TRANSMISSION OF HEAT

SYNOPSIS

Transmission of heat takes place in three modes.

- 1) Conduction
- 2) Convection
- 3) Radiation
- Due to temperature difference, heat flows from one place to another place.
- Due to potential difference, charge flows from one end to other end of a conductor.
- Due to pressure difference, fluid flows from one place to other.

CONDUCTION

- It is the transmission of heat without the actual movement of the particles of the medium.
- Conduction of heat requires a medium.
- It takes place mainly in solids.
- It takes place in metals due to free electrons.
- Heat transfer in **mercury** takes place by conduction not by convection.
- A substance which is good conductor of heat is also good conductor of electricity.
- In steady state, the temperature at any point or cross-section of the conductor remains constant with respect to time.
- In steady state, the heat received by any cross-section is partly conducted to the next section and partly radiated. i.e no heat is absorbed by the cross-section.
- **Coefficient of Thermal conductivity :** In steady state the quantity of heat Q flowing through a metal rod of length 1 and cross-section A in a time t when its ends are at

temperature θ_1 and $\theta_2(\theta_1 > \theta_2)$ is given by

$$\theta_1 \left(\begin{array}{c} & \ell & \longrightarrow \\ A & \rightarrow & Q \end{array} \right) \theta_2$$

$$Q = \frac{KA(\theta_1 - \theta_2)}{l}t$$

where K is coefficient of thermal conductivity

- K depends on the nature of the metal.
- It is defined as the rate of flow of heat per unit area and per unit temperature gradient in steady state.

Units of K:

 $S.I - Wm^{-1}K^{-1}$

 $C.G.S-Cals^{-1}Cm^{-1}C^{-1}$

Dimensional formula - $MLT^{-3}K^{-1}$

- Values of K : For a perfect conductor K = ∞.
 For a perfect insulator K=0 If K value is more, it is good conductor of heat. If K value is less, it is a bad conductor of heat.
- Silver is the best conductor of heat
- If one end of a metal rod is kept in a steam jacket and other end is kept in an ice block, then the amount of ice that melts is

$$m = \frac{KA(\theta_1 - \theta_2)t}{d.L_{ice}}$$

Junction temperature : In steady state when conduction takes place through two layers of composite wall with different thermal conductivities, then

$$\frac{Q}{l} = \frac{K_1 A(\theta_1 - \theta)}{l_1} = \frac{K_2 A(\theta - \theta_2)}{l_2}$$

$$\xrightarrow{\mathcal{Q}} \begin{array}{c|c} \theta_1 & \theta & \theta_2 \\ \hline & & \\ \hline & & \\ \mathcal{K}_1 & & \\ \ell_1 & & \ell_2 \end{array} \xrightarrow{\mathcal{Q}}$$

Junction temperature or Interface temperature

$$\theta = \frac{\frac{K_1 \theta_1}{l_1} + \frac{K_2 \theta_2}{l_2}}{\frac{K_1}{l_1} + \frac{K_2}{l_2}}$$
$$= \frac{K_1 \theta_1 l_2 + K_2 \theta_2 l_1}{K_1 l_2 + K_2 l_1}$$

• If $l_1 = l_2 = l$ then

$$\theta = \frac{K_1 \theta_1 + K_2 \theta_2}{K_1 + K_2}$$

Diffusivity :-D It is the ratio of thermal conductivity (K) to thermal capacity per unit volume (ms/V) of a material.

$$D = \frac{K}{\frac{ms}{V}} = \frac{K}{\rho s}$$
 where ' ρ ' is density of

material and 's' is its specific heat.

• Thermal Resistance : R

Thermal resistance R of a conductor of length 1, cross-section A and conductivity K is given by

$$R = \frac{l}{KA}$$

S.I unit :- *KW*⁻¹

Dimensional formula : $M^{-1}L^{-2}T^{3}K$

Effective conductivity :

• Series combination :

(a) If two rods of same cross-sectional area having lengths l_1 and l_2 and conductivities K_1 and K_2 are connected in series, then in standy state conductivity of the combination K

steady state conductivity of the combination K is given by

$$K = \frac{K_1 K_2 (l_1 + l_2)}{K_1 l_2 + K_2 l_1}$$

• If $l_1 = l_2 = l$ then
 $2KK$

$$K = \frac{2K_1K_2}{K_1 + K_2}$$

(b) If three rods of same cross-sectional area having lengths l_1, l_2, l_3 and conductivities K_1, K_2, K_3 are connected in series, then in steady state, the conductivity of the combination is

$$K = \frac{K_1 K_2 K_3 (l_1 + l_2 + l_3)}{K_1 K_2 l_3 + K_2 K_3 l_1 + K_3 K_1 l_2}$$

• If $l_1 = l_2 = l_3 = l$, then

$$K = \frac{3K_1 K_2 K_3}{K_1 K_2 + K_2 K_3 + K_3 K_1}$$

• Parallel combination :

(a) If two rods of same length having cross-sectional area A_1, A_2 and conductivities K_1, K_2 are arranged in parallel, then is steady state, the conductivity of the combination is

• If
$$A_1 = A_2 = A_2$$
 then

$$K = \frac{K_1 + K_2}{2}$$

(b) If three rods of same length having cross-sectional areas A_1, A_2, A_3 and conductivities K_1, K_2, K_3 are connected in parallel, then in steady state

$$K = \frac{K_1 A_1 + K_2 A_2 + K_3 A_3}{A_1 + A_2 + A_3}$$

• If
$$A_1 = A_2 = A_3 = A$$
, then

$$K = \frac{K_1 + K_2 + K_3}{3}$$

CONVECTION:-

- The process in which heat is transformed from one place to other by actual movement of particles of medium due to difference in density.
- Convection takes place in fluids. It is more predominant in liquids.
- Convection is two types. (1) Natural or Free convection (2) Forced convection.
- If the fluid particles move only due the temperature difference, it is called natural convection.

Eg: Hot air rises by natural convection. sea breeze, land breeze etc.

• Natural convection can not take place in a gravity free space such as orbiting satellite or freely falling lift.

• If the fluid particles are forced to move by a fan or by a blower or by a pump ata it is called	• The energy emitted by a body does not depend on the temperature of the surround-
 or by a brower or by a pump etc., it is called forced convection. Eg: Ventilation in houses. The forced convection of blood in our body by the heart helps in keeping the temperature of the body constant. RADIATION: It is the process of transmission of heat from one place to another without any material medium. It is the fastest process of heat transmission. In this process medium is not heated. THERMAL RADIATION: The heat energy transferred between the objects without the help of any medium is known as thermal radiation or radiant energy. (or) 	 ings. The rate of emission increases with the increase in the temperature of the body. If the body emits more energy than absorbed its temperature decreases. If the body absorbs more radiant energy than it emits, its temperature increases. If the body absorbs and emits the equal amount of radiant energy, then its temperature remains constant. If two bodies continuously emit and absorb same amount of energy, then they are in thermo dynamic equilibrium. The radiant energy emitted by a body depends on a) The nature of the surface. b) Surface area. c) Temperature of the body.
Heat energy transferred by means of electromag-	• EMISSIVE POWER (e_{λ}) :
 netic waves is Thermal radiation. NATURE AND PROPERTIES OF RADI- ANT ENERGY: It consists of long wavelength electromagnetic radiation. The wave length of these waves is nearly 800nm to 4,00,000 nm.(i.e., greater than the wavelength of visible light.) It occupies the infrared region of the electromagnetic spectrum. It can be transmitted through vacuum. These waves propagate in vacuum with a velocity 3 x 10⁸ ms⁻¹ like light waves. It obeys laws of reflection, refraction, interference, polarisation and diffraction. DETECTORS OF RADIANT ENERGY: To detect radiant energy Bolometer, thermopile, radiomicrometer, pyrometer are used. By using surface Bolometer radiation coming 	 The amount of energy emitted per second per unit surface area of a body at a given temperature for a given wavelength range (λ and λ + dλ) is called emissive power. At a given temperature if the radiations emitted have a wave length difference dλ, then the emissive power is equal to e_λdλ. S.I unit of emissive power is Wm⁻² and its dimensional formula is MT⁻³. EMISSIVITY (e): The ratio of radiant energy emitted by a surface to radiant energy emitted by a black body under same conditions is called emissivity. i) For a perfect black body emissivity e=1. ABSORPTIVE POWER (a_λ): At a given temperature, for a given wavelength range, the ratio of energy absorbed to the energy incident on the body is absorptive power.
 By using surface Bolometer radiation coming from the surface of a body is measured. By using linear Bolometer, the distribution of energy in a black body spectrum can be explained. Bolometer works on the principle that the resistance changes with temperature. PREVOST'S THEORY OF HEAT EXCHANGES: Every object emits and absorbs radiant energy at all temperatures except at absolute zero. 	 ∴ a_λ = Amount of radiant energy absorbed Amount of radiant energy incident For a perfect black body, the absorptive power, a_λ = 1. A surface can have different absorptive powers for different wavelengths. Whenever radiant energy is incident on a surface, a part of it is absorbed, a part of it is reflected and the remaining part is transmitted through it.
JR-PHYSICS	419 TRANSMISSION OF HE

REFLECTING POWER (r):

 $r = \frac{Amount of radiant energy reflected}{Amount of radiant energy incident}$

•. TRANSMITTING POWER (t):

 $t = \frac{Amount of radiant energy transmitted}{Amount of radiant energy incident}$

• $a_{\lambda} + r + t = 1$

Here ' a_{λ} ' is absorptive power, 'r' is reflecting power and 't' is the transmitting power.

• PERFECT BLACK BODY:

- A body which completely absorbs all the heat radiation incident on it is called a perfect black body.(or) A body which emit the radiation of all wavelengths when at higher temperature is called perfect black body.
- Ferry's black body and Wien's black body are examples of artificial black bodies.
- A surface coated with lampblack or platinum black absorbs about 98% of the radiation incident on it.
- A perfect black body is a good absorber and also a good emitter of heat.

• The reflecting power of a black body is zero.

KIRCHOFF'S LAW:

- At a given temperature, for a given wave length range, the ratio of emissive power to absorptive power of a substance is constant.
- This constant is equal to the emissive power of a perfect black body at the given temperature and wavelength.

i.e.,
$$\frac{e_{\lambda}}{a_{\lambda}} = const = E_{\lambda}$$

Where ' E_{λ} ' is the emissive power of perfect

black body. ' e_{λ} ' and ' a_{λ} ' are emissive and absorptive powers of a given substance respectively.

- Good absorbers are good emitters.
- Poor absorbers are poor emitters.

APPLICATIONS OF KIRCHOFF'S LAW:

- A piece of blue glass absorbs red wavelengths at ordinary temperature. When it is heated strongly and cooled it appears brighter than a piece of red glass.
- A piece of yellow glass absorbs blue wavelengths at ordinary temperature. When heated in darkroom it appears blue because

it emits blue colour.

- Fraunhoffer lines in solar spectrum can be explained on the basis of Kirchhoff's law. They are absorption lines.
- Black surfaces are good absorbers and so good emitters but bad reflectors.
- Highly polished surfaces are bad absorbers and so bad emitters but good reflectors.
- Cooking vessels are coated black outside because black surface is a good absorber and good emitter.

STEFAN'S LAW:

• The amount of heat radiated by a black body per second per unit area is directly proportional to the fourth power of its absolute temperature.

$$E \propto T^4 \Longrightarrow E = \sigma T^4$$
.
Where

 $\sigma =$ Stefan's constant

$$= 5.67 \times 10^{-8} Wm^{-2} K^{-4}$$

- Dimensional formula of Stefan's constant is $MT^{-3}\theta^{-4}$.
- Radiant energy emitted by a hot body per second = $eA\sigma T^4$ where e is the emissivity of the hot body, A its surface area, T its absolute temperature and σ the Stefan's constant. (for perfect black body, e = 1)
- If the surface area of a body is more, it emits more heat energy. Hence it cools quickly.
- A hot copper cube cools in a lesser time compared to a hot copper sphere of same mass because of least surface area for sphere.
- Stefan's law holds good when the surrounding medium of the black body is vacuum.

STEFAN - BOLTZMANN'S LAW:

If a black body at absolute temperature T is surrounded by an enclosure at absolute temperature T_o , then the rate of loss of heat energy by radiation per unit area is given by.

$$E = \sigma (T^4 - T_0^4)$$

For any hot body, $E = \sigma Ae(T^4 - T_0^4)$ Where 'e' is the emissive power and 'A' is the area of cross-section of the hot body.

JR-PHYSICS

•

 The rate of cooling of a hot body is directly proportional to the mean excess of temperature of the body above the surroundings, provided the difference in temperature of the body and the surroundings is small. dd/d = K((θ/2) - θ_r). here dd/d = Rate of cooling. θ_r, θ₂ are the initial and final temperatures of the body respectively. θ_i is temperature of surroundings and K is the cooling constant. Rate of loss of heat of a hot body due to cooling dQ/dt = ms dθ/dt. Here m = mass of the body s = specific heat of the body s = specific heat of a liquid can be determined using Newton's law of cooling. If m₁, m₂ and m₃ are masses of the calorimeter, water and liquid and t₁ are the times taken by water and liquid to cool from θ₂ to θ₁°c, then m₁m₂s₁ + m₂s₂ = f₁/m₂s₁ + m₂s₂ = f₁/m₂s₁ + m₃s₃ = f₁/m₂s₁ + m₂s₃ = f₁/m₂s₁ + m₃s₃ = f₁/m₂s₁ + m₂s₂ = f₁/m₂s₁ + m₃s₃ = f₁/m₂s₁ + m₃s₃ = f₁/m₂s₁ + m₂s₂ = f₁/m₂s₁ + m₃s₃ = f₁/m₂s₁ + m₂s₃ = f₁/m₂s₁ + m₂s₃ = f₁/m₂s₁ + m₂s₂ = f₁/m₂s₁ + m₂s₃ = f₁/m₂ + m₂s₃ = f₁/m₂s₁ + m₂s₃ = f₁/m₂ + m₂s₃ = f₁/m₂ + m₂s₃ = f₁/m₂ + m₂s₃ = f₁/m₂ = f₁/m₂ + m₂s₃ = f₁/m₂ + m₂s₃ = f₁/m₃ + m₃s₃ = f₁/m₃ = f
 more radiant energy than the polished black surface. DIATHERMANOUS SUBSTANCES: The substances which allow the heat radiations to pass through them without getting themselves heated are called "diathermanous" substances. Wrapped on a brass rod. This is because brass is good conductor and wood is a bad conductor of heat brass is a bad conductor of heat

7.	When heat flow through a wire of uniform cross	17.	Which of the following combination of properties
	section under steady state		would be most desirable for a cooking vessel.
	1) Temperature gradient is same every where		1) High specific heat and low thermal
	2) Temperature at a particular point remains same		conductivity
	3) Rate of heat flow is same at all cross sections		2) Low specific heat and high thermal
	4) All the above		3) High specific heat and high thermal
8.	On heating one end of a rod the temperature of		conductivity
	the whole rod will be uniform when		4) Low specific heat and low thermal con-
	1) $k = 1$ 2) $k = 0$ 3) $k = 100$ 4) $k = \infty$		
9.	For an ideal conductor thermal resistance is	18.	For a perfect insulator coefficient of thermal
	1) unity 2) infinity 3) zero 4) 1000		
10.	A metal rod of area of cross section A has length		1) zero 2) infinite
	1 and coefficient of thermal conductivity K. The		3) one 4) two
	thermal resistance of the rod is	19.	Radiant energy depends upon
			1) nature of the surface of the body $(1 - 1)$
	1) $\frac{1}{2}$ 2) $\frac{KI}{KI}$ 3) $\frac{KA}{KI}$ 4 $\frac{A}{KI}$		2) surface area of the body
	$KA \rightarrow A \rightarrow 1 Kl$		3) temperature of the body
11.	Thermal conductivity of a metal rod depends on		4) All the above
	1) area of cross section	20.	I ne correct statement of the following:
	2) temperature gradient		A) Water can be boiled inside the artificial
	3) time of flow of heat		satellite by convection
	4) all the above		B) Heavy liquid can be boiled in artificial satellite
12	Coefficient of thermal conductivity		by convection
12.			1) Both statements are correct
	1) depends upon nature of the material of the body		2) Both statements are wrong
	2) is independent of dimensions of the body		A is correct but A is wrong
	3) both 1 and 2	21	The correct statement of the fellowing
	4) only 1	21.	A) Black body radiation is white
13.	By which of the following methods could a cup		B) Emissive power of a body is proportional to
	of hot tea lose heat when placed on metallic table		its absorptive power
	in a class room		1) statement A is correct
	a) conduction b) convection		2) statement B is correct
	c) radiation d) evaporation of liquid		4) Both are wrong
	1)ab 2)bc 3)abc 4)abcd	22	A sphere a cube and a thin circular plate of
14	If the end of metal rod is heated then the rate of		same material having same mass are initially
	flow of heat does not depend on		heated to 2000 a The body that apole faster is
	1) area of the end of the rod		1) since low 200° C. The body that cools faster is
	2) mass of the rod 3) time		1) circular plate (2) sphere
	4) temperature gradient	1 22	5) cube 4) all of these The thermal redictions are sincilarity
15.	It is hotter at same distance over the flames than	23.	1) \mathbf{V} more $(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{3}$
	in front of it because		$\begin{array}{c} 1 \end{pmatrix} \mathbf{A} - rays \\ 2 \end{pmatrix} catnode rays \\ 4 \end{pmatrix} c^{11} \\ \end{array}$
	1) air conducts heat upwards only	1 24	$3) \alpha$ - Tays 4) all The bulk of a thermometer is subsying $1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 $
	2) heat is radiated upwards only	24.	of another is available and that
	3) convection of heat occurs unwards only		or another is cynnurical. Equal quantity of
	4) heat is radiated downwards only		1) there are a set of the set of
16.	In the following solids thermal conductivity is		i) inermometer with spherical build will respond
	maximum for		QUICKLY
	1) copper 2) aluminium		2) thermometer with cylindrical bulb will respond slowly 2) thermometer with cylindrical bulb will respond slowly
	3) gold 4) silver		5) utermometer with spherical build will respond slowly
	-,		(u) with cylinarical build will respond
			цискіу

1) charge 2) potential difference 1. 1 2. 0 31	$4.\infty$
3) electric field strength) force 35. A black body emits	
26. The temperature at which a black body ceases 1. Radiations of all wave lengt	ihs
to radiate energy is 2. No radiation	
1. 0 K 2. 273 K 3. Radiation of single wave len	noth
3 -273 K 4 at all temperatures 4 Radiation of selected wave	length
27 The intensity of energy radiated by a bot body at 36 The best laboratory approxim	notigui nation to an ideal
27. The intensity of energy radiated by a not body at 50. The best laboratory approxim	iation to an ideal
a distance (1) from it varies as black body is	antad to high
$1 r^2 2 \frac{1}{2} \frac{1}{2} \frac{1}{4} \frac{1}{4}$	leated to high
1. r^2 2. $\frac{1}{r^2}$ 3. $\frac{1}{r^4}$ 4. $\frac{1}{r^3}$ temperature	1.
28 When a body has the same temperature as that	coaltar
of its surroundings:	lye
1. It does not radiate heat	d inside with suth
2 It radiates same quantity of heat as it receives	
from the surroundings	hted electric bulb.
We feel warmer because of	
5. It radiates less quality of heat as it receives 1. convection 2. rad	diation
Irom the surroundings3. conduction4. 1 a	and 2
4. It radiates more quantity of heat as it receives 38. The absorptive power of a perf	fectly black body
is is is it is the surroundings.	
29 One half of slab of ice is covered with black cloth 1. zero 2. 5	
and the other half with white cloth. This is then 3. 1 4. in	nfinite
placed in sunlight. After some time the pieces of 39. Heating effect of the incoming	solar radiation is
cloth are removed. Then maximum at local noon becaus	se
1. Ice has melted equally under both the pieces	zero
2. More ice has melted under white cloth 2. Sun's rays travel through	h minimum air
3. More ice has melted under black cloth thick-ness	
4. It will depend on the medium in which ice is 3 Solar rays are vertical to the	e ground
placed 4. Outgoing radiation is minimu	um
30 Compared to a person with white skin another 40 A black body does not	um
person with dark skin, will experience :	flect radiation
1. Less heat and more cold	ll the above
2. More heat and more cold	il ule above
3. More heat and less cold	leceived per unit
4. Less heat and less cold	i on Earth, Mars
31 Which of the following statements is wrong	
1. The same for all	
smooth surfaces	, Mars, Earth
2. Highly polished mirrorlike surfaces are very	Mars, Earth
4. In decreasing order Mars, E	Earth, Jupiter
3 Black surfaces are better absorbers than white ones KIRCHOFF'S LAV	N
4 Black surfaces are better radiators than white ones 42. The colour of a star is a measu	re of its
32 The absorptivity of Lamp black and platinum 1. Age 2. Temp	perature
black is 4.Distan	nce from the earth
43. A polished metal plate with a $ 43.$	rough black spot
on it is heated to about 1400K a	and quickly taken
tion from visible lighting	
1. The spot will appear bright	er than the plate
2. The spot will appear darker	r than the plate
3. Temperature 4. Amplitude 3. Heat conduction is easier de	ownward
4. It is easier and more conver	nient to do so

44.	If p calorie of heat energy is incident on a body	53.	Three identical spheres of different materials iron,
	and absorbs q calories, its coefficient of		gold and silver are at the same temperature. The
	absorption is		one that radiates more energy is
	1. p/q 2. $p - q$		1.Gold 2.Silver
	3. q/p 4. $q + p$		3.Iron 4.All radiate equally
45.	A piece of red glass when heated in dark to red		NEWTON'S LAW OF COOLING
	hot state will be	54.	Cooling graphs are drawn for three liquids a,b
	1. White 2. Red		and c. The specific heat is maximum for liquid
	3 Green 4 Invisible		····· ·· ··· ··· ··· ··· ··· ··· ······
46	A piece of blue glass when heated to a high		
10.	temperature and a piece of red glass at room		т † Д
	temperature are taken inside a dimly-lit room		e
	Then.		m
	1 The blue piece will look blue and the red piece		P C
	will look red as usual		
	2 The red piece will look brighter red and the		- Time -
	2. The fed piece will look ordinary blue		
	2 The blue piece will look brighter red		1. a 2.b
	5. The blue piece will look brighter red		3.c 4. for all the three a,b and c
	A Definition of the real piece	55.	A solid copper sphere of radius R and a hollow
47	4. Both the piece will look equally red		copper sphere of outer radius R are heated to
4/.	Four pieces of iron are heated to different		the same temperature and allowed to cool in the
	temperatures. The colours exhibited by them are		same surroundings. Then
	respectively red, yellow, orange and white		1. Solid sphere cools faster
	respectively. The one that is heated to the		2 Hollow sphere cools faster
	nignesi temperature will exhibit the colour		3. Both cool equally
	1. White 2. Yellow		4 Cannot be decided
10	3. Red 4. Orange	56	The rate of cooling of a body is
48.	A star which appears blue will be		1 Independent of the nature of the surface of
	1. Much hotter than the sun		the body
	2. Colder than the Sun		2 Independent of the area of the body
	3. As hot as the Sun $4 + 2720$ G		3 Dependent on the excess of temperature of
10	4. At-2/3°C		the body above that of the surroundings
49.	If a star is colder than the Sun it appears		4. Independent of the temperature of the
	1. Yellow 2. Red		surroundings
-	3. Blue 4. Violet	57	A cube a sphere and a circular plate made of
50.	A red-glass piece is heated until it glows in dark.		same material and having same mass are heated
	I he colour of the glow will be		to same high temperature. The body that cools
	1. Red 2. Orange		at the least rate when left in air at room
7 1	3. Green 4. Violet		temperature is
51.	At a given temperature, the ratio between		1 Sphere 2 Cube
	emissive power and absorptive power is same		3 Circular plate 4 All at the same rate
	for all bodies and is equal to the emissive power	58	Newton's law of cooling is applied in laboratory
	of black body. This statement is called		for the determination of the
	1. Newton's Law 2. Planck's law		1. Specific heat of gases
	3. Kirchoff 's law 4. Wein's law		2. Latent heat of gases
	STEFAN'S LAW		3. Specific heat of liquids
52.	If the sun become twice hotter, it will radiate		4. Latent heat of liquids
	1. Energy sixteen times larger	59.	Newton's law of cooling is a special case of
	2. Predominantly in the infrared		1. Kirchoff's law 2. Wein's law
	3. Predominantly in the ultra violet		3. Stefan-Boltzmann's law 4. Planck's law
	4. Energy sixteen times smaller		
IR-P	PHYSICS	474	TRANSMISSION OF HEAT

60.	The amount of heat energy radiated per second	68.	A) A body of low thermal capacity gets heated				
	by a surface depends upon:		or cooled quickly.				
	1. Area of the surface		B) Good emitters are bad reflectors.				
	2. Difference of temperature between the		1) both A and B are true				
	surface and its surroundings		2) A is true but B is false				
	3. Nature of the surface		3) B is true but A is false				
	4. All the above		4) both A and B are false				
61.	Four identical copper cylinders are painted. If	69	In the following, which statement is correct				
	they are all heated to the same temperature and		a) A hot body emits hot radiations only				
	left in vacuum which will cool most rapidly.		b) A cold body absorbs the radiations only				
	1. Painted shiny white 2. Painted rough black		c) A cold body emits cold radiations only				
62	3. Painted sniny black 4. Painted rough white		d) All the bodies emits and absorbs radiations				
02.	If T_B and T_s are the temperatures of the body and the surroundings and T_s is of very		simultaneously				
	high value, then the rate of cooling in natural		1) a 2 b				
	convection is proportional to		$\frac{1}{2}$				
		70	A) Greater the mass of radiating body slower				
	1 T^{4} 2 T^{4} 3 $(T T)^{\frac{5}{4}} \left(T_{\frac{5}{4}}^{\frac{5}{4}} - T_{\frac{5}{4}}^{\frac{5}{4}} \right)$	/0.	will be cooling				
	$I. I_B \qquad 2. I_S \qquad J(I_B - I_S)^4 + (B = S)$		B) Greater the temperature of the surrounding				
63.	Newton's law of cooling is a law connected with		lower will be cooling				
	1. Conduction 2. Convection		1) both A and B are true				
	3. Radiation 4. All of these		2) A is true but B is false				
64.	Newton's law of cooling holds good provided		3) B is true but A is false				
	the temperature difference between the body and		4) both A and B are false				
	the surroundings is		2) MATCHING TYPE				
	1. Large2. Small	71.	Match the following:				
	3. Very large4. Any value	,	a) coefficient of thermal $x = 2 \frac{w^{-4}}{4}$				
65.	A block of steel heated to 100°C is left in a room		a) coefficient of thermal $(M_m)^{-1}K$				
	to cool. Which of the curves shown in the		conductivity				
	figure, represents the correct behaviour		b) temperature gradient f) $Wm^{-1}K^{-1}$				
			c) Stefan's constant g) mK				
			d) Wein's constant h) Km^{-1}				
			1) $a-h$ $b-e$ $c-\sigma$ $d-f$				
	- Time ->						
	$1 \land 2 \land B \land C \land 4 \land and C$		2) $a-f, b-h, c-e, d-g$				
66	Let there be four articles having colours blue.		3) a-e,b-h,c-f,d-g				
000	red, black and white. When they are heated		4) $a - g, b - h, c - e, d - f$				
	together and allowed to cool, the article that cool	72.	Match the following				
	earlier is		a) Thermal resistance e) $MT^{-3}K^{-4}$				
	1. Blue 2. Red		b) Stefan's constant f) $M T^{-3} V^{-1}$				
	3. Black 4. White						
	NEW PATTERN QUESTIONS		c) wein's constant g) $M^{-1}L^2T^3K$				
	1) TRUE OR FALSE TYPE		d) coefficient of thermal h) $M^0 LK$				
67.	A) Heat transfer by conduction and convection		conductivity				
	require a material medium.		1) $a - e, b - g, c - h, d - f$				
	B) Heat transfer by radiation doesn't effect the madium the through which pages		2) $a - f, b - h, c - e, d - g$				
	1) both A and B are true		3) $a - g, b - e, c - h, d - f$				
	2) A is true but B is false		4) $a - a b - b c - a d - f$				
	3) B is true but A is false		iju 5,0 11,0 0,4 J				
	4) both A and B are false						
	·						
JR-F	PHYSICS	425	TRANSMISSION OF HEA				

73. Match the following 78. Assertion (A): Thermal radiations are List - I List - II electromagnetic radiation with wave lengths a) Fraunhofer lines e) Newton's law of greater than visible light. cooling Reason (R): Thermal radiations can propagate b) Black body f) Kirchhoff's law through vacuum c) Specific heat of g) Ferry 1) both A and R are true and the R is correct a liquid explanation of the A d) Thermal conductivity h) Searle's apparatus 2) both A and R are true, but R is not correct of a metal explanation of the A 1) $a \rightarrow g; b \rightarrow f; c \rightarrow e; d \rightarrow h$ 3) A is true, but the R is false. 2) $a \rightarrow f; b \rightarrow g; c \rightarrow e; d \rightarrow h$ 4) A is false, but the R is true. 3) $a \rightarrow e; b \rightarrow h; c \rightarrow g; d \rightarrow f$ 79. Assertion (A): Two metallic spheres of same size, one of copper and other of aluminium heated 4) $a \rightarrow h; b \rightarrow e; c \rightarrow g; d \rightarrow f$ to the same temperatures, will cool at the same **3) ORDER ARRANGING TYPE** rate when they are suspended in the same 74. I: A sphere II: A cube III: A thin circular plate all made of the same material having the same mass enclosure. are initially heated to 200°C. Identify the order **Reason (R):** The rate of cooling of a body is in which the objects cool faster when left in air at directly proportional to the excess of room temperature temperature of the body over the surroundings. 1) III, II and I 2) II, I and III 1) both A and R are true and the R is correct 4) II, III and I 3) I, II and III explanation of the A 75. A beaker full of hot water is kept in a room and 2) both A and R are true, but R is not correct it cools from explanation of the A I) 90°C to 80°C in t_1 sec. 3) A is true, but the R is false. II) 80°C to 70°C in t_2 sec. 4) A is false, but the R is true. III) 70°C to 60°C in t_3 sec. IV) 60°C to 50°C in t_4 sec. KEY If the room temperature is 10°C. Identify the 01)1 02) 3 03)3 04) 3 (05)4order in which the times of cooling increases 06) 1 07)4 08)4 09) 3 10)1 2) I,III,IV & II 1) IV,III,II & 1 11)4 12) 3 13)4 14) 2 15)3 3. I, II,III & IV 4) III, I, II & IV 16)4 17)2 18)1 19)4 20) 2 **4) ASSERTION & REASON TYPE** 22) 1 21) 3 23)1 24)4 25)2 76. **Assertion (A):** Woolen clothes keep the body 26) 1 27) 2 28) 2 29) 3 30) 2 warm in winter 31)2 32) 2 33)1 34) 2 35)1 **Reason (R):** Air is bad conductor of heat 36) 4 37) 2 38) 3 39) 2 40) 2 1) Both A and R are true, 41) 3 42) 2 43)1 44) 3 45)4 2) Both A and R are false 46) 3 47)1 48) 1 49) 2 50) 3 3) Both A and R are true, R is correct 52) 1 53)4 54) 1 55)2 51)3 explanation of A 4) Both A and R are true, R is not correct 56) 3 57)1 58) 3 59) 3 60)4 explanation of A 61) 2 62) 3 63) 2 64) 2 65)1 77. Assertion (A): The radiation from the sun 69)4 70) 2 66) 3 67) 1 68) 1 surface varies as the fourth power of its absolute 72) 3 74) 1 75)3 71)2 73)2 temperature. 76) 3 77) 4 78) 2 79)1 Reason (R): Sun is not a black body 1) Both A and R are true, 2) Both A and R are false 3) Both A and R are true, R is correct explanation of A 4) Both A and R are true, R is not correct explanation of A

NUMERICAL PROBLEMS	8. The temperature of hot and cold e	ends of a 20cm
LEVEL-I	long rod in thermal steady state	are at $100^{\circ}C$
1. In a steady state of heat conduction the		
temperature of the ends A and B of a rod 100cm	and 20°C respectively. The temp	perature at the
long are 0° C and 100° C. The temperature of	centre of the rod is	
the rod at a point 60cm distant from the end A is	1) $30^{\circ}C$ 2) $40^{\circ}C$	С
1) O^0C 2) 40^0C	3) $50^{\circ}C$ 4) $60^{\circ}C$	2
3) $60^{\circ}C$ 4) $100^{\circ}C$	9. Heat is flowing through two cylin	ndrical rods of
2. In the steady state the two ends of a metre rod	same material. The diameters of	the rods are in
are at $30^{\circ}C$ and $20^{\circ}C$, the temperature at the	the ratio $1:2$ and their lengths a	the in the ratio
40th cm from the end at higher temperature is	ends is same, then the ratio of an	pounts of heat
1) $22^{\circ}C$ 2) $26^{\circ}C$	conducted through them per unit t	time will be
3) $25^{\circ}C$ 4) $24^{\circ}C$	1)1:1 2)2:1	
3. An aluminium meter rod of area of cross section	3) 1 : 4 4) 1 : 8	
$4cm^2$ with $K = 0.5$ cal/gm- ⁰ C is observed that	10. A cylindrical rod with one en	id in a steam
at steady state 360 cal of heat flows per minute.	chamber and the other end is in i	ce. It is found
1) $2^{0} \alpha / 2^{1} \alpha / 2$	that I gm of ice melts per second	a. If the rod is
$\frac{1}{5} \frac{5}{C} \frac{1}{cm} = \frac{2}{5} \frac{5}{C} \frac{1}{cm}$	the length and double area of cross	ss section The
$\begin{array}{c} 3) 12^{\circ}C/cm \\ 4) 20^{\circ}C/cm \\ \hline \end{array}$	mass of ice that melts per second	18
a copper rod of length 50cm and area	1) 2 gm 2) 4 gm	1
15 am^2 when the ends are at 100° C and 0° C is	3) 1 gm 4) 0.5 g	<u>g</u> m
	11. The area of glass of a window	of a room is
$\left(K = 380Wm^{-1}K^{-1}\right)$	$10m^2$ and thickness is 2mm. The c	outer and inner
1)1140 J 2)1260 J	temperatures are $40^{\circ}C$ and $20^{\circ}C$	respectively.
3)1520 J 4)1380 J	Thermal conductivity of glass in	S.I is 0.2. The
5. The quantity of heat flowing for 10 seconds	heat flowing in the room per seco	nd will be
through a rod of length 40cm, area $50cm^2$ is	1) $3 \times 10^4 J$ 2) $2 \times 10^4 J$	$0^4 J$
200J. If the temperature difference at the ends	3) 30 <i>J</i> 4) 45 <i>J</i>	
of the rod is $80^{\circ}C$, the coefficient of thermal	12. Three bodies A,B,C are at -27° C	$C, 0^{0}C, 100^{0}C$
conductivity of the rod in $Wm^{-1}K^{-1}$ is	respectively. The body which do	pes not radiate
1) 20 2) 60	heat is	
$\begin{array}{c} 3) 80 \\ 6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	2 B	
o. One end of metal bar of area of cross section	3. C	
$5cm^2$ and 2.5 cm in length is in steam other in	4. All the bodies radiate heat	
minute is ($K = 0.8 \text{ cal/gm}^{-0}\text{C}$)	13. A black body at a temperature 40	00K placed in
1) 16 gm 2) 12 gm	an enclosure at 300K has coolin	g rate r. If the
3) 24 gm 4)36 gm	temperature of the body were 800	UK and placed
7. Which of the following rods made of same	in the same enclosure, the coolif	ng rate will be
material will conduct more heat in a given time	$1. 2r \qquad 2. 16r$	
when their ends are maintained at the same	3. 23r 4. 8r	
temperatures difference. 1) $1 - 1m n - 1m - 2$ 1 - 2m n - 2	14. Two spherical black bodies of rac	lii r_1 and r_2 are
$1) 1 = 1m, r = 1cm \qquad 2) 1 = 2m, r = 2cm$	with surface temperatures T_1 and T_2	Γ_2 respectively
3) $1 = 3m, r = 1cm$ 4) $1 = 100cm, r = 2cm$	radiate the same power. r_1/r_2 mu	ust be equal to T_{λ}^{2}
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(1)^{1}$
		-1/
JR-PHYSICS	TRANSMISSI	ON OF HEAT

22.	The radiant energyemitted by a perfectblackbody at 400K per unit area per second is1. 5700 J2. 1459 J3. 256 J4. 1000 J	15.	$\frac{E_1}{E_2} = \left(\frac{r_1}{r_2}\right)^2 \left(\frac{T_1}{T_2}\right)^4$
	furnace is nearly [$\sigma = 5.7 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4}$] 1. 3400 K 2. 1012 K 3. 1000 K 4. 5700 K	13.	$\frac{E_1}{E_2} = \frac{T_{B_1}^{4} - T_s^{4}}{T_{B_2}^{4} - T_s^{4}}$
21.	The radiant power of a furnace of surface area of 0.6 m^2 is 34 KW. The temperature of the	7.	$Q \propto \frac{r^2}{1}$
	of their emissive powers is 1. 15:8 2. 16:3 3. 3:16 4. 5:8	6.	$Q = mL = \frac{KA(\theta_1 - \theta_2)t}{1}$
20.	$3.625 \times 10^{-4} \text{m}^2$ 4.1667 m^2 Two black bodies at 327°C and 627°C aresuspended in an environment at 27°C . The ratio	4.	$Q = \frac{KA(\theta_1 - \theta_2)t}{1}$
	the filament is nearly 1. $16m^2$ 2. $16.67 \times 10^4 m^2$	2.	$\frac{\theta_1 - \theta_2}{L} = \frac{\theta - \theta_2}{1}$
	If $\sigma = 6 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4}$, the surface area of		HINTS
17.	2227° C. The emissivity of the filament is 0.16		26) 3
10	3. 3:1 4. 1:3		$21)_3$ $22)_2$ $23)_4$ $24)_3$ $25)_1$
	1. $\sqrt{3}:1$ 2. $1:\sqrt{3}$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	temperatures is.		06) 2 07) 4 08) 4 09) 4 10) 3 11) 2 12) 4 12) 2 14) 2 15) 2
	emissivities are 0.1 and 0.9, the ratio of their		01) 3 02) 2 03) 1 04) 1 05) 1
	and are radiating the same power. If their		KEY
18.	Two objects A & B have exactly the same shape		the body
	4. White light without the red part		4. 1 or 2 or 3 depending on the specific heat of
	3. Blue		2. less than 8 minute
	1. Red 2. White light		1.8 minute
	buib containing cadmium vapour, the transmitted light will be		The same body cools from 60°C to 50°C in
	tungsten filament lamp is made to pass through a	26.	A body cools from 70°C to 60°C in 8 minute.
	a red colour to the flame. If white light from a		3. 500 K 4. 400 K
17.	Cadmium salt when put into a bunsen flame gives		1. 800 K 2. 673 K
	3. λ_1 and λ_2 4. λ_1 , λ_2 , λ_3 and λ_4		$\left(\frac{1}{2^{4}}=1.189\right)$
	1. λ_1 2. λ_2		surroundings) is
	wavelengths		as faster (Neglect the temperature of
	temperature. when this substance is at a lower temperature, it will absorb only the following	25.	An object is at a temperature of 400°C. The
	$\lambda_1, \lambda_2, \lambda_3$ and λ_4 when it is at higher		3. 16 E 4. E/16
10.	Contain substance emits only the wavelengths		1. 2E 2. E/2
16	conclusion		273°C is
	4. The information is incomplete to draw any	24.	The rate of radiation from a black body at 0° C is
	2. Less than that of the second 3. Equal in both cases		3. 400° C 4. 527°C
	1. Greater than that of the second		1. 508°C 2. 273°C
	by the first sphere is :		body at which the rate of energy emission is 16×10^6 J/m ² s is
	and 4m and temperature 4000K and 2000K		rate of 10^6 J/m ² s. The temperature of a black
15.	Two spheres of the same material have radii 1m	23.	A black body at 127°C emits the energy at the

SIVI

19.
$$A = \frac{E}{e \sigma T^4}$$
19. $A = \frac{E}{e \sigma T^4}$ 20. $\frac{E_1}{E_2} = \frac{T_a^4 - T_i^4}{T_a, ^4 - T_i^4}$ 20. $\frac{E_1}{E_2} = \frac{T_a^4 - T_i^4}{T_a, ^4 - T_i^4}$ 21. The temperature gradient in and of 0.5m length is
 $80^\circ C$: m. If the temperature of colder rad of
trials $0^\circ C$: then the temperature of colder rad of
intreases to
 $3) 10^\circ C$ = $(2 - 10^\circ C)$
 $3) 10^\circ C$ = $(2 - 10^\circ C)$

12. Two cylindrical rods of the same substance have
diameters
$$d_1$$
 and d_2 . The amounts of heat
conducted by these two rods, for same
temperature difference between two ends will be
equal if their lengths are related by
1) $\frac{1_1}{1_2} = \frac{d_1}{d_2}$ 2) $\frac{1_1}{1_2} = \left(\frac{d_1}{d_2}\right)^2$
3) $\frac{1_1}{1_2} = \frac{d_2}{d_1}$ 4) $\frac{1_1}{1_2} = \left(\frac{d_2}{d_1}\right)^2$
13. Two rods of length 1 and 21 thermal con-
ductivities 2*K* and *K* are connected end to end. If
cross sectional areas of two rods are equal, then
equivalent thermal conductivity of the system is
1) $\left(\frac{5}{6}\right)K$ 2) 1.5K
3) 1.2 K 4) $\left(\frac{8}{9}\right)K$
14. A wall has two layers A and B, each made of
different material. Both the layers have the same
thickness. The thermal conductivity of material

- different material. Both the layers have the same thickness. The thermal conductivity of material of A is twice that of B. Under thermal equilibrium, the temperature difference across the wall is $42^{\circ}C$. The temperature difference across the layer A is
 - 1) $8^{\circ}C$ 2) $14^{\circ}C$

3)
$$18^{\circ}C$$
 4) $24^{\circ}C$

15. Two rods of same length and cross sections are joined end to end. Their thermal conductivities are in the ratio 2 : 3. If the free end of the first rod is at $0^{0}C$ and free end of the second rod is at $100^{0}C$, the temperature at the junction of the

two rods after attaining steady state is

1) $33.33^{\circ}C$ 2) $40^{\circ}C$

3) $50^{\circ}C$ 4) $60^{\circ}C$

16. Two metal plates of same area and ratio of thickness 1 : 2 are having ratio of thermal conductivities 1 : 2 are in contact. If the free sides of the first plate is maintained at $-20^{\circ}C$ and the free side of the other plate is maintained at $+40^{\circ}C$, the temperature of the common surface after attaining steady state is

4) $20^{\circ}C$

1) $0^{\circ}C$ 2) $-10^{\circ}C$

3) $10^{\circ}C$

- 17. A wall has two layers A and B, each of same thickness and same area of cross-section but made of different materials. The thermal conductivity of A is three times that of B. The temperature difference across the wall is $20^{\circ}C$. In thermal equilibrium
 - a) the temperature difference across the layer A is $15^{\circ}C$
 - b) the temperature difference across the B is $15^{0}\mbox{C}$
 - c) the rate of flow of heat across A is more than across B.

d) the rate of flow of heat across A and B are same1) a,b correct2) b, c correct3) c, d correct4) b, d correct

Two rods of same lengths, radii and material transfer a given amount of heat in 12 second when they are joined as shown in the figure (a). But when they are joined as shown in figure (b), then they will transfer same heat in same conditions in

1) 24 sec	2) 13 sec
3) 15 sec	4) 48 sec

19. Thermal conductances of two slabs of equal length are 2 and 3 units respectively. If they are joined in series. The conductance of the combination is
1) 1 unit
2) 5 units

1) I unit	2) 5 units
3) 2.4 units	4)1.2 unit

20. A vessel full of hot water is kept in a room and it cools from 80° C to 75° C in T₁ minutes, from 75° C to 70° C in T₂ minutes and from 70° C to 65° C in T₃ minutes. Then

1.
$$T_1 = T_2 = T_3$$

3. $T_1 < T_2 = T_3$
4. $T_1 < T_2 < T_3$

21. Two hot copper spheres of radii in the ratio 2 : 3 are kept in an evacuated enclosure. If each sphere is initially at a temperature 10° C above that of the enclosure, the rates of loss of heat of the spheres will be in the ratio of 1 - 4 + 0

1.4:9	2.9:4
3. 2:3	4. 3 : 2

22.	A hot body is placed in cold surroundings. Its	31.	Two sphe	res of th	e same i	netal hav	ve radii 1m
	rate of cooling is 3°C per minute when its tem-		and 4m and	nd temr	oerature	4000K a	and 2000K
	perature is $70^{\overline{0}}$ C and $\overline{1.5}^{0}$ C per minute when its		respective	ly. The r	atio of th	e energy	radiated per
	temperature is 50°C it rate of cooling when its		second by	the firs	t to the se	econd is	1
	temperature is 40° C.		1.1:1		2	. 1:2	
	1. 0.25° C/min 2. 0.5° C/min		3. 2:1		4	. 1:4	
	3. 0.75° C/min 4. 1° C/min	32	A small hc	ole in a fi	urnace ac	ets like a	black body
23.	Two electric bulbs have filaments of lengths	J 52.	Its area is	1 cm ² ar	nd its tem	nerature	is the same
	L and 2 L, diameters 2d and d and emissivities		as that of th	he interio	or of the f	jimace 1	727^{0} c The
	3e and 4e. If their temperatures are in the ratio		energy ra	diated o	ut of the	hole ne	r second is
	2:3, their powers will be in the ratio of		nearly		ut of the	, note pe	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 70 I		2	60 I	
24	$\begin{array}{c} 3.8:3 \\ \text{If the charge base for the charge of a black headwine} \end{array}$		1. 77 J 2 01 J		<u></u>	. 00 J	
24.	If the absolute temperature of a black body is	1 22	J. 91J		4 f . h .	•. 104 J	a main a d larr
	loss of host by rediction is	33.	If the tem $0.50(41)$)1 DOUY 1	s raised by
	1 15% $2 16%$		0.5% then	n the nea	at energy	/ radiated	a would in-
	3 1600% $4 1500%$		crease by		2	1.00/	
25	If the absolute temperature of a black body is		1. 0.5%		2	. 1.0%	
	doubled the maximum energy density		3. 1.3%		4	. 2.0%	1. 7
	1. Increases to 16 times	34.	The emiss	sive pow	ver of a s	phere of	radius 5cm
	2. Increases to 32 times		coated wi	ith lam	p black	1s 1500	Wm ⁻² . The
	3. Increases to 31 times		amount of	energy	radiated	per seco	nd is.
	4. Decreases to 32 times		1.15.7 J	_	2	. 3.14 J	
26.	Two bodies have thermal capacities in the ratio		3. 47.10.	J	4	•. 4.71 J	
	3 : 4 and the rates of loss of heat in the ratio	35.	At a partic	ular tem	perature	and wav	elength, the
	3:5. Their rates of cooling will be in the ratio of		spectral en	nissive p	ower and	lmonoch	romatic ab-
	1. 9:20 2. 4:5		sorptive p	ower o	f a body	are 10 a	and 8 units
	3. 5:4 4. 1:1		respectivel	ly. The e	missive p	owerofa	a black body
27.	A black metal foil is warmed by radiation from a		at the same	e temper	rature wi	ll be	
	small sphere at temperature 1 and at a distance		1. 1 unit		2	. 1.25 u	nit
	d. It is found that the power received by the foll		3. zero		4	. Infinit	У
	are double, the power received by the foil will	.			KEY		
	be ·		01) 2	02) 3	03) 3	04) 1	05)4
	1 16P 2 4P		06) 2	07) 3	08) 1	09) 3	10) 1
	3 2P 4 P		11)2	12) 2	13) 3	14) 2	15)4
28.	The temperature of a black body is increased by		16) 3	17)4	18)4	19) 3	20) 4
	50%. The amount of radiation emitted by the		21) 1	22) 3	23) 2	24) 4	25) 2
	body increases by:		26) 2	27) 2	28)4	29)1	30) 4
	1.50% 2.100%		31) 1	32) 3	33) 3	34) 1	35) 2
	3. 225% 4.406.25%		,	Í	INTS	,	<i>,</i>
29.	Two perfectly conducting spheres of the same						
	metal have radii 3cm and 6cm respectively and		$\frac{1_1 + 1_2}{2} =$	$\frac{1_1}{1_1} + \frac{1_2}{1_2}$			
	are 10°C and 15°C hotter than the surround-	2.	Κ	$k_1 k_2$			
	ings. The ratio of loss of heat of the spheres is		TT () (1 4		
	1. 1:0 $2.4:3$ 2. 4.0 $4.1.16$	3.	$K(A_1 + A_2)$	$_2) = k_1 A_1$	$_{1} + k_{2}A_{2}$		
20	5. $4:9$ 4. $1:10$		k(T - T)) k(T = T)		
50.	70° C The time taken by it to cool from 70° C to	4.	$\frac{n_1(I_1 - I_0)}{I_1}$	$j = \frac{k_2}{k_2}$	$\frac{1}{1}$		
	40° C in a room with temperature 15°C is nearly		\mathbf{I}_{1}		I ₂		
	1. 4 minute 2. 5 minute						
	3. 6 minute 4. 7 minute						
1							
.IR-F	PHYSICS	121			TDANS		

29.
$$\frac{\left(\frac{dQ}{dt}\right)_{1}}{\left(\frac{dQ}{dt}\right)_{2}} = \left(\frac{r_{1}}{r_{2}}\right)^{2} \left(\frac{\Delta T_{1}}{\Delta T_{2}}\right)$$

32.
$$\frac{E}{t} = \sigma A T^4$$
 where $A = 4\pi r^2$

33.
$$\frac{\Delta E}{E} \times 100 = 4 \left[\frac{\Delta T}{T} \times 100 \right]$$

34.
$$W = EA$$

35. $E_{\lambda} = \frac{e_{\lambda}}{2}$

35.
$$E_{\lambda} = \frac{e_{\lambda}}{a_{\lambda}}$$

LEVEL-III

1. A cube of side 10cm is filled with ice of density 0.9gm/c.c. Thickness of the walls of the cube is 1mm and thermal conductivity of the material of the cube is 0.01 C.G.S. units. If the cube is placed in steam bath maintained at a temperature of $100^{\circ}C$, the time in which ice completely melts, is

100 0	*
1) 6 sec	2) 12 sec
3) 24 sec	4)48 sec

2. A cylindrical rod with one end in a steam chamber and the other end in ice results in melting of 0.1gm of ice per second. If the rod is replaced by another rod with half the length and double the radius of the first and if the thermal conductivity of the material of the second rod is 0.25 times that of first, the rate at which ice melts

in gms^{-1} will be

1) 0.1	2) 0.2
3) 1.6	4) 3. 2

3. Three rods made of same material and having the same cross section and lengths have been joined as shown in the figure. The temperature of the junction of the rods will be

A cylinder of radius R made of a material of 9. An aluminum foil of emissivity 0.1 is placed in between two concentric spheres at temperatures thermal conductivity k_1 is surrounded by a 300K and 200K respectively. Assume that the cylindrical shell of inner radius R and outer spheres are perfect black body radiators. The radius 2R made of material of thermal rate of energy transfer between one of the spheres conductivity k_2 . The ends of the combined and the foil is ($\sigma = 5.672 \times 10^{-8}$ M.K.S.units) system are maintained at two different 1.20.2 watt 2.15.6 watt temperatures. There is no loss of heat across the 3.12.3 watt 4.18.5 watt cylindrical surface and the system is in steady 10. A star behaves like a perfectly black body state. The effective thermal conductivity is emitting radiant energy. The ratio of radiant 1) $k_1 + k_2$ 2) $\frac{k_1 k_2}{k_1 + k_2}$ energy per second by this star to that emitted by another star having 8 times the radius of former, but having temperature, one-fourth that of the 3) $\frac{k_1 + 3k_2}{4}$ 4) $\frac{3k_1 + k_2}{4}$ former in kelvin is 1.1:4 2.1:16 5. A calorimeter of water equivalent 5 g has water 3.4:1 4.16:1 of mass 55 g upto a certain level. Another identical calorimeter has a liquid of mass 38 g The rates of heat radiation from two patches of 11. upto same level. As both of them cool in the skin each of area S, on a patient's chest differ by same surroundings from 50°C to 46°C, water 2%. If the patch of the lower temperature is at takes 80 s where as the liquid takes 32 s to 300K and the emissivity of both the patches is cool. If the specific heat of water is $1 \text{ cal/g-}^{0}\text{C}$, assumed to be unity, The temperature of the the specific heat of the liquid in cal/g-⁰C is other patch 1. 0.8 2.0.41. 301.5K 2. 601.5K 3. 0.5 4. 0.2 3.103.5K 4. 106.5K A calorimeter of water equivalent 6 g has water 6. KEY of mass 64 g up to a certain volume. Another 02) 2 03)2 (01)204) 3 05)3 identical calorimeter has liquid of mass 50 g and 07)4 08) 2 specific heat 0.6 cal/g-⁰C upto same level. If 06) 1 (09)410) 3 both of them cool in the same surroundings 11)1 through same range of temperture and the time taken for the water to cool is 140 s, the time HINTS taken for the liquid to cool is 1. $mL = 6 \times \frac{kA(\theta_1 - \theta_2)t}{1}$ 1.72 s 2. 140 s 3. 36 s 4. 120 s 7. A sphere of density d, specific heat capacity c $m = V \rho$ and radius r is hung by a thermally insulating thread $\left(\frac{m}{t}\right)L = \frac{k\pi r^2 \left(\theta_1 - \theta_2\right)}{1}$ in an enclosure which is kept at lower tempera-2. ture than the sphere. The temperature of the sphere starts to drop at a rate which is proportional to 1. $c/r^{3}d$ 2. $1/r^{3}dc$ $\left(\frac{m}{t}\right) \propto \frac{kr^2}{1}$ 3. $3r^3 dc$ 4. 1 /r dc 8. Two metallic spheres S_1 and S_2 are made of the same material and have identical surface finish. $\frac{KA(\theta-0)}{1} = \frac{KA(90-\theta)}{1} + \frac{KA(90-\theta)}{1}$ 3. The mass of S_1 is three times that to S_2 . Both the spheres are heated to the same high temperature and placed in the same room $Q = \frac{K\pi R^2 (\theta_1 - \theta_2) t}{1}$ 4. having lower temperature but are thermally insulated from each other. The ratio of the initial For the given problem KR^2 = constant rate of cooling of S_1 to that S_2 is : $k(2R)^2 = k_1R^2 + k_2(4R^2 - R^2)$ 1. 1/3 2. $(1/3)^{\frac{1}{3}}$ 4. $\sqrt{3}/1$ 3. $1/\sqrt{3}$ **JR-PHYSICS** 433 TRANSMISSION OF HEAT

$$4K = k_1 + 3k_2$$

$$K = \frac{k_1 + 3k_2}{4}$$
5.
$$\frac{W + m_1s_1}{W + m_2s_2} = \frac{t_1}{t_2}$$
6.
$$\frac{m_1s_1 + m_2s_2}{t_1} = \frac{m_1s_1 + m_3s_3}{t_2}$$
7.
$$mc\frac{d\theta}{dt} \propto r^2$$
9.
$$\frac{1}{2}\frac{E}{At} = \sigma e \left(T_1^4 - T_2^4\right)$$
11.
$$\frac{\Delta E}{E} \times 100 = 4 \left(\frac{\Delta T}{T} \times 100\right)$$
LEVEL - IV COMPREHENSION TYPE QUESTIONS Read the passage given below.
1) (i) **Insulators:** The conduction takes place by lattice vibrations. At absolute zero, the atoms in a solid are staying at their lattice points. As the temperature rises all the atoms are in a state of random vibration about their mean lattice positions. When a body is brought near a hot source the particles nearest the hot source will receive heat and thus begin to vibrate with higher energies. So, the vibration of an atom will automatically change the attraction pattern of the neighbouring atom and thus influence the motion of these neighbouring atoms. Thus the atoms vibrating with high amplitudes near the hot end will tend to increase the amplitude of vibration of an term vibration of the next nearest neighbours. Thus thermal energy is imparted to them. So, a chain process starts and heat in the form of vibration motion of

atoms in their lattice points slowly moves outwards from the hot end towards the cold end. Obviously, this process has to be slow, and thus, the K value will be small in this case.

(ii) Metals: Metals have the core ions fixed in their spaces and these are embedded in an ocean of free electrons which move as a gas within the body of the metal. The conduction in metals is due to free electrons. The free electrons moving at random come near and strike the hot end, receive energy, absorb it and increasing their own

kinetic energy thereby, impart their energy to other electrons towards the cold end. Thus heat is conducted from end to end. As the electrons are more mobile, the heat is transferred much more quickly. The core ions in their lattice positions also take part in conduction by means of their vibrations. The main carriers of heat energy in metals are the mobile electrons. So the conductivity of metals is rather high as compared to the conductivity in insulators. Answer the following questions. 1. Metals are good conductors because 1) molecules are closely packed in them 2) they contain free electrons 3) of collisions occurring between their molecules 4) they have reflecting surface 2. Statement A: The conduction in insulators takes place by lattice vibrations. Statement B: The conduction in metals is due to mobile electrons. 1) A is true, B is true 2) A is true, B is false 3) A is false, B is true 4) both A and B are false 3. Assertion: Conduction of heat in conductors is quicker than that in insulators. **Reason:** Electrons are more mobile and conduction of heat in metals is due to mobile electrons. 1) both A and R are true and the R is correct explanation of the A 2) both A and R are true, but R is not correct explanation of the A 3) A is true, but the R is false. 4) A is false, but the R is true. II. When we sit before a fire, we feel warm. This is because our body is receiving more thermal energy per unit area from the fire than it is losing by its own radiation. On the other hand, when we sit near a block of ice, we feel cold. This is because our body loses more heat energy by radiation than what it receives from ice. Thus, when a body absorbs more radiant energy than what it emits, there is rise in the temperature of the body. when a body absorbs less energy absorbed is equal to the quantity of thermal energy emitted, then there is no change in

> When a body has the same temperature as that of its surrounding, it is a case of dynamic equilibrium and not that of a static equilibrium.

the temperature of the body.

a state of

vibration

Prevost's theory of heat exchanges
leads to the fact that good absorbers are good
radiators and vice versa as proved below.

Consider two bodies, one of black coloured 'B' and the other of white coloured 'W', suspended by insulating threads inside a constant temperature enclosure. The bodies will be in thermal equilibrium with the enclosure.

Since B is a black body therefore it should absorb most of the radiation incident on it. But its temperature remains constant. So, it must also be emitting at the same rate at which it absorbs. Thus, good absorbers are good radiators. Applying the same type of argument in the case of white body, we can conclude that poor absorbers are poor emitters.

Answer the following questions.

- 1. A small hole in the wall of an enclosure behaves as
 - 1) Good absorber & Poor emitter
 - 2) Good absorber & Good emitter
 - 3) Poor absorber & Poor emitter
 - 4) Poor absorber & Good emitter
- Statement A: A body of low Thermal capacity gets heated or cooled quickly
 Statement B: Good emitters are bad reflectors 1) A is true, B is true
 - 2) A is true, B is false
 - 3) A is false, B is true
 - 4) both A and B are false
- A Blackbody, a white body, A Blue body and a Red coloured body are heated to same temperature and are allowed to cool in the same surroundings. Then the body that cools early is 1) Red 2) Blue 3) White 4) Black
- 4. A person with dark skin when compared to a person with white skin will experience
 - 1) Less heat, less cold
 - 2) Less heat, more cold
 - 3) More heat, more cold
 - 4) More heat, less cold

KEY

I) 1) 2 2) 1 3) 1 II) 1) 2 2) 1 3) 4 4) 3

PREVIOUS	EAMCET	QUESTIONS

1. Two identical bodies have temperature $277^{\circ}C$ and $67^{\circ}C$. If the surrounding temperature is $27^{\circ}C$, the ratio loss of heat of the two bodies during the same interval of time is (approximately) (EAMCET-2005/E) 1)4:12) 8 : 1 4) 16:1 3) 12 : 1 2. Two bodies of same shape, same size and same radiating power have emissivities 0.2 and 0.8. The ratio of their temperature is (EAMCET-2005/M) 1) $\sqrt{3}$:1 2) $\sqrt{2}$: 1 3) 1: $\sqrt{5}$ 4) 1: $\sqrt{3}$ 3. A black body of mass 34.38gm and surface area $19.2 cm^2$ is at an initial temperature of 400k. It is allowed to cool inside an evacuated enclosure kept at constant temperature 300k. The rate of cooling is $0.04^{\circ}C$ per second. The specific heat of the body in $Jkg^{-1}k^{-1}$ is (Stefan's constant $\sigma = 5.73 \times 10^{-8} Wm^{-2}k^{-4}$ (EAMCET - 2004/E) 1) 2800 2) 2100 3) 1400 4) 1200 4. The absolute temperature of a body A is four times that of another body B. For two bodies, the difference in wave lengths at which energy radiated is maximum is 3.0 μm . Then the wavelength at which the body B radiates maximum energy in micrometer is (EAMCET - 2004/M) 1)2 2) 2.5 3) 4.0 4) 45 5. The radiation emitted by a star A is 10,000 times that of the sun. If the surface temperature of the sun and the star A are 6000K and 2000k respectively, the ratio of the radii of the star A and the sun is (EAMCET-2003/E) 1) 300 : 1 2) 600: 1 3) 900 : 1 4) 1200:1 6. A particular star (assuming it as a black body) has a surface temperature of about $5 \times 10^4 k$. The wave length in nano-meters at which its radiation becomes maximum is (b=0.0029 mk)(EAMCET-2003/M)

1) 48	2) 58
3) 60	4) 70

(EAMCET 2001/E) 1. $5.67 \times 10^9 Wm^{-2}$ 2. $5.67 \times 10^9 Wm^2$ 3. $10.67 \times 10^7 Wm^{-2}$ 4. $10.67 \times 10^9 Wm^2$ 10. The temperature of a black body is increased by 50%. Then the percentage of increase of radiation is approximately (EAMCET,2001/M) 1. 100% 2. 25% 3. 400% 4. 500% QUESTIONS FROM OTHER COMPETITIVE EXAMS 11. The radiant energy from the sun, incident normally at the surface of earth, is $20 \text{ kcal}/(m^2 - \text{min})$ 3. 400% 4. 500% 11. The radiant energy from the sun, incident normally at the surface of earth, is $20 \text{ kcal}/(m^2 - \text{min})$ 3. $160 \text{ kcal}/(m^2 - \text{min})$ 2. $80 \text{ kcal}/(m^2 - \text{min})$ 3. $160 \text{ kcal}/(m^2 - \text{min})$ 2. $80 \text{ kcal}/(m^2 - \text{min})$ 3. $160 \text{ kcal}/(m^2 - \text{min})$ 2. $80 \text{ kcal}/(m^2 - \text{min})$ 3. $160 \text{ kcal}/(m^2 - \text{min})$ 2. $80 \text{ kcal}/(m^2 - \text{min})$ 3. $160 \text{ kcal}/(m^2 - \text{min})$ 2. $80 \text{ kcal}/(m^2 - \text{min})$ 3. $160 \text{ kcal}/(m^2 - \text{min})$ 2. $80 \text{ kcal}/(m^2 - \text{min})$ 3. $160 \text{ kcal}/(m^2 - \text{min})$ 2. $80 \text{ kcal}/(m^2 - \text{min})$ 3. $160 \text{ kcal}/(m^2 - \text{min})$ 2. $80 \text{ kcal}/(m^2 - \text{min})$ 3. 1500 2. $(500)^2$ 3. $(500)^3$ 4. $(500)^4$ 13. The temperature of the sun is doubled, the rate of energy received on earth will be increased by a factor of (CBSE, PMT 1997) 1. 2 2. $2. 4$ 3. 8 4. 16 4. The temperature of the sun is 300% C 4) 20% C 1) 45% C 2) 60% C 3) 30% C 4) 20% C	7. 8. 9.	The rate of emission of a black body at temperature 27°C is E_1 . If its temperature is increased to 327°C, the rate of emission of radiation is E_2 . The relation between E_1 and E_2 is (EAMCET 2002 / M) 1. $E_2 = 24E_1$ 2. $E_2 = 16E_1$ 3. $E_2 = 8E_1$ 4. $E_2 = 4E_1$ When the temperature of a black body increases, it is observed that the wavelength corresponding to maximum energy changes from 0.26 mm to 0.13mm. The ratio of the emissive powers of the body at the respective temperatures is: (EAMCET 2002 E) 1.16/1 2.4/1 3.1/4 4.1/16 The wave length corresponding to maximum intensity of radiation emitted by a star is 289.8nm. The intensity of radiation for the star is (Stefan's constant = $5.6 \times 10^{-8} Wm^{-2}K^{-4}$)	14. 15. 16. 17.	A body cools Assuming N temperature of how long will from 40°C to 1. 2.5 Second 3. 7.5 Second For an enclor maximum rad the temperatur will shift to 1. $0.5 \lambda_m$ 3. $4 \lambda_m$ Which of the for cooking a 1. high specifie 3. low specifie 4. low specifie The temperatur	from 50°C to 49.9°C in 5 seconds Newton's law fo cooling of the surroundings fixed at 3 1 the same body take for cool 39.9°C? (CBSE, PMT 1994 1 2. 5 Second 1 4. 10 Second Soure maintained at 1000K liation occurs at wavelength Line is raised to 2000K, the p (CBSE, PMT 19 2. λ_m 4. 8 λ_m following qualities are best sub- utensil (MP PMT 2001) c heat and low thermal conduct theat and high ther	onds. and 0°C, oling 4) the ${}_{m}$. If peak 093) uited) tivity tivity tivity s of a aving
(AIEEE 2004) 1. 100% 2. 25% 3. 400% 4. 500% QUESTIONS FROM OTHER COMPETITIVE EXAMS 11. The radiant energy from the sun, incident normally at the surface of earth, is 20kcal/m ² - min. What would have been the radiant energy incident normally on the earth, if the sun had a temperature twice of the present one? (CBSE, PMT 1998) 1. 40 kcal/(m ² - min) 2. 80kcal/(m ² - min) 3. 160 kCal/(m ² - min) 4. 320 Kcal/(m ² - min) 12. A black body is at a temperature of 500K. It emits energy at a rate which is proportional to (CBSE, PMT 1997) 1.500 2. (500) ² 3. (500) 3 4. (500) ⁴ 13. The temperature of the sun is doubled, the rate of energy received on earth will be increased by a factor of (CBSE, PMT 1993) 1.2 2. 2.4 3.8 4.16 UNITIONS (CAIEEE 2004) (AIEEE 2004) x 4 x x 4 x x x 4 x x x x x x x x	10.	(EAMCET 2001/E) 1. 5.67×10 ⁸ Wm ⁻² 2.5.67×10 ⁴ Wm ² 3.10.67×10 ⁷ Wm ⁻² 4.10.67×10 ⁴ Wm ⁻² The temperature of a black body is increased by 50% . Then the percentage of increase of radiation is approximately		coefficients of and thickness T_2 and T_1 T_2 through th is $\left[\frac{A(T_2 - T_1)}{X}\right]$	of thermal conductivity K and ss X and 4X respectively T_1 . The rate of heat transfer slab, in a steady s $\left[\frac{K}{2}\right]f$, with f equal to	d 2K v are nsfer state
11.The radiant energy from the sun, incident normally at the surface of earth, is 20kcal/m² - min. What would have been the radiant energy incident normally on the earth, if the sun had a temperature twice of the present one? (CBSE, PMT 1998) 1. 40 kcal/(m²-min)1.12. 1/2 3. 2/31.40 kcal/(m²-min)2. 80kcal/(m²-min)3.160 kCal/(m²-min)4. 320 Kcal/(m²-min)12.A black body is at a temperature of 500K. It emits energy at a rate which is proportional to (CBSE, PMT 1997) 1.5002. (500)² 3. (500)³13.The temperature of the sun is doubled, the rate of energy received on earth will be increased by a factor of 1.22. 4 3. 81.22. 4 3. 84. 16	QL	(EAMCET,2001/M) 1. 100% 2. 25% 3. 400% 4. 500% ESTIONS FROM OTHER COMPETITIVE EXAMS		$T_2 $ K	(AIEEE 2004) <u>4x</u> <u>2K</u>	T_1
$\begin{array}{ c c c c c c c c } 3.8 & 4.16 & 330^{0}C & 420^{0}C \\ \hline \end{array}$	11.12.13.	The radiant energy from the sun, incident normally at the surface of earth, is 20 kcal/m ² - min. What would have been the radiant energy incident normally on the earth, if the sun had a temperature twice of the present one? (CBSE, PMT 1998) 1. 40 kcal/(m ² - min) 2. 80kcal/(m ² -min) 3. 160 kCal/(m ² -min) 4. 320 Kcal/(m ² -min) A black body is at a temperature of 500K. It emits energy at a rate which is proportional to (CBSE, PMT 1997) 1.500 2. $(500)^2$ 3. $(500)^3$ 4. $(500)^4$ The temperature of the sun is doubled, the rate of energy received on earth will be increased by a factor of (CBSE, PMT 1993) 1. 2 2. 4	18.	1. 1 3. $2/3$ Three rods m the same cross joined as show of the junction O^0C 1) 45^0C	2. $1/2$ 4. $1/3$ ade of same material and has ss section and lengths have be wn in the figure. The temperation of the rods will be $90^{\circ}C$ $90^{\circ}C$ $2) 60^{\circ}C$	ving been ature
		3. 8 4. 16		3) 30°C	4) 20° <i>C</i>	

19.	Two identical conducting rods are first connected	21.	Two solid spheres A and B made of the same
	independently to two vessels, one containing		material have radii $r_{.}$ and $r_{.}$ respectively. Both
	water at 100° C and the other containing ice at		the spheres are cooled from the same
	0°C. In the second case the rods are joining end		temperature under the conditions valid for
	to end and connected to the same vessels. Let Q_1		Newton's law of cooling. The ratio of rate of
	and $\Omega_{\rm c}$ a /s be the rate of melting of ice in the		change of temperatures of A and B is
	and \mathcal{Q}_2 g/s be the rate of meeting of ice in the		(EAMCET,2006/E)
	$\frac{Q_1}{2}$		2 2
	two cases respectively. Then the ratio Q_2 is		$1 \frac{r_A}{r_A}$ 2) $\frac{r_B}{r_B}$ 3) $\frac{r_A}{r_A}$ 4) $\frac{r_B}{r_B}$
	(IIT screening 2004)		r_{B} r_{A} r_{B} r_{A} r_{A}
	1) 1/2 2) 2/1		KEY
	3) 4/1 4) 1/4		(01) 4 (02) 2 (03) 3 (04) 3 (05) 3
20.	According to Newton's law of cooling, the rate		06) 2 07) 2 08) 4 09) 1 10) 3
	of cooling of a body is proportional to $(\Lambda \theta)^n$		11) 4 12) 4 13) 3 14) 4 15) 1
	when A_0 is the difference of the temperature of		16) 4 17) 4 18) 2 19) 3 20) 4
	when $\Delta \theta$ is the difference of the temperature of the body and the surrondings, and 'n' is equal to		
	(A IFFF 2003)		
	1) two 2) three		
	3) four 4) one		
	sta sta		
	***	5 * *	
JR-F	PHYSICS	437	TRANSMISSION OF HEAT