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Propositional Logic

Propositional Logic; First Order Logic
ning. It is about the validity of arguments. Consistency among

Logic: In general logic is about reaso
statements and matters of truth and falsehood. In a formal sense logic is concerned only with the form of
s with the notion of truth in an abstract sense.

arguments and the principle of valid inferencing. It deal
d deductions. The basic ingredients of logic are logical

Truth Tables: Logic is mainly concerned with vali
_then ...., if and only if etc. We are concerned with expressions involving these

connectives, and, or, not , if...
uth of a compound sentence like, “x = 1 and y = 2" is affected by, or

connectives. We want to know how the tr
determined by, the truth of the separate simple sentences “x = 1, =2,
f the truth values of the component propositions of a

Truth tables present an exhaustive enumeration o
sitions contained in them. An example of

1.1

uth values of the simple propo
edintree

logical expression, as a function of the tr
e information embodied in them can also be usefully present

a truth table is shown in table 1 below. Th

form.
A

F F F
two possible truth values for A. The

for B for each value of A. The leaf

m the node A are labelled with the
bination of A and B.

The branches descending fro .
branches emerging from the nodes marked B give the two possible values
nodes at the bottom of the tree are marked with the values of A A B for each truth com

ctives or Operators
onnectives or operators.

1.2 Logical Conne
s are used to represent the logical ¢

The following symbol



And A(Conjuction)

or v(Disjunction)
not —(Not)
Ex-or o

Nand T

Nor J

if....then [ =(Implication)
ifandonlyif | <> (Biconditional)

1. A (And/Conjuction): We use the letters F and T to stand for false and true respectively,

Table-1
A|B|AAB
FIF| F
FIT| F
T|IF| F
TIT| T

Ittells us that the conjuctive operation A is being treated as a binary logical connective-it Operates
on two logical statements. The letters A and B are “Propositional Variables”.
The table tells us that the compound proposition A A B is true only when both A and B are frue
separately. The truth table tells us how to do this for the operator. A A B is called a truth function of
Aand B as its value is dependent on and determined by the truth values of A and B.
Aand B can be made to stand for the truth values of propositions as follows:
A : The cat sat on the mat
B : The dog barked
Each of which may be true or false. Then A A B would represent the compound proposition “The cat
sat on the mat and the dog barked”
A A B is written as A.B in Boolean Algebra,

2 v (Disjunction): The truth table for the disjunctive binary operation v tells us that the compound
proposition Av B is false only if A and B are both false, otherwise it is true.

A|B|AvB
FIF| F
FIT] T
TIF| T L
TIT| T

This is inclusive use of the operator 'or’,
In Boolean Algebra A v B is written as A + B.

3 S (Not):
The negation operatoris a “unary operator” rather than a binary operator like a and its truth ableis
A=A
F| T

T F




The table presents — in its role i.e the negation of true is false, and the negation of false Is true.

Notice that — A is sometimes written as ~A or A’,

4, @ (Exclusive OR or Ex - OR):

A @ B is true only when either A or B is true but not when both are true or when both are false.

A @ B is also denoted by A v - B.

AlB|A®B
F{F[ F
FIT| T
TIF| T
Tid .
5. T(NAND):
PTQ==(PAQ)
6. J(NOR):
PlQ=-(PvQ)
Note: PTP=-P
PJ«PEﬂP
PlolrPliQ=prPvaQ
PTQTPTQ =PAQ
PTPT(@QTQ =PvQ
7. — (Implication):
AlB[A-B
FIF] T
FIT| T
T|IF| F
TiTy~ T

Note that A — B is false only when A is true and B is false. Also, note that A — B is true, whenever

A s false, irrespective of the truth value of B.

8. o (ifand only if): The truth table is

A[B[AcB
FIF| T
FIT| F
TIF| F
TIT| T

Note that Bi-conditional (if and only if) is true only when both A

(A & B may be written as A~ B)
Equivalences: B A A always takes o

We saythat BAA s logically equiva
Definition: Two expression are logically equivalent i

the other.

& B have the same truth values.

n the same truth value is as AAB.
lent to A A B and we can write this as follows BAA=AAB

f each one always has the same truth value as



AlSQ,

Ly

.

BaAm AaB
BvAs AvB
AA(BAQC) = (AAB)AC
Av(BvC)= (AvB)vC
These equivalence reveal a and v to be commutative and assoclative 0

Porations, By thesa 4y
the only impartant equivalences that hold between logical forms, e

A|lB|A=B AlB|=A -AvB
FIF] (T FIF ] T T
FIT| [T FIT| T T
TI|F F TIF| F F
T[T T T|(T| F T

in the last columns in ta bles (Shown Bracketed) we have exactly same sequences of t
So, A = B==A v B. Thus, we could do without the operation —.
Now, consider the following two truth tables.

ruth valyes.

A[BTAAB A|B|-~A[-B][=AV-B[=(=AvSp)
F[F| (F FIF[ T [T T F
FIT| [F FIT| T |E T F
T|F||F TIF[F [T T F
TIT| T T(T|F | F F T

We see from the bracketed truth values that A A B is logically equivalent to — (= A v B). Thus A
could be replaced by a combination of — and v.

Similarly we could show that < can be replaced by a combination of — and v.

We say therefore that (—, v) forms a functionally complete set of connectives.

We can also show that (—, A) also form a functionally complete set of connectives.

The NAND operator (1) by itself is also a functionally complete set. So is the Nor operator (4). These
both are minimal functionally complete set.

Notice that (v, A)is nota functionally complete set. Neither is (=), (v) or (a) by themselves functionally
complete.

R obtein the tuth table for a = (P G (P Q)A(Q-P)

Solution:

PvQ P-»Q (PvQ)Aa(P—>Q) Q—P
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1.2.1

AaQ=0

Avi=1

Aal=A

AvO0=A

ArA=A

AvA=A

AAr-A=0

AAa-A=1

— A=A

AAB=BAA
AvB=BvA
Av(BvC)=(AvB)vC
AA(BAC)=(AAB)AC
AA(BvC)=(AAB)V(AAC)
Av(BAC)=(AvB)A(AvC)
AA(AvB)=A
Av(AAB)=A
—I(AAB)E—vAV—\B
-(AvB)==Av-B
A—=B=—-AvB
A(—)B_(A—)B)A(B—)A)

List of Important Equivalences

Domination law
Domination law
Identity of v
Identity of A
Idempotence
Idempotence
Complement Jaw
Complement law
Law of double negation
Commutativity
Commutativity
Associativity
Associativity
Distributivity
Distributivity
Absorption law
Absorption law
De Morgan's law
De Morgan'’s law

A0=0

A+1=1

Al=1

A+0=A

AA=A

A+A=A

AA=0

A+A =1

(AY =A

AB=BA
A+B=B+A
A+(B+C)=(A+B)+C
A:(B-C) = (A-B)C
A(B+C)=AB+AC
A+(BC)=(A+B)A+C)
AA+B)=A

A+ (AB)=A
(A-BY=A"+ B’
(A+BY=A"B
A-B=A"+B
AeaB=(A"-B)(B'—=A)

Slmpllcatlon

TETTIT Ty —t

NOTE.‘GB‘(EX OR) IS commutat[ve and assocnat:ve (NAND) gan_d (NOR) are both_commutatwe but not
_associative. PA (Q (-'B R):_ PAQ)® (P AR) ;

s E b  e A

s -M« e e o SRt S

The various equivalence between logical forms provide us with a means of simplifying logical expressions.
For example, we can simply the logical forms.

(Av0)A (Av=A)as follows:
(AvOA(Av=A)=AAr(Av=A)

Similarly,

=AA1(sinceAv-A=1)

=A

(AA=B)A(AABAC)=AA-BVv(BAC))

=AA(=BVvB)A(=BVvC())

=AA(1A(=BvV())

=AA(-Bv(C)

Since logic is a boolean algebra, it is always much easier to do simplification of logical expressions by
converting them first into its boolean algebra equivalents.

Example:(AvO)A(Av—-A)=(A+0)(A+A)

Application to Circuit Design

One of most important application of Boolean algebra is to the design of electronic circuits and especially
to the design of computer logic. The basic logic functions ‘and’, ‘or' and ‘not’ can be reahsed' by electronic
devices called gates and these can be combined together to form complicated circuits. The ‘and’ connective is

realised by an ‘and-gate’ which is symbolised as follows:

A—1 0\ AB

“AND

B—



gate receives input signals on both the A and B inputlines, they, Wil ~
either A or B or bot i lbe
put on ei h there will be M0 outpy a_“Ou:

u
Slgnal.

The idea s that if the AND-

ut signal on the line marked A.B. If there is no in
i 'OR-gate’ is symbolised as follows:

either A or B or both, there will be an output signalon A + g

AA.

In this case, if there is an input A, there will be no output and If there is no input A, there will be g outp
it

if there is an input signal on
Finally a NOT gate looks alike

The input is said to be inverted or negated.

Similarly we have the NAND gate and NOR gate represented yrepresented by.

1.3 Well-Formed Formulas (WFFs)
Consider P A Q and Q A P, where P and Q are any two propositions (logical statements). The truth taple
of these two propositions are identical. This happens when we have any proposition in place of P and any

propositions in place of Q.
So we can develop the concept of propositional variable (corresponding to propositions) and well formed

formulas (corresponding to propositions involving connectives).

Definition: A propositional variable is a symbol representing any proposition. We note that in algebra, a

real variable is represented by the symbol x. This means that x is not a real number but can take a real value.

Similarly, a propositional variable is not a proposition but can be replaced by a proposition.
Definition: A well formed formula is defined as follows:

(i) If Pis a propositional variable then it is wif.

(ii) Ifais awff, then —~ais a wif.

(iii) If e and P are well formed formula, then (v B), (oA B), (— p), (e &> B) are well formed formula.

" NOTE: A wifis ot a proposition, but f we sut z propositional varable. e

cause the above two

PRSI Se T ECRICSL SHEETS B

Also n'ote that “P — A Q & Q" is not a wif, Similarly “P A Q v" is not a wif. This is be
cannot be derived using rules i, ii and /ii given above for wffs.

Duality Law
replacin-;w: ;zrr:u\lfaz Aand A’ are said to be duals of each other, if either can be obtained from the other by
Nt o o b¥ v By A ;0by 1.(F byT) and 1 by O(T by F). e.g, Dual of (P4 Q) v Tis Ry Q) AF Dual o

hﬂor a L ‘ E ' l l f P ’ Pl lltP P iti i [ .
g ns W, |l can be SI 10wWn u'at b | l\ (J ’ J 1: -'.2 n 0p05|t|0na| var IableS- y [ epeatEd E”[ l “ !
1 2 "n)__A‘{—'IP,ﬁP,...,'—:P’.



1.3.1 Truth Table for a Well-Formed Formula
If we replace the propositional variables in a for
mula a by propositions, we ition i i
. , we get a proposition involvin
connectives. The table giving the truth value of such proposition obtained by replacing the propositional variab!egs

by arbitrary proposition is called the truth table of a.
If a involves n propositional variables, we have 2" possible combinations of truth values of propositions

replacing the variables.
Tautology, Contradiction and Contingency

Definition: A tautology is a well formed formula whose truth value is T for all possible assignments of
truth values to the propositional variables. Such a wif is also called valid (always true).

] ::O‘:‘E.t '\:Vheln itis not clear whether a given formula is tautology. we can construct a truth table and venfy that
e truth value is T for all posmble comblnatlons of truth value of the propos|t|onal vanables appeanng in ’

given formu!a il : :
m Show that a = (P - (Q - R)) = ((P » Q) -» (P — R)) is a tautology.
Solution:
Truth table for a:

T

MMM TT - I's)

Q-R P—)[Q—-)R] P-Q P-R [P-)Q]—)(P_)H) o

A4 4T 4T~
A4 —A4—-—A—T-
Ad A=

R
T
F
i
F
T
=
T
F

AT 44 4T 4
e e e e e B
444NN —~

Since the truth value of «uis T for every possible Combination of truth values of P, Q and R, we can say

that o is a tautology.

e truth value is F for all possible assignments of

Definition: A contradiction (or absurdity) is a wif whos

truth values to the propositional variables.
e.g,Pa=Pand(Pa Q) A = Q « are examples of contradictions

Truth table for PA—=P
P | P |[Pa-P
T F F
E T (F)
Truth table for (P A Q A= Q) ‘
PAQ|-Q[PAQA-Q

e B ¥ i ¢ I B 2
—4 MM 4 ™
M M m T

m™m 4 —H|70
m 4T A




. NOTE: ais contradiction if and orly f = a s taitoiogy. |
Definition: A contingency is a wif which is neither a tautology nor a contradiction. In otherwoma' "

contingency is a wif which is sometimes true of sometimes false.
Examples of contigency are PAQ, =PvQ,P A (PvQ)

Truth table for P A (P v Q)
P Q [Pva|[PA(PvQ)
T T T T
T F T T
F ) T F
F I P F

Notice that P A (P v Q) is sometimes true and sometimes false.

Satisfiable and Unsatisfiable wffs :
¢ Awff which is either a tautology or a contingency is called satisfiable.
* Awff which is a contradiction is called unsatisfiable.

Equivalence of Well-Formed Formulas | |
Definition: Two wif a and b in propositional variables P,, P,, ....P_ are equivalent if the formula a & bis

a tautology.
When a and B are equivalent we write o= p.

MO e bl o i s sl

1.4 Normal forms of Well-Formed Formulas

We know that two formulas are equivalent if and only if they have the same truth table. The number of
distinct truth tables for formulas in P and Q is 24 (As the possible combination of truth values of Pand Q are TT,
TF, FT, FF, the truth table of any formulain P and Q has 4 rows. So the number of distinct truth tables is 2%). Each
row may be associated with either T or F value for the function involving P and Q. Thus there are only 16 distinct

formulas and any formula in P and Q is equivalent to one of these 16 formulas.
Here there is a method of reducing a given formula to an equivalent form called a ‘normal form’. We use

'sum’ for disjunctions, ‘product’ for conjuction, and ‘literal’ either for P or for = P, where P is any propositional
variable,

Definition:
1. An elementary product is a product of literals, An elementary sum is a sum of literals.
€.0.PA=Q,-PAQ,PAQPare elementary products PV v - Q,Pv=R,P are elementary sums.
2. Aformula is in disjunctive normal form (DNF) if it is a sum of elementary products.
€.0.(P)v(QAR)AND (P) v (- Q A R) are in disjunctive normal form.
Construction to obtain a disjunctive normal form of a given formula:
Step-1: Eliminate — and & using logical identities.
Step-2: Use De Morgan's law to eliminate - before sums or products, The resulting formula has —only
before propositional variables. i.e. it involve sum, product and literals,

Step-3: Apply distributive laws repeatedly to eliminate Product of sums. The resulting formula will be @
sum of products of literals i.e, sum of elementary products,



Definition: A min term in n propositional variables P, ... P,is Q, A Q, . . . A Q, where each @, is either
P;or— F. e.g. The min term in P, and P, are P, A P,. The number of min items in n variables is 2”.
Definition: A formula a is in principal disjunctive normal form (PDNF), if o is a sum of min terms.

Construction to obtain the Principal Disjunctive Normal form of a given formula:

Step-1: Obtain a disjunctive normal form

Step-2: Drop elementary products which are contradictions (such as P A—P)

Step-3: F,and — F, are missing in an elementary product a replace a by (e A P) v (A= P)

Step-4: Repeat step 3 until all elementary products are reduced to sum of min terms. Use idempotent

laws to avoid repetition of min terms.
Definition:

1. Amaxtermin n propositional variables P,, s
2. Aformula ais in principal conjunctive normal form if o (PCNF) is a product of max terms.

For obtaining the principal conjunctive normal form of a, we can constant the principal disjunctive normal

.Pis Q,vQ,...vQ, where each Q,is either P,or = P,

form of — a and apply negation (=).
~ NOTE: For a given wif the PDNF form is unique the PCNF form is unique, if PDNF form or PCNF of 2 wifs are

~ same, they are equivalent. g I .

Show that —~(p — q) and p A - q are logically equivalent.

Solution:

=(p—q) =~(-pvq) (Byusingp— g=-pvQq)
= (-p)Aag (By using Demcrgans law)
=pA=q (By using double negation law)

Show that =(p v (-~ p A q)) and =~ p A = g are logically equivalent by

developing a series of logical equivalences.

Solution:
~(pv(=p~Qq)

(p+(P'Q)Y
=(p+q)
=p'q
RHS ==paA-qg
=p'q
Therefore, LHS = RHS
Conseqguently —(p v(= p A g)) and - p A — g are logically equivalent.

Show that (p A g) = (p v q) is a tautology.

Solution:

LHS

(paq) = (pvq) =pg—(p+0q)
= (pq) + (P + q)
=p'+q+p+q
=p+p+q+4q
=1+qg'+qg=1

Therefore, (p A g) = (p v g) is a tautology.




1.5 Rules of Inferences for Propositional Calculus
In logical reasoning (an argument or proof), a certain number of propositions are assumeq tob
ons are derived. There are some important reasoning @ true ang

based on that assumption some other propositi
Or rules of

inferences.

The propositions that are assumed to be true are called hypotheses or premises. The pronge
ence is called a conclusion. Proposition
The process of deriving conclusions based on assumption of premises is called argument. An argument

is valid iff the conclusion is true whenever the premises are all true.
The rules of inference are commonly known tautologies in the form of implication (i.e. & — p).

e.g.P—>(PvQ)issucha tautology and it is a rule of inference.
_Here P denotes a premise. The proposition below the linei.e. PvQ

derived by using the rules of infer

We write this in the form of 3 5

is the conclusion.
Rules of inference specify which conclusion may be inferred legitimately from known, assumed or
previously established premises.
atical proofs and logical arguments. Infact, most math

Therefore these are commonly used in mathem
proofs uses only one or more of the rules of inferences.

1.5.1 Rules of Inference

Rules of Inference Implication form

1. Additi =
ition —5—7 P-((PvQ)
2. Conjunction P PAQ—-PAQ
Q
~PAQ
3. Simplification PAQ (PAQ)—Q
4. Modusponens P (PA(P-Q)—Q
P-Q
- Q
5. Modustollens —Q
P-Q
o —|P
6. Disjunctive syllogism —P
PvQ
Y »)

7. Hypothetical syllogism P — Q
Q-R
~LP=R




8. Constructive Dllemma (P— Q)A(R-S) (P—-Q) A(R= s)a(PvR) = (@QVS)
PvR

~QvS

9. Destructive Dilemma (P— QAR - S)
—|Q A" —18

i ﬂPV '-|R

(P—)Q)A(H—’S)A(ﬂQV—ﬂS)(—!PV-—:R)

emises followed by a conclusion.

Arguments: An argument is a set of pr
f premises — conclusion is a tautology.

An argument is valid if the conjunction o
An Invalld argument is also called as fallacy.
Therefore | will pass the exam”, can

Example: “If you study hard you will pass the exam. | studied hard.

be translated as
P : | study hard
Q : | will pass the exam (P = Q, P)H Q.
This argument is valid if the wif (P — Q) A(

It can be verified that, it is indeed a tautolog

P) - Qs a tautology.
y & therefore, the given argument is valid.

Inconsistency and Consistency
if H, A HyA Hy oo A is a contradiction (unsatisfiable).

A set of wif's H,, H,, H,... H,are inconsistent
The set is consistent if H, A H, ... A H, is satisfiable (i.e. either a tautology or a contingency)-

1.6 Predicate Calculus
Let us consider two propositions “Rita is a student” and “Sitais a student”.
As propositions, there is no relation between them but there is something com
statements. Both Rita and Sita share a property of being a student.
We can replace the two proposition by a single statement “xis a student”. By replacing x by Rita or Sita
ture expressed by “is @ student " is called a

(or any other name), we get many propositions. The common fea

predicate. In predicate calculus we deal with sentences involving predicates.
propositional function such as P(x) i xis a student.

A predicate P(x) is a
Now, P (Rita) has the truth value of the Statement, “Rita is a student”.
Another Example: P(x, y) :x + Y = 4. Here, P(3, 1) is true but P(3, 2) is false.
Mathematics and programming languages €.g. “2x+3y=4Z.

Statements involving predicates occur in
*IF(D.GE.0.0)GO TO 20" are statements in Mathematics and FORTRAN, respectively involving predicates.

he properties of an object or relation among obje

mon between the two

ctsisin

Predicates
ntence describing t

A partof a declarative se
e.g.“isa student” is a predicate.
dicate “is the father of". Here the predicate the

English called a predicate.
The sentence “x is the father of y” also involves a pré

describes relation between two persons.
We can write this sentence as P(x, ¥).
Similarly, 2x + 3y = 4z can be described by P(x, ¥, 2).
P, involing a precica looks ko a proposiion itis notaproposion. .
i we cannot assign a truth value to P(x).

: NOTE: Although
pecific object, then we geta proposition.

: As P(x) involves a variable x,
However, if we replacé x byas



1.7  Universal and Existential Quantifiers

The phrase 'for a||' (denoted by V) s called the Universal Quantifier,
Using this symbol, we can write “for all x, x2 = (- )" as Vx Qlx), where Q(x) is “y2—
The phrase ‘there exists’ (denoted by 3) is called the Existential Quantifier,

The sentence, “there exists x such that x2 = 5" can be written as 3x A(

x), where R(x) is x2 = 5
Ax)in VxP(x) or in 3x P(x) is called the 'scope of quantifier' ¥ or 3.

- NOTE: V also be written as ) Plx). e
Consider P(x, y): x + y=y+x
Now VxVy Ax, y)is true.
Whereas Vxvy Qlx, y) is false, where, Qlx, y) 1x =2
Similarly if P(x) : 2= 4 and Q(x) : x2 = -1, then
3xPx) is true while 3x Q(x) is false.

()2,

. NOTE: Default domain for nurbers s . Derva may i be specified with quanitiier as fojlons;
3 2P (heroxtakes onyintegervalues) i ‘

A oL S S £ S AL el By

1.7.1  Well-Formed Formulas of Predicate Calculus
A well formed formula of predicate calculus is a string of variables such as *1s XX, CONNectives,
parenthesis, and quantifiers defined recursively by the following rules:

1. Plx,..x) is awif, when Pis a Predicate involving n variables X1 Xyyui X,
If ocis a wif, then — o is a wif.

If @ and B are wits then v, aaAB, 00— B, are also wif,
lfaisawffandxis any variable, then Vx (o), 3x (o) are wif.
A string is wif if and only if it is obtained by finitely applications rules (1) —(4).

A proposition can be viewed as sentences involving a predicate with O variables. So propositions are wif
of predicate calculus by rule (1).

Definition: Let azand B be two predicate formulas in variables ¥;.-.x,andlet U be a universe of discourse
of eand B. Then, a and B are equivalent to each other over U if, for every possible assignment of values to each
variable in ¢ and B, the resulting statements have the same truth values.

We canwrite a = b over U.

We say that aand bare equivalent to each other (a=

SR AN

B)ifa= bover U for every universe of discourse U.
Remark: In predicate formulas, the predicate variables ma

the predicate variables in a predicate formula depending on wheth
following definitions.

» and the occurrence of x is called a bound occurrence of X.
An occurence of x isfreeifitis not a bound occurrence,

A predicate variable in ais free if its occurrence is free in any part of o,

Ina=(3rAx, x,)) A (Vx,Q(x, x;)); for example the occurence of x, in3x, P(x

1n%,) is abound occurence
and that of x,isfree. In Vx, Qx,, x,), the occurence of x, is a bound occurre



Definition:
1. A predicate formula is valid if for all possible assignments of values from any universe of discourse

to free variables, the resulting propositions have truth value T.
A predicate formula is satisfiable if, for some assignments of values to predicate variables the

resulting proposition has truth value T.
A predicate formula is unsatisfiable if, for all possible assignments of values from any universe of

discourse to predicate variables, the resulting propositions have truth value F.

Rules of Inference for Predicate Calculus

(i) Proposition formula are also predicate formulas.

(ii) Predicate formulas where all the variables are quantified are proposition formulas. There fore, all the
rules of inference for proposition formulas are also applicable for predicate calculus where ever
necessary.

In addition, we have the following 4 laws applicable for predicate calculus.

(US) Universal Instantiation (Specification) Vx A(x) = A(y)

(ES) Existential Instantiation 3x A(x) = A(y)

(UG) Universal Generalisation A(x) = Vy A(y)

(ES) Existential Generalisation A(x) = 3y A(y)

Equivalence Involving the Two Quantifiers and Valid Implications

1. = (VxPlx))=3x—-P(x) 2. = (Ix Px))=Vx-P(x)

3. Vx(P(x) A Q(x))=Vx P(x) A Vx Q(x) 4. Vx P(x) AVQ(x) = Vx(P(x) v Q(x))
5. Ix(P(x) v Q(x)) =3x P(x) v Ix Xx) 6. Ix (P(x) A Q(x)) = Ix P(x) A Ix Qx)
7. Vx P(x)=3x Px) 8. Vx PAQ(x))=Pa(Vx Qx))

9. Vx(PvQx)=Pv(VxQx)) 10. Ix (P A Q(x) =P A (Ix Qx)

1. 3x (Pv Qx))=Pv (3x Ax)

Graphical Representation of Relation between Sentences Involving Two Quantifiers

Vxvy : Vyvx
[ j "
Jy3x

Let, p: “Maria learns discrete mathematics". q: “Maria will find a good job".

Express the statement p — g as a statement in English.
Solution:
“If Maria learns discrete mathematics, then she will find a good job” {p — q}.

“ Maria will find a good job when she learns discrete mathematics” (g when p}.
“For Maria to get a good job, it is sufficient for her to learn discrete mathematics” {p is sufficient for g}.

“Maria will find a good job unless she does not learn discrete mathematics”
{gunless—p=gv-p=p- q}.
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Express statement using predicates and quantifiers. “For every person x, if |

person x Is a student in this class then x has studled calculus”.

Solution:

We take C(x): "x has studied calculus” consequently If the domain for x consists of the students in the

class. We can translate our statement as Vx C(x).

It S(x) represents the statement that person x Is in this class
expressed as Vx (S(x) = C(x)).

Note that the statement cannot be expressed as Vx (S(x) A Cl(x)
people are students in this class and have studied calculus.

, the see that our statement can be

) because this statement says that all

Consider the following formulas:

(i) (p>q)=>(PAq)—p

(#) —=(Vx(Q(x) A p(x)) A3y = p(y))

Which of the above are tautologies?

(a) Only (i)

(b) Only (i)

(c) Both (i) and (i)

(d) Neither (i) nor (i)

Solution:

0] (p—q—=>Prq)=op=(-pva->(Prg)->p
=((pr-qvipaQ)—p
=-[lpa-qvipaqlvp
=((~pv@al=pv-q)yv

= (P+q)(P+Q)+p
p+pqg+pq+qq+p

p+p=1=True
(@) =(vx(qlx) A px)) A 3x = p(x)) = Ix(=q(x) v ~p(x)) v Vx

P

pix)

= Tr(—q(x)) v Ix(—p(x)) v Vx p(x)
= 3x(—q(x)) v = (Vxp(x)) v Vx p(x)

x(—q(x)) v 1
=1
= True

.. Both (i) and (ii) are tautologies.




¢ Two expression are logically equivalent if each one ziwzys has ﬁvm vt valiue
' as the other.
*  @(EX-OR)is commutative and assccizative, (fWI‘D)Zﬂd(Hf'}")d‘btfl coTTTiAzSve
but not associative. PA(Q@R)=(PA Q)3 (P A R)
* Awffis nota proposition, but if we substitute the proposition in place of proposifional
| variable, we get a proposition .g., (~ P A Q) <> Q is 2 wH.
~ ® Whenitis not clear whether a given formula is tautslogy, we czn construct 2 wth
; table and verify that the truth value is T for all possible combinztions of tnsn value of
the propositional variables appearing in given formula.
* Acontradiction (or absurdity) is a wif whose tnsth value is F for 21 possivie assignments
of truth values to the propositional variables.
..* Acontingency is a wif whichis neither a tautology nor a contradiction. In ctherwords,
a contingency is a wif which is sometimes true of sometimes fales.
- »  Two wff aand bin propositional variables P,, P,, ....P, are equivalent if the formula
a & bis a tautology.
- = For agiven wif the PDNF form is unique the PCNF form is uniqus, # PDNF form or
~_ PCNF of 2 wifs are same, they are equivalent.
. Quantified parts of predicate formula such as Vx P(x) or 3x P(x) are propositions. We
_ canassign values from the universe of discourse only to free varizbles in 2 predicate

Anil e ae e e SRR e e
R ST List-II
% - Student's 1. Pv(QvR)=(PvQ)vR
ASSignmemS 2. PvQ=QvP
3. -(PvQ) =—PA-Q
Q.1 The logical expression ((P AQ) = (R’AP)) =P 4. Pv(PAQ)=P
(a) atautology Codes:
(b) acontradiction A B C D
(c) acontingency @ 1 2 3 4
(d) All the above b) 4 3 1 2
. L g o) W, WY R N
Q.2 The principal conjunctive normal formis
@ 2 1 4 2
(a) sum of products
(b) product of sums Q.4 Considerthe following statements:
(c) sum of max-terms S;:Rv(PvQ) -
(d) product of max-terms is a valid conclusion from the premises

PvQ,Q->RP->Mand-M
S,;a—b,~(fve)=-b
then
(a) S,istrue and S, is invalid
(b) S, is false and S, is invalid
(c) Botharetrue
(d) Bothare false

Q.3 Match List-1 with List-1l and select the correct
answer using the codes given below the lists:

List-|

Associative law

Absorption law

Demorgans law

Commutative

2.0t
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Q5 The following propositiona statementis 0) (P = Q) 2 (O = P) shurzys 4y, |,

[P~ 110G ~5 1]~ [(pv g5 1] propesiton P, 0, ks
(5) tatology (00 (PvO)=C0)=(Oestp, O twzps ey,
(b) contradiction for 211 propostions P .
(€) neither tautology nor contradiction (3) (1) is trus, (1) is f3iee
(d) not decidabls (b) Both (i) and (if) zea true

Q.8 Idertifythe corract transtation info logical notation ) (_0 I8 fat '7""5”) *5, f‘;" ; .
of the following assertion (d) Both{f) and (1) are faise
“All connected bipartite graphs are nonplanar” Q.10 Which of the following is tautciogy?
(8) Vs [~connected(x) v ~biparita | @) xvy-synz
i/
| () ~ planar(x) J i G A daded
€ xvy—y-z
(6) v | ~COMmected(x) v ~biparite | (@) x=y=(y-2)
() ~ planar(x) ] Q.11 Suppose
- i P(x) : x i a perzon.
(¢) |~ connected(x) A~ biparite ] Fix, ) s x 8 the fatherof
L) ~planar(z) M(x, ¥) : x is mother of y.
[~connected(x) A ~ biparite What does the following indicates
() V= (x)v ~planar (x) (32) (A2) 7 Fix, 2) A M(z, 1))
i (8) xis father of mother of y
Q.7 Which of the following statements are true? (b) yis father of mother of x
() Itis not possible for the propositions P v Q (c) xis father of y
and =P v ~Q 10 be both falge. to be both (d) None of the above .
fase. Q.12 Give the converse of “If it is raining then | get
(1) Itis possible for the propogition P=s(=P — Q) wet”, e _e , g
to be falze, (@) Ifitis not raining then | get wet
(8) Only (1) ‘? true (b) If itis not raining then | do not get wet
(b) Only (if) ie true (©) Ifit get wet then it is raining

(c) Both(f) and (1) are true
(d) Both (1) and (1) are false

Q.8 Which of the following statements are true?

(d) If I do not get wet then it is not raining

Q.13 Which of the following is true?
(@) —(p=>g)mpan~g

() ((P=Q)~R)~5 (R~ Q) ~»F)ls atautology (b) =(pe> g)m ((pv=g)v(ga-p))
(1) Let A, B be finite sets, with |A| = m and (©) =(3x (p (x) = q(x))) = Vx (p(x) = q(x))
18] = 1. The number of distinet functiong (d) x p(x) = Vx p(x)
# cf) r ;; ;‘; g ftfutgero fromAto B Is nr,
1 .

(5) Only (1) e Answer Key:
() Both (i) and () are true L) 2 3 a4 5. (a)
(d) Both (1) and (/) aro false 6.(b) 7 (a) 8. (d) 9. (d) 10. (b)

Q.9 State whether the following statements are true 11, (a)

or falge? 12, (c) 13, (a)



Explanations

! Assignments

. (c)

The logical expression
(PAQ)=(R'AP)=>P

can be converted in Boolean Algebra notation
as,

(pg=rpP)=p

=(pg)+rp=>p

=p'+q+rp)=>p
=((p’+rp)+q)=p
=((p'+pP)-(P+r)+q)=>p
=p'+r+q)=p

=(p'+r+q) +p=prq+p

=p

~. The given expression is a contingency.

. (a)
S,:PvQ,Q=RP->M~M=Rv(PvQ)

In boolean algebra notation the above expression
is written as
(p+qrg+)p+n)ymM=r+p+q
=(g+pr)(m)=r+p+q

=sgm +prm =r+p+q
=(gm+prm)+r+p+g

=(g+mP +r+mr+p+q

=g+ qgr+gm+mp'+mr+m+r+p+q
(by absorption law)=q’p"+r+ m+p+q
=(p+pPHp+q)+r+m+q
=p+qg+r+m+q

=p+r+m+1=1

= 5 istrue

S,: a=b=(fve)=-b

In boolean Algebra notation

S,=(a—- b)(fv Y = b

=(d + b)}{fc)=b

=[(& + b)(fC)] + b
=(@+b)y+(fc)+b

=ab’+f+c+ b

=f+c+ b

which is a contingency

=~ S, is invalid.

5‘

a)

(p=nv(@-=nl->[pvg) -
(P+n0(@+nN->(p+qQ)+r
(r+p'qY > (p+q)+r
(r+p'q) +(p+q)+r
=r(p'q)y +p'q +r
=r(p+q)+p'q+r
=rp+rqg+pq+r
=(r+r)r+p)+rqg+p'q
=sr+p+rq+pq
=(r+r)(r+q+(p+p)(p+9q)
=r+q+p+q

=r+p+1=1

- tautology

m mom

6. (b)

The correct translation is

Vx[(connected(x) A bipartite(x)) — ~ planar(x)]
however, since p = g=~ p v g, we can write
the above expression also as,
Vx[~connected(x) v~bipartite(x) v ~ planar(x)]

7. (a)
If P v Qis false, then both P and Q are false.
S0, -PV=Q==FvaF=TvT=T
o (i) istrue
Consider (ii)
Po5(-P-Q) =P=(P'-Q)
P->P+Q
=P +P+Q=1+Q=1

It is a tautology, So (i) is false.

8. (d)

(i) Using boolean algebra, we can shown that
the given expression reduces to P + R + Q'
which is not a tautology.

(ii) For each elementae A, we have n possible
choices for value of f(a). Thus there are n™
possible functions.

9, (c)

() (P=Q)=(Q=P)
=(P+Q)—(Q" +P)
=(P+Q)+Q +P
EPQ'+Q'+PEP+Q'



Since P + Q' is a contingency and not a

tautology (i) is false

(i) (PVQ)= Q)= (Q=(PVQ))
E((P+Q)=>O)=a(Q:P+Q)
=P+Q+=2Q=3Q' +P+Q
=PQ+Q=1+P
=(Q+P)Q+P)=1
=(Q+P)=>1
=(Q+PY +1=1

10. (b)
(i)

(i7)

* (ii) always hold

XVYy=yaz

-~ not a tautology
XAY—>SYVYVvZ

= Itis a tautology

S.

=Ex+y-oyz
=(x+y) +yz
=xy + yz
x 1

z_-xy-)y+zl
=) +y+z
=xX+y+y+ 2z
=1+x"+2

=1

(iii) xvy—>(y—>2)-=.x+y_.)(y‘,z)
E&+W+Wﬂ3
=XV 4y,
=Y +z
x 1

- not a tautology

() x—>y—>(y—>z)zx’+y-a(y+z)
=@ +Y +y s,
=xy'+y +z
=y +z
=1

- not a tautology

13. (a)
Option (a) =(p = q) = P A=qis true, since
=(p=> q)=—(p’ + q) =Pg'=pa-gq

*Heleon



