + , - unary plus and minus

* , /, %, // Multiply, divide, modulo and floor division

+ , - Addition and subtraction

<, <=, >, >= Comparison operators

 ==, != Equality operators

% =, / =, // = , -

=, + =, * =

Assignment operators

not and or Logical operators

Using the above table, we know that 9+4 itself is an expression which evaluates to 13

and then 13+2 is evaluated to 15 by computer. Similarly, 5.0/4 + (6-3.0) will be

evaluated as 5.0/4+3.0 and then to 1.25 + 3.0, and then 4.25.

If we just type 10+, we will get an error message. This happens because 10+ is not a

complete expression. A complete expression will always have appropriate number of

value (Operands) with each operator. „+‟ needs two operands and we have given just

one.

 116

Note: Remember precedence of operators is applied to find out which sub expression

should be evaluated first.

Expression can be combined together to form large expressions but no matter how big

the expression is, it always evaluate into a single value.

A Python statement is a unit of code that the Python interpreter can execute.

Example of statement are:

 >>> x=5

 >>> area=x**2 #assignment statement

 >>>print x #print statement

 5

 >>>print area

 25

 >>> print x, area

 5 25

Note: To print multiple items in same line, separate them with comma.

Statements normally go to the end of a line.

X= “good morning” #comment

What we have seen as an example till now were simple statements, i.e. they do not

contain a nested block. In Python, there are compound/ group statements also. They

are sometimes called nested block. Statement belonging to a block are indented (usually

by 4 spaces). Leading whitespace at the beginning of logical line is used to determine

the indentation level of line. That means statement(s) which go together must have

same indentation level.

Example of Compound Statement

 117

Example

 if i<0:

 print “i is negative”

 else:

 print “i is non-negative”

Example

 if i>0:

 print “i is positive”

 else:

 print “i is equal to 0”

While writing Python statements, keep the following points in mind:

1. Write one python statement per line (Physical Line). Although it is possible to

write two statements in a line separated by semicolon.

2. Comment starts with „#‟ outside a quoted string and ends at the end of a line.

Comments are not part of statement. They may occur on the line by themselves or

at the end of the statement. They are not executed by interpreter.

3. For a long statement, spanning multiple physical lines, we can use „/‟ at the end of

physical line to logically join it with next physical line. Use of the „/‟ for joining

lines is not required with expression consists of (), [], { }

4. When entering statement(s) in interactive mode, an extra blank line is treated as

the end of the indented block.

5. Indentation is used to represent the embedded statement(s) in a compound/

Grouped statement. All statement(s) of a compound statement must be indented

by a consistent no. of spaces (usually 4)

6. White space in the beginning of line is part of indentation, elsewhere it is not

significant.

 118

Note:

 Wrong indentation can give rise to syntax error(s).

 Most Python editor will automatically indent the statements.

 A physical line is what you see as a line when you write a program and a logical

line is what Python sees as a single statement.

Input and Output

A Program needs to interact with end user to accomplish the desired task, this is done

using Input-Output facility. Input means the data entered by the user (end user) of the

program. While writing algorithm(s), getting input from user was represented by

Take/Input. In python, we have raw-input() and input () function available for Input.

raw_input()

Syntax of raw_input() is:

raw_input ([prompt])

 Optional

If prompt is present, it is displayed on the monitor after which user can provide the

data from keyboard. The function takes exactly what is typed from keyboard, convert it

to string and then return it to the variable on LHS of „=‟.

Example (in interactive mode)

 >>>x=raw_input („Enter your name: ‟)

Enter your name: ABC

x is a variable which will get the string (ABC), typed by user during the execution of

program. Typing of data for the raw_input function is terminated by „enter‟ key.

We can use raw_input() to enter numeric data also. In that case we typecast, i.e., change

the datatype using function, the string data accepted from user to appropriate Numeric

type.

 119

Example

 y=int(raw_input(“enter your roll no”))

enter your roll no. 5

will convert the accepted string i.e. 5 to integer before assigning it to „y‟.

input()

Syntax for input() is:

Input ([prompt])

 Optional

If prompt is present, it is displayed on monitor, after which the user can provide data

from keyboard. Input takes whatever is typed from the keyboard and evaluates it. As

the input provided is evaluated, it expects valid python expression. If the input

provided is not correct then either syntax error or exception is raised by python.

Example

 x= input („enter data:‟)

 Enter data: 2+1/2.0

 Will supply 2.5 to x

input (), is not so popular with python programmers as:

i) Exceptions are raised for non-well formed expressions.

ii) Sometimes well formed expression can wreak havoc.

Output is what program produces. In algorithm, it was represented by print. For output

in Python we use print. We have already seen its usage in previous examples. Let‟s

learn more about it.

Print Statement

Syntax:

print expression/constant/variable

 120

Print evaluates the expression before printing it on the monitor. Print statement outputs

an entire (complete) line and then goes to next line for subsequent output (s). To print

more than one item on a single line, comma (,) may be used.

Example

 >>> print “Hello”

 Hello

 >>> print 5.5

 5.5

 >>> print 4+6

 10

 Try this on the computer and evaluate the output generated

 >>>print 3.14159* 7**2

 >>>print “I”, “am” + “class XI”, “student”

 >>>print “I‟m”,

 >>>print “class XI student”

 >>>print “I‟m “, 16, “years old”

Comments

As the program gets bigger, it becomes difficult to read it, and to make out what it is

doing by just looking at it. So it is good to add notes to the code, while writing it. These

notes are known as comments. In Python, comment start with „#‟ symbol. Anything

written after # in a line is ignored by interpreter, i.e. it will not have any effect on the

program.

A comment can appear on a line by itself or they can also be at the end of line.

Example

 # Calculating area of a square

 >>> area = side **2

 121

 or

 >>>area= side**2 #calculating area of a square

For adding multi-line comment in a program, we can:

i) Place „#‟ in front of each line, or

ii) Use triple quoted string. They will only work as comment, when they are not

being used as docstring. (A docstring is the first thing in a class/function /module,

and will be taken up in details when we study functions).

The comment line “#calculating area of a rectangle” can also be written as following

using triple quote:

1. “”” Calculating area of a rectangle “””

2. “”” Calculating area

 of a rectangle “””

We should use as many useful comments as we can, to explain

*Any assumptions made

*important details or decisions made in the program. This will make program more

readable. We already know the importance of comments (documented in the program).

 122

EXERCISE

1. Create following Variables

 i) „mystring‟ to contain „hello‟

 ii) „myfloat‟ to contain „2.5‟

 iii) „myint‟ to contain „10‟

2. Write the value justification

 i) 2*(3+4)

 ii) 2*3+4

 iii) 2+3*4

3. What is the type of the following result:

 i) 1+2.0+3

4. Which of the following is the valid variable name:

 i) global

 ii) 99flag

 iii) sum

 iv) an$wer

5. True or False

 i) Character Data type values should be delimited by using the single quote.

 ii) None is one of the data type in python

 iii) The += operator is used to add the right hand side value to the left hand side

variable.

 iv) The data type double is not a valid python data type.

 v) Python does not have any keywords

 vi) The equal to condition is written by using the == operator

 123

6. Check all syntactically correct statements

 a) Which input statements are correct

 i) a = raw_input ()

 ii) a = raw_input (“enter a number”)

 iii) a = raw_imput (enter your name)

 b) Which print statements are correct?

 i) _print “9” + “9”

 ii) _print int(“nine”)

 iii) _print 9+9

 iv) print 9

 c) Which are correct arithmetical operations?

 i) a = 1*2

 ii) 2 = 1+1

 iii) 5 + 6 = y

 iv) Seven = 3 * 4

 d) Which are correct type conversions?

 i) int (7.0+0.1)

 ii) str (1.2 * 3.4)

 iii) float (“77”+“.0”)

 iv) str (9 / 0)

 e) Which operations result in 8?

 i) 65 // 8

 ii) 17 % 9

 iii) 2 * * 4

 iv) 64 * * 0.5

 124

 f) Which lines are commented?

 i) “””This is a comment”””

 ii) # This is a comment

 iii) // this is a comment

 iv) „ „ „ This is a comment‟ „ „

 g) Find the matching pairs of expressions and values.

 i) 1023 boolean

 ii) None int

 iii) [2, 4, 8, 16] tuple

 iv) True list

 v) 17.54 str

 vi) („Roger‟, 1952) NoneType

 vii) “my fat cat” float

7. MCQ

 i) The __________ data type allows only True/False values

 a) bool b) boolean c) Boolean d) None

 ii) If the value of a = 20 and b = 20, then a+=b will assign ________ to a

 a) 40 b) 30 c) 20 d) 10

 iii) The ____________ operator is used to find out if division of two number

yields any remainder

 a) / b) + c) % d) //

8. When will following statement in interpreter result into error:

 >>> B+4

9. How can we change the value of 6*1-2 to -6 from 4?

10. Is python case sensitive?

 125

11. What does „immutable‟ mean; which data type in python are immutable.

12. Name four of Python‟s Basic data types? Why are they called so?

13. What are relational operators? Explain with the help of examples.

14. What is an integer?

15. What is a variable? What names may variable have?

16. How are keywords different from variable names?

17. Why are data types important?

18. How can you convert a string to integer and when can it be used?

19. How can text be read from the keyboard?

20. How are comments written in a program?

LAB EXERCISE

1. Record what happens when following statements are executed:

 a) print n=7

 b) print 5+7

 c) print 5.2, “this”, 4-2, “that”, 5/2.0

2. Use IDLE to calculate:

 a) 6+4*10

 b) (6+4)*10

3. Type following mathematical expression and record your observations:

 a) 2**500

 b) 1/0

4. What will be the output of the following code:

 a = 3 - 4 + 10

 b = 5 * 6

 126

 c = 7.0/8.0

 print "These are the values:", a, b, c

5. Write a code to show the use of all 6 math function.

6. Write a code that prints your full name and your Birthday as separate strings.

7. Write a program that asks two people for their names; stores the names in

variables called name1 and name2; says hello to both of them.

8. Calculate root of the following equation:

 a) 34x2 + 68x - 510

 b) 2x 2 - x -3 = 0

 127

Chapter 2

Functions

After studying this lesson, students will be able to:

 Understand and apply the concept of module programming

 Write functions

 Identify and invoke appropriate predefined functions

 Create Python functions and work in script mode.

 Understand arguments and parameters of functions

 Work with different types of parameters and arguments

 Develop small scripts involving simple calculations

Introduction

Remember, we earlier talked about working in script mode in chapter-1 of this unit to

retain our work for future usage. For working in script mode, we need to write a function

in the Python and save it in the file having .py extension.

A function is a named sequence of statement(s) that performs a computation. It contains

line of code(s) that are executed sequentially from top to bottom by Python interpreter.

They are the most important building blocks for any software in Python.

Functions can be categorized as belonging to

i. Modules

ii. Built in

iii. User Defined

Module

A module is a file containing Python definitions (i.e. functions) and statements.

Standard library of Python is extended as module(s) to a programmer. Definitions from

the module can be used within the code of a program. To use these modules in the

 128

program, a programmer needs to import the module. Once you import a module, you

can reference (use), any of its functions or variables in your code. There are many ways

to import a module in your program, the one‟s which you should know are:

i. import

ii. from

Import

It is simplest and most common way to use modules in our code. Its syntax is:

import modulename1 [,modulename2, ---------]

Example

 >>> import math

On execution of this statement, Python will

(i) search for the file „math.py‟.

(ii) Create space where modules definition & variable will be created,

(iii) then execute the statements in the module.

Now the definitions of the module will become part of the code in which the module

was imported.

To use/ access/invoke a function, you will specify the module name and name of the

function- separated by dot (.). This format is also known as dot notation.

Example

 >>> value= math.sqrt (25) # dot notation

The example uses sqrt() function of module math to calculate square root of the value

provided in parenthesis, and returns the result which is inserted in the value. The

expression (variable) written in parenthesis is known as argument (actual argument). It

is common to say that the function takes arguments and return the result.

This statement invokes the sqrt () function. We have already seen many function

invoke statement(s), such as

 129

 >>> type ()

 >>> int (), etc.

From Statement

It is used to get a specific function in the code instead of the complete module file. If we

know beforehand which function(s), we will be needing, then we may use from. For

modules having large no. of functions, it is recommended to use from instead of import.

Its syntax is

 >>> from modulename import functionname [, functionname…..]

Example

 >>> from math import sqrt

 value = sqrt (25)

Here, we are importing sqrt function only, instead of the complete math module. Now

sqrt() function will be directly referenced to. These two statements are equivalent to

previous example.

 from modulename import *

 will import everything from the file.

Note: You normally put all import statement(s) at the beginning of the Python file but

technically they can be anywhere in program.

Lets explore some more functions available in math module:

Name of the function Description Example

ceil(x)

It returns the smallest

integer not less than x,

where x is a numeric

expression.

math.ceil(-45.17)

-45.0

math.ceil(100.12)

101.0

math.ceil(100.72)

101.0

 130

floor(x)

It returns the largest

integer not greater than x,

where x is a numeric

expression.

math.floor(-45.17)

-46.0

math.floor(100.12)

100.0

math.floor(100.72)

100.0

fabs(x) It returns the absolute

value of x, where x is a

numeric value.

math.fabs(-45.17)

45.17

math.fabs(100.12)

100.12

math.fabs(100.72)

100.72

exp(x) It returns exponential of x:

ex, where x is a numeric

expression.

math.exp(-45.17)

2.41500621326e-20

math.exp(100.12)

3.03084361407e+43

math.exp(100.72)

5.52255713025e+43

log(x)

It returns natural

logarithm of x, for x > 0,

where x is a numeric

expression.

math.log(100.12)

4.60636946656

math.log(100.72)

4.61234438974

log10(x)

It returns base-10

logarithm of x for x > 0,

where x is a numeric

expression.

math.log10(100.12)

2.00052084094

math.log10(100.72)

2.0031157171

pow(x, y)

It returns the value of xy,

where x and y are numeric

expressions.

math.pow(100, 2)

 10000.0

math.pow(100, -2)

 131

 0.0001

math.pow(2, 4)

16.0

math.pow(3, 0)

1.0

sqrt (x) It returns the square root

of x for x > 0, where x is a

numeric expression.

math.sqrt(100)

10.0

math.sqrt(7)

2.64575131106

cos (x) It returns the cosine of x in

radians, where x is a

numeric expression

math.cos(3)

-0.9899924966

math.cos(-3)

 -0.9899924966

math.cos(0)

1.0

math.cos(math.pi)

-1.0

sin (x) It returns the sine of x, in

radians, where x must be a

numeric value.

math.sin(3)

0.14112000806

math.sin(-3)

-0.14112000806

math.sin(0)

 0.0

tan (x) It returns the tangent of x

in radians, where x must be

a numeric value.

math.tan(3)

-0.142546543074

math.tan(-3)

 0.142546543074

math.tan(0)

0.0

 132

degrees (x) It converts angle x from

radians to degrees, where x

must be a numeric value.

math.degrees(3)

171.887338539

math.degrees(-3)

-171.887338539

math.degrees(0)

0.0

radians(x)

It converts angle x from

degrees to radians, where x

must be a numeric value.

math.radians(3)

0.0523598775598

math.radians(-3)

-0.0523598775598

math.radians(0)

0.0

Some functions from random module are:

Name of the function Description Example

random () It returns a random float x,

such that

0 ≤ x<1

>>>random.random ()

0.281954791393

>>>random.random ()

0.309090465205

randint (a, b) It returns a int x between a

& b such that

a ≤ x ≤ b

>>> random.randint (1,10)

5

>>> random.randint (-

2,20)

-1

uniform (a,b) It returns a floating point

number x, such that

a <= x < b

>>>random.uniform (5,

10)

5.52615217015

 133

randrange

([start,] stop [,step])

It returns a random item

from the given range

>>>random.randrange(100

,1000,3)

150

Some of the other modules, which you can explore, are: string, time, date

Built in Function

Built in functions are the function(s) that are built into Python and can be accessed by a

programmer. These are always available and for using them, we don‟t have to import

any module (file). Python has a small set of built-in functions as most of the functions

have been partitioned to modules. This was done to keep core language precise.

Name Description Example

abs (x) It returns distance between

x and zero, where x is a

numeric expression.

>>>abs(-45)

 45

>>>abs(119L)

119

max(x, y, z,)

It returns the largest of its

arguments: where x, y and

z are numeric

variable/expression.

>>>max(80, 100, 1000)

1000

>>>max(-80, -20, -10)

-10

min(x, y, z,)

It returns the smallest of its

arguments; where x, y, and

z are numeric

variable/expression.

>>> min(80, 100, 1000)

 80

>>> min(-80, -20, -10)

 -80

cmp(x, y)

It returns the sign of the

difference of two numbers:

-1 if x < y, 0 if x == y, or 1

if x > y, where x and y are

numeric variable/expression.

>>>cmp(80, 100)

 -1

>>>cmp(180, 100)

 1

 134

divmod (x,y) Returns both quotient and

remainder by division

through a tuple, when x is

divided by y; where x & y

are variable/expression.

>>> divmod (14,5)

(2,4)

>>> divmod (2.7, 1.5)

(1.0, 1.20000)

len (s)

Return the length (the

number of items) of an

object. The argument may

be a sequence (string, tuple

or list) or a mapping

(dictionary).

>>> a= [1,2,3]

>>>len (a)

3

>>> b= „Hello‟

>>> len (b)

5

range (start, stop[, step]) This is a versatile function

to create lists containing

arithmetic progressions. It

is most often used in for

loops. The arguments must

be plain integers. If the step

argument is omitted, it

defaults to 1. If the start

argument is omitted, it

defaults to 0. The full form

returns a list of plain

integers [start, start + step,

start + 2 * step, ...]. If step is

positive, the last element is

the largest start + i * step

less than stop; if step is

negative, the last element

is the smallest start + i *

step greater than stop. step

must not be zero (or else

Value Error is raised).

>>> range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> range(1, 11)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8,

-9]

>>> range(0)

[]

>>> range(1, 0)

[]

http://docs.python.org/2/library/exceptions.html#exceptions.ValueError

 135

round(x [, n])

It returns float x rounded

to n digits from the

decimal point, where x and

n are numeric expressions.

If n is not provided then x

is rounded to 0 decimal

digits.

>>>round(80.23456, 2)

80.23

>>>round(-100.000056, 3)

-100.0

>>> round (80.23456)

80.0

Apart from these functions, you have already seen the use of the following functions:

bool (), chr (), float (), int (), long (), str (), type (), id (), tuple ()

Composition

Composition is an art of combining simple function(s) to build more complicated ones,

i.e., result of one function is used as the input to another.

Example

Suppose we have two functions fn1 & fn2, such that

 a= fn2 (x)

 b= fn1 (a)

then call to the two functions can be combined as

 b= fn1 (fn2 (x))

Similarly, we can have statement composed of more than two functions. In that result of

one function is passed as argument to next and result of the last one is the final result.

Example

 math.exp (math.log (a+1))

Example

 degrees=270

 math.sin (degrees/360.0 *2*math.pi)

 136

Composition is used to package the code into modules, which may be used in many

different unrelated places and situations. Also it is easy to maintain the code.

Note: Python also allow us to take elements of program and compose them.

User Defined Functions

So far we have only seen the functions which come with Python either in some file

(module) or in interpreter itself (built in), but it is also possible for programmer to write

their own function(s). These functions can then be combined to form a module which

can then be used in other programs by importing them.

To define a function keyword def is used. After the keyword comes an identifier i.e.

name of the function, followed by parenthesized list of parameters and the colon which

ends up the line. Next follows the block of statement(s) that are the part of function.

Before learning about Function header & its body, lets explore block of statements,

which become part of function body.

Block of statements

A block is one or more lines of code, grouped together so that they are treated as one

big sequence of statements while executing. In Python, statements in a block are written

with indentation. Usually, a block begins when a line is indented (by four spaces) and

all the statements of the block should be at same indent level. A block within block

begins when its first statement is indented by four space, i.e., in total eight spaces. To

end a block, write the next statement with the same indentation before the block started.

Now, lets move back to function- the Syntax of function is:

def NAME ([PARAMETER1, PARAMETER2, …..]): #Square brackets include

statement(s) #optional part of statement

Let‟s write a function to greet the world:

def sayHello (): # Line No. 1

 print “Hello World!” # Line No.2

 137

The first line of function definition, i.e., Line No. 1 is called header and the rest, i.e. Line

No. 2 in our example, is known as body. Name of the function is sayHello, and empty

parenthesis indicates no parameters. Body of the function contains one Python

statement, which displays a string constant on screen. So the general structure of any

function is

Function Header

It begins with the keyword def and ends with colon and contains the function

identification details. As it ends with colon, we can say that what follows next is, block

of statements.

Function Body

Consisting of sequence of indented (4 space) Python statement(s), to perform a task.

Defining a function will create a variable with same name, but does not generate any

result. The body of the function gets executed only when the function is

called/invoked. Function call contains the name of the function (being executed)

followed by the list of values (i.e. arguments) in parenthesis. These arguments are

assigned to parameters from LHS.

 >>> sayHello () # Call/invoke statement of this function

Will produce following on screen

Hello World!

Apart from this, you have already seen many examples of invoking of functions in

Modules & Built-in Functions.

Let‟s know more about def. It is an executable statement. At the time of execution a

function is created and a name (name of the function) is assigned to it. Because it is a

statement, def can appear anywhere in the program. It can even be nested.

Example

 if condition:

 def fun (): # function definition one way

 .

 138

 .

 .

 else:

 def fun (): # function definition other way

 .

 .

 .

 fun () # calls the function selected.

This way we can provide an alternative definition to the function. This is possible

because def is evaluated when it is reached and executed.

 def fun (a):

Let’s explore Function body

The first statement of the function body can optionally be a string constant, docstring,

enclosed in triple quotes. It contains the essential information that someone might need

about the function, such as

 What function does (without How it does) i.e. summary of its purpose

 Type of parameters it takes

 Effect of parameter on behavior of functions, etc.

DocString is an important tool to document the program better, and makes it easier to

understand. We can actually access docstring of a function using __ doc__ (function

name). Also, when you used help(), then Python will provide you with docstring of that

function on screen. So it is strongly recommended to use docstring … when you write

functions.

Example

def area (radius):

 “”” calculates area of a circle. docstring begins

 require an integer or float value to calculate area.

 returns the calculated value to calling function “”” docstring ends

 139

 a=radius**2

 return a

Function is pretty simple and its objective is pretty much clear from the docString

added to the body.

The last statement of the function, i.e. return statement returns a value from the

function. Return statement may contain a constant/literal, variable, expression or

function, if return is used without anything, it will return None. In our example value

of a variable area is returned.

Instead of writing two statements in the function, i.e.

 a = radius **2

 return a

 We could have written

 return radius **2

Here the function will first calculate and then return the value of the expression.

It is possible that a function might not return a value, as sayHello() was not returning a

value. sayHello() prints a message on screen and does not contain a return statement,

such functions are called void functions.

Void functions might display something on the screen or have some other effect, but

they don‟t have a return value. If you try to assign the result of such function to a

variable, you get a special value called None.

Example

 def check (num):

 if (num%2==0):

 print “True”

 else:

 print “False”

>>> result = check (29)

 140

False

>>> print result

None

DocString Conventions:

 The first line of a docstring starts with capital letter and ends with a period (.)

 Second line is left blank (it visually separates summary from other description).

 Other details of docstring start from 3rd line.

Parameters and Arguments

Parameters are the value(s) provided in the parenthesis when we write function header.

These are the values required by function to work. Let‟s understand this with the help

of function written for calculating area of circle.

radius is a parameter to function area.

If there is more than one value required by the function to work on, then, all of them

will be listed in parameter list separated by comma.

Arguments are the value(s) provided in function call/invoke statement. List of

arguments should be supplied in same way as parameters are listed. Bounding of

parameters to arguments is done 1:1, and so there should be same number and type of

arguments as mentioned in parameter list.

Example

 of argument in function call

 >>> area (5)

5 is an argument. An argument can be constant, variable, or expression.

Scope of Variables

Scope of variable refers to the part of the program, where it is visible, i.e., area where

you can refer (use) it. We can say that scope holds the current set of variables and their

values. We will study two types of scope of variables- global scope or local scope.

 141

Global Scope

A variable, with global scope can be used anywhere in the program. It can be created by

defining a variable outside the scope of any function/block.

Example

 x=50

 def test ():

 print “Inside test x is” , x

 print “Value of x is” , x

 on execution the above code will produce

 Inside test x is 50

 Value of x is 50

Any modification to global is permanent and visible to all the functions written in the

file.

Example

 x=50

 def test ():

 x+= 10

 print “Inside test x is”, x

 print “Value of x is”, x

 will produce

 Inside test x is 60

 Value of x is 60

Local Scope

A variable with local scope can be accessed only within the function/block that it is

created in. When a variable is created inside the function/block, the variable becomes

local to it. A local variable only exists while the function is executing.

 142

Example

 X=50

 def test ():

 y = 20

 print „Value of x is ‟, X, „; y is ‟ , y

 print „Value of x is ‟, X, „ y is „ , y

 On executing the code we will get

 Value of x is 50; y is 20

The next print statement will produce an error, because the variable y is not accessible

outside the function body.

A global variable remains global, till it is not recreated inside the function/block.

Example

 x=50

 def test ():

 x=5

 y=2

 print „Value of x & y inside the function are „ , x , y

 print „Value of x outside the function is „ , x

This code will produce following output:

Value of x & y inside the function are 5 2

Value of x outside the function is 50

If we want to refer to global variable inside the function then keyword global will be

prefixed with it.

Example

 x=50

 143

 def test ():

 global x

 x =2

 y = 2

 print „Value of x & y inside the function are „ , x , y

 print „Value of x outside function is „ , x

This code will produce following output:

Value of x & y inside the function are 2 2

Value of x outside the function is 2

More on defining Functions

It is possible to provide parameters of function with some default value. In case the user

does not want to provide values (argument) for all of them at the time of calling, we can

provide default argument values.

Example

 def greet (message,

times=1):

 print message * times

 >>> greet („Welcome‟) # calling function with one argument value

 >>> greet („Hello‟, 2) # calling function with both the argument values.

Will result in:

Welcome

HelloHello

The function greet () is used to print a message (string) given number of times. If the

second argument value, is not specified, then parameter times work with the default

value provided to it. In the first call to greet (), only one argument value is provided,

which is passed on to the first parameter from LHS and the string is printed only once

Default value to parameter

 144

as the variable times take default value 1. In the second call to greet (), we supply both

the argument values a string and 2, saying that we want to print the message twice. So

now, parameter times get the value 2 instead of default 1 and the message is printed

twice.

As we have seen functions with default argument values, they can be called in with

fewer arguments, then it is designed to allow.

Note:

 The default value assigned to the parameter should be a constant only.

 Only those parameters which are at the end of the list can be given default value.

You cannot have a parameter on left with default argument value, without

assigning default values to parameters lying on its right side.

 The default value is evaluated only once, at the point of function definition.

If there is a function with many parameters and we want to specify only some of them

in function call, then value for such parameters can be provided by using their name,

instead of the position (order)- this is called keyword arguments.

 def fun(a, b=1, c=5):

 print „a is ‟, a, „b is ‟, b, „c is ‟, c

The function fun can be invoked in many ways

1. >>>fun (3)

 a is 3 b is 1 c is 5

2. >>>fun (3, 7, 10)

 a is 3 b is 7 c is 10

3. >>>fun (25, c = 20)

 a is 25 b is 1 c is 20

4. >>>fun (c = 20, a = 10)

 a is 10 b is 1 c is 20

 145

1st and 2nd call to function is based on default argument value, and the 3rd and 4th call

are using keyword arguments.

In the first usage, value 3 is passed on to a, b & c works with default values. In second

call, all the three parameters get values in function call statement. In third usage,

variable a gets the first value 25, due to the position of the argument. And parameter c

gets the value 20 due to naming, i.e., keyword arguments. The parameter b uses the

default value.

In the fourth usage, we use keyword argument for all specified value, as we have

specified the value for c before a; although a is defined before c in parameter list.

Note: The function named fun () have three parameters out of which first one is

without default value and other two have default values. So any call to the function

should have at least one argument.

While using keyword arguments, following should be kept in mind:

 An argument list must have any positional arguments followed by any

keywords arguments.

 Keywords in argument list should be from the list of parameters name only.

 No parameter should receive value more than once.

 Parameter names corresponding to positional arguments cannot be used as

keywords in the same calls.

Following calls to fun () would be invalid

 fun () # required argument missing

 fun (5, a=5, 6) # non keyword argument (6) following keyword argument

 fun (6, a=5) # duplicate value for argument a

 fun (d=5) # unknown parameter

 146

Advantages of writing functions with keyword arguments are:

 Using the function is easier as we do not need to remember about the order of the

arguments.

 We can specify values of only those parameters to which we want to, as - other

parameters have default argument values.

In python, as function definition happens at run time, so functions can be bound to

other names. This allow us to

(i) Pass function as parameter

(ii) Use/invoke function by two names

Example

 def x ():

 print 20

 >>> y=x

 >>>x ()

 >>>y ()

 20

Example

 def x ():

 print 20

 def test (fn):

 for I in range (4):

 fn()

 >>> test (x)

 20

 20

 147

 20

 20

Flow of Execution of program containing Function call

Execution always begins at the first statement of the program. Statements are executed

one at a time, in order from top to bottom. Function definition does not alter the flow of

execution of program, as the statement inside the function is not executed until the

function is called.

On a function call, instead of going to the next statement of program, the control jumps

to the body of the function; executes all statements of the function in the order from top

to bottom and then comes back to the point where it left off. This remains simple, till a

function does not call another function. Simillarly, in the middle of a function, program

might have to execute statements of the other function and so on.

Don‟t worry; Python is good at keeping track of execution, so each time a function

completes, the program picks up from the place it left last, until it gets to end of

program, where it terminates.

Note:

 Python does not allow you to call a function before the function is declared.

 When you write the name of a function without parenthesis, it is interpreted as

the reference, when you write the function name with parenthesis, the

interpreter invoke the function (object).

 148

EXERCISE

1. The place where a variable can be used is called its

 a) area b) block

 c) function d) Scope

2. True or False

i. Every variable has a scope associated with it.

ii. ! (p or q) is same as !p or !q

3. What will be the output of the following? Explain:

 def f1 ():

 n = 44

 def f2():

 n=77

 print “value of n”, n

 print “value of n”, n

4. For each of the following functions. Specify the type of its output. You can assume

each function is called with an appropriate argument, as specified by its

docstrings.

 a) def a (x):

 „‟‟

 x: int or float.

 „‟‟

 return x+1

 b) def b (x):

 „‟‟

 x: int or float.

 „‟‟

 149

 return x+1.0

 c) def c (x, y):

 „‟‟

 x: int or float.

 y: int or float.

 „‟‟

 return x+y

 d) def e (x, y,z):

 „‟‟

 x: can be of any type.

 y: can be of any type.

 z: can be of any type

 „‟‟

 return x >= y and x <= z

 e) def d (x,y):

 „‟‟

 x: can be of any type.

 y: can be of any type.

 „‟‟

 return x > y

5. Below is a transcript of a session with the Python shell. Assume the functions in

previous question (Q 4) have been defined. Provide the type and value of the

expressions being evaluated.

i) a (6) ii) a (-5. 3)

iii) a (a(a(6))) iv) c (a(1), b(1))

v) d („apple‟, 11.1)

 150

6. Define a function get Bigger Number (x,y) to take in two numbers and return the

bigger of them.

7. What is the difference between methods, functions & user defined functions.

8. Open help for math module

i. How many functions are there in the module?

ii. Describe how square root of a value may be calculated without using a math

module

iii. What are the two data constants available in math module.

9. Generate a random number n such that

i. 0 ≤ n < 6

ii. 2 ≤ n < 37 and n is even

LAB EXERCISE

1. Write a program to ask for following as input

 Enter your first name: Rahul

 Enter your last name: Kumar

 Enter your date of birth

 Month? March

 Day? 10

 Year? 1992

 And display following on screen

 Rahul Kumar was born on March 10, 1992.

2. Consider the following function definition:

 def intDiv (x, a):

 “””

 x: a non-negative integer argument

 151

 a: a positive integer argument

 returns: integer, the integer division of x divided by a.

 “””

 while x>=a:

 count +=1

 x = x-a

 return count

 when we call

 print intDiv (5, 3)

 We get an error message. Modify the code so that error does not occur.

3. Write a script that asks a user for a number. Then adds 3 to that number, and then

multiplies the result by 2, subtracts twice the original number, then prints the

result.

4. In analogy to the example, write a script that asks users for the temperature in F

and prints the temperature in C. (Conversion: Celsius = (F - 32) * 5/9).

5. Write a Python function, odd, that takes in one number and returns True when the

number is odd and False otherwise. You should use the % (mod) operator, not if.

6. Define a function „SubtractNumber(x,y)‟ which takes in two numbers and returns

the difference of the two.

7. Write a Python function, fourthPower(), that takes in one number and returns that

value raised to the fourth power.

8. Write a program that takes a number and calculate and display the log, square, sin

and cosine of it.

9. a) Write a program, to display a tic-tac-toe board on screen, using print

statement.

 b) Write a program to display a tic-tac-toe board on screen using variables, so

that you do not need to write many print statements?

 152

10. Write a function roll_D (), that takes 2 parameters- the no. of sides (with default

value 6) of a dice, and the number of dice to roll-and generate random roll values

for each dice rolled. Print out each roll and then return one string “That‟s all”.

 Example roll_D (6, 3)

 4

 1

 6

 That‟s all

 153

Chapter 3

Conditional and Looping Construct

After studying this lesson, students will be able to:

 Understand the concept and usage of selection and iteration statements.

 Know various types of loops available in Python.

 Analyze the problem, decide and evaluate conditions.

 Will be able to analyze and decide for an appropriate combination of constructs.

 Write code that employ decision structures, including those that employ sequences of

decision and nested decisions.

 Design simple applications having iterative nature.

Control Flow Structure

Such as depending on time of the day you wish Good Morning or Good Night to

people. Similarly while writing program(s), we almost always need the ability to check

the condition and then change the course of program, the simplest way to do so is using

if statement

if x > 0:

 print „x is positive‟

Here, the Boolean expression written after if is known as condition, and if Condition is

True, then the statement written after, is executed. Let‟s see the syntax of if statement

Option 1 Option 2

if condition:

 STATEMENTs- BLOCK 1

[else:

if condition-1:

 STATEMENTs- BLOCK 1

[elif condition-2:

 154

Statement with in [] bracket are optional.

Let us understand the syntax, in Option 1- if the condition is True (i.e. satisfied), the

statement(s) written after if (i.e. STATEMENT-BLOCK 1) is executed, otherwise

statement(s) written after else (i.e. STATEMENT-BLOCK 2) is executed. Remember else

clause is optional. If provided, in any situation, one of the two blocks get executed not

both.

We can say that, „if‟ with „else‟ provides an alternative execution, as there are two

possibilities and the condition determines which one gets executed. If there are more

than two possibilities, such as based on percentage print grade of the student.

 Percentage Range Grade

 > 85 A

 > 70 to <=85 B

 > 60 to <=70 C

 > 45 to <=60 D

Then we need to chain the if statement(s). This is done using the 2nd option of if

statement. Here, we have used ‘elif’ clause instead of „else‟. elif combines if else- if else

statements to one if elif …else. You may consider elif to be an abbreviation of else if.

There is no limit to the number of „elif‟ clause used, but if there is an „else‟ clause also it

has to be at the end.

Example for combining more than one condition:

 if perc > 85:

 print „A‟

 elif perc >70 and perc <=85: #alternative to this is if 70 <perc<85

 STATEMENTs- BLOCK 2] STATEMENTs- BLOCK 2

else:

 STATEMENTs- BLOCK N]

 155

 print „B‟

 elif perc > 60 and perc <=70: #if 60 <perc <=70

 print „C‟

 elif perc >45 and perc <=60:

 print „D‟

In the chained conditions, each condition is checked in order if previous is False then

next is checked, and so on. If one of them is True then corresponding block of

statement(s) are executed and the statement ends i.e., control moves out of „if

statement‟. If none is true, then else block gets executed if provided. If more than one

condition is true, then only the first true option block gets executed.

If you look at the conditional construct, you will find that it has same structure as

function definition, terminated by a colon. Statements like this are called compound

statements. In any compound statement, there is no limit on how many statements can

appear inside the body, but there has to be at least one. Indentation level is used to tell

Python which statement (s) belongs to which block.

There is another way of writing a simple if else statement in Python. The complete

simple if, can be written as:

Variable= variable 1 if condition else variable 2.

In above statement, on evaluation, if condition results into True then variable 1 is

assigned to Variable otherwise variable 2 is assigned to Variable.

Example

 >>> a =5

 >>> b=10

 >>> x = True

 >>> y = False

 >>>result = x if a <b else y

 Will assign True to result

 156

Sometimes, it is useful to have a body with no statements, in that case you can use pass

statement. Pass statement does nothing.

Example

 if condition:

 pass

It is possible to have a condition within another condition. Such conditions are known

as Nested Condition.

Example

 if x==y:

 print x, „ and ‟, y, „ are equal‟

 else:

 if x<y:

 print x, „ is less than ‟, y Nested if

 else:

 print x, „ is greater than ‟, y

Here a complete if… else statement belongs to else part of outer if statement.

Note: The condition can be any Python expression (i.e. something that returns a

value). Following values, when returned through expression are considered to be

False:

None, Number Zero, A string of length zero, an empty collection

Looping Constructs

We know that computers are often used to automate the repetitive tasks. One of the

advantages of using computer to repeatedly perform an identical task is that it is done

without making any mistake. Loops are used to repeatedly execute the same code in a

program. Python provides two types of looping constructs:

 157

1) While statement

2) For statement

While Statements

Its syntax is:

while condition: # condition is Boolean expression returning True or False

 STATEMENTs BLOCK 1

[else: # optional part of while

 STATEMENTs BLOCK 2]

We can see that while looks like if statement. The statement bExampleins with keyword

while followed by boolean condition followed by colon (:). What follows next is block

of statement(s).

The statement(s) in BLOCK 1 keeps on executing till condition in while remains True;

once the condition becomes False and if the else clause is written in while, then else will

get executed. While loop may not execute even once, if the condition evaluates to false,

initially, as the condition is tested before entering the loop.

Example

 a loop to print nos. from 1 to 10

 i=1

 while (i <=10):

 print i,

 i = i+1 #could be written as i+=1

You can almost read the statement like English sentence. The first statement initialized

the variable (controlling loop) and then while evaluates the condition, which is True so

the block of statements written next will be executed.

Last statement in the block ensures that, with every execution of loop, loop control

variable moves near to the termination point. If this does not happen then the loop will

keep on executing infinitely.

 158

As soon as i becomes 11, condition in while will evaluate to False and this will

terminate the loop. Result produced by the loop will be:

1 2 3 4 5 6 7 8 9 10

As there is „,‟ after print i all the values will be printed in the same line

Example

 i=1

 while (i <=10):

 print i,

 i+ =1

 else:

 print # will bring print control to next printing line

 print “coming out of loop”

 Will result into

 1 2 3 4 5 6 7 8 9 10

 coming out of loop

Nested loops

Block of statement belonging to while can have another while statement, i.e. a while can

contain another while.

Example

 i=1

 while i<=3:

 j=1

 while j<=i:

 print j, # inner while loop

 j=j+1

 159

 print

 i=i+1

 will result into

 1

 1 2

 1 2 3

For Statement

Its Syntax is

for TARGET- LIST in EXPRESSION-LIST:

 STATEMENT BLOCK 1

[else: # optional block

 STATEMENT BLOCK 2]

Example

 # loop to print value 1 to 10

 for i in range (1, 11, 1):

 print i,

 Execution of the loop will result into

 1 2 3 4 5 6 7 8 9 10

Let‟s understand the flow of execution of the statement:

The statement introduces a function range (), its syntax is

range(start, stop, [step]) # step is optional

range() generates a list of values starting from start till stop-1. Step if given is added to

the value generated, to get next value in the list. You have already learnt about it in built-in

functions.

Let‟s move back to the for statement: i is the variable, which keeps on getting a value

generated by range () function, and the block of statement (s) are worked on for each

 160

value of i. As the last value is assigned to i, the loop block is executed last time and

control is returned to next statement. If else is specified in for statement, then next

statement executed will be else. Now we can easily understand the result of for

statement. range() generates a list from 1, 2, 3, 4, 5, …., 10 as the step mentioned is 1, i

keeps on getting a value at a time, which is then printed on screen.

Apart from range() i (loop control variable) can take values from string, list, dictionary, etc.

Example

 for letter in „Python‟:

 print „Current Letter‟, letter

 else:

 print „Coming out of loop‟

 On execution, will produce the following:

 Current Letter: P

 Current Letter: y

 Current Letter: t

 Current Letter: h

 Current Letter: o

 Current Letter: n

 Coming out of loop

A for statement can contain another for statement or while statement. We know such

statement form nested loop.

Example

 # to print table starting from 1 to specified no.

 n=2

 for i in range (1, n+1):

 j=1

 161

 print “Table to “, i, “is as follows”

 while j <6:

 print i, “*”, j “=”, i*j

 j = j+1

 print

 Will produce the result

 Table to 1 is as follows

 1 * 1 = 1

 1 * 2 = 2

 1 * 3 = 3

 1 * 4 = 4

 1 * 5 = 5

 Table to 2 is as follows

 2 * 1 = 2

 2 * 2 = 4

 2 * 3 = 6

 2 * 4 = 8

 2 * 5 = 10

Nesting a for loop within while loop can be seen in following example :

Example

 i = 6

 while i >= 0:

 for j in range (1, i):

 print j,

 print

 162

 i=i-1

 will result into

 1 2 3 4 5

 1 2 3 4

 1 2 3

 1 2

 1

By now, you must have realized that, Syntax of for statement is also same as if

statement or while statement.

Let‟s look at the equivalence of the two looping construct:

While For

 i= initial value for i in range (initial value, limit, step):

 while (i <limit): statement(s)

 statement(s)

 i+=step

Break Statement

Break can be used to unconditionally jump out of the loop. It terminates the execution

of the loop. Break can be used in while loop and for loop. Break is mostly required,

when because of some external condition, we need to exit from a loop.

Example

 for letter in „Python‟:

 if letter = = „h‟:

 break

 print letter

 will result into

 163

 P

 y

 t

Continue Statement

This statement is used to tell Python to skip the rest of the statements of the current

loop block and to move to next iteration, of the loop. Continue will return back the

control to the bExampleinning of the loop. This can also be used with both while and

for statement.

Example

 for letter in „Python‟:

 if letter == „h‟:

 continue

 print letter

 will result into

 P

 y

 t

 o

 n

 164

EXERCISE

1) Mark True/False:

(i) While statements gets executed at least once

(ii) The break statement allows us to come out of a loop

(iii) The continue and break statement have same effect

(iv) We can nest loops

(v) We cannot write a loop that can execute forever.

(vi) Checking condition in python can be done by using the if-else statement

2) What is the difference between the following two statements:

(i) if n>2:

 if n <6 :

 print „OK‟

 else:

 print „NG‟

(ii) if n>2:

 if n<6:

 print „OK‟

 else:

 print „NG‟

3) Mark the correct Option(s)

(i) If there are two or more options, then we can use

a) Simple if statement b) If elif statement

c) While d) None of these

 165

(ii) A loop that never ends is called a:

a) Continue loop b) Infinite loop

c) Circle loop d) None of these

4) Construct a logical expression to represent each of the following conditions:

(i) Score is greater than or equal to 80 but less than 90

(ii) Answer is either „N‟ or „n‟

(iii) N is between 0 and 7 but not equal to 3

5) Which of the following loop will continue infinitely:

(i) a) while O: b) while 1:

c) while :1: d) while False:

(ii) We can go back to the start of the loop by using __________

 a) loop b) back

 c) start d) continue

6) What is the difference between selection and repetition?

7) Explain use of if statement with example.

LAB EXERCISE

1) answer = raw_input("Do you like Python? ")

 if answer == "yes":

 print "That is great!"

 else:

 print "That is disappointing!"

 166

 Modify the program so that it answers "That is great!" if the answer was "yes",

"That is disappointing" if the answer was "no" and "That is not an answer to my

question." otherwise.

2) Write a function to find whether given number is odd or even.

3) Print all multiples of 13 that are smaller than 100. Use the range function in the

following manner: range (start, end, step) where "start" is the starting value of the

counter, "end" is the end value and "step" is the amount by which the counter is

increased each time.

4) Write a program using while loop that asks the user for a number, and prints a

countdown from that number to zero. Note: Decide on what your program will

do, if user enters a nExampleative number.

5) Using for loop, write program that prints out the decimal equivalent of ½, , ¼, --

----,

6) Write a function to print the Fibonacci Series up to an Input Limit.

7) Write a function to generate and print factorial numbers up to n (provided by

user).

8) Write a program using a for loop, that calculates exponentials. Your program

should ask for base and exp. value form user. Note: Do not use ** operator and

math module.

9) Write a program using loop that asks the user to enter an even number. If the

number entered is not even then display an appropriate message and ask them to

enter a number again. Do not stop until an even number is entered. Print a

Congratulatory message at end.

10) Using random module, Simulate tossing a coin N times. Hint: you can use zero for

head and 1 for tails.

