Class- X Session- 2020-21

Subject- Mathematics -Standard

Sample Question Paper

Time Allowed: 3 Hours Maximum Marks: 80

General Instructions:

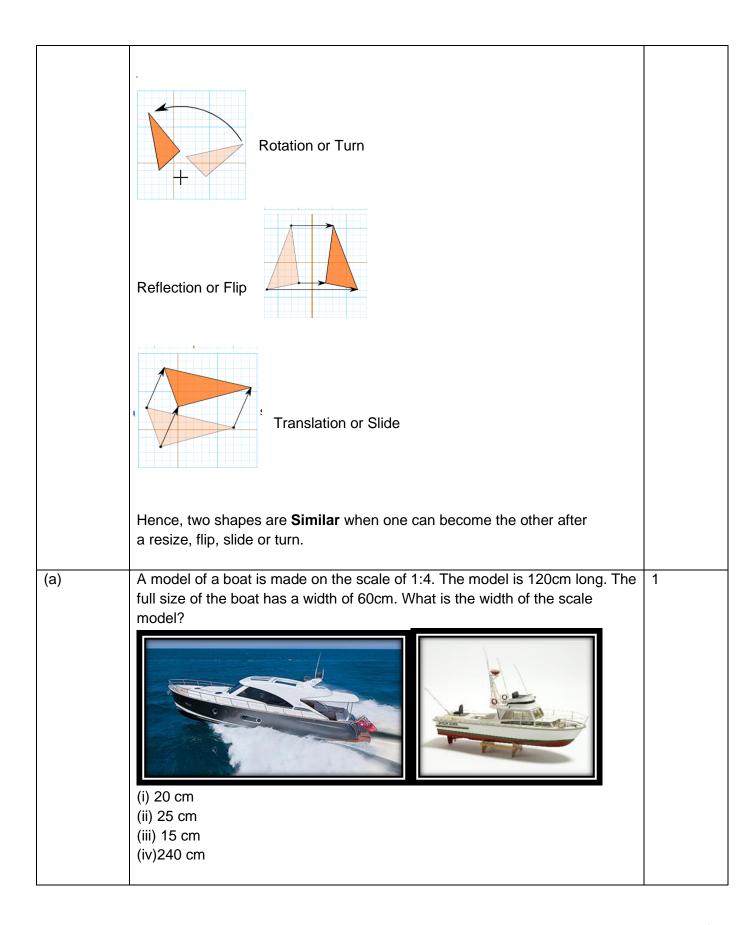
- 1. This question paper contains two parts A and B.
- 2. Both Part A and Part B have internal choices.

Part - A:

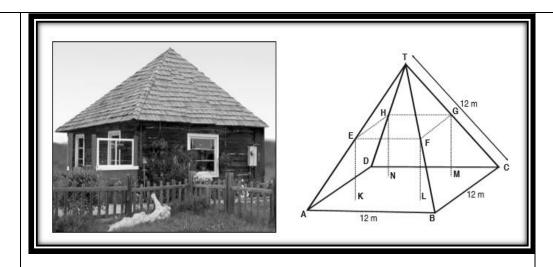
- 1. It consists three sections- I and II.
- 2. Section I has 16 questions of 1 mark each. Internal choice is provided in 5 questions.
- 3. Section II has 4 questions on case study. Each case study has 5 case-based sub-parts. An examinee is to attempt any 4 out of 5 sub-parts.

Part - B:

- 1. Question No 21 to 26 are Very short answer Type questions of 2 mark each,
- 2. Question No 27 to 33 are Short Answer Type questions of 3 marks each
- 3. Question No 34 to 36 are Long Answer Type questions of 5 marks each.
- 4. Internal choice is provided in 2 questions of 2 marks, 2 questions of 3 marks and 1 question of 5 marks.


Question	Part-A	Marks
No.		allocated
	Section-I	
	Section I has 16 questions of 1 mark each. Internal choice is provided in 5 questions.	
1	If xy=180 and HCF(x,y)=3, then find the LCM(x,y).	1
	OR	
	The decimal representation of $\frac{14587}{2^1 \times 5^4}$ will terminate after how many decimal places?	
2	If the sum of the zeroes of the quadratic polynomial $3x^2$ -kx+6 is 3, then find the value of k.	1

3.	For what value of k, the pair of linear equations 3x+y=3 and 6x+ky=8 does not have a solution.	1
4.	If 3 chairs and 1 table costs Rs. 1500 and 6 chairs and 1 table costs Rs.2400. Form linear equations to represent this situation.	1
5.	Which term of the A.P. 27, 24, 21,is zero?	1
	OR	
	In an Arithmetic Progression, if d= - 4, n=7,a _n =4, then find a.	
6.	For what values of k, the equation $9x^2+6kx+4=0$ has equal roots?	
7.	Find the roots of the equation x ² +7x+10=0	1
	OR	
	For what value(s) of 'a' quadratic equation $30 ax^2 - 6x + 1 = 0$ has no real roots?	
8.	If PQ=28cm, then find the perimeter of ΔPLM	1
9.	If two tangents are inclined at 60° are drawn to a circle of radius 3cm then find length of each tangent.	1
	OR	
	PQ is a tangent to a circle with centre O at point P. If \triangle OPQ is an isosceles triangle, then find \angle OQP.	


10.	In the ΔABC, D and E are points on side AB and AC respectively such that DE II BC. If AE=2cm, AD=3cm and BD=4.5cm, then find CE.	1
11.	In the figure, if B1, B2, B3, and A1,A2, A3, have been marked at equal distances. In what ratio C divides AB?	1
12.	$Sin A + Cos B = 1$, $A = 30^{\circ}$ and B is an acute angle, then find the value of B.	1
13.	If x=2sin²Θ and y=2cos²Θ+1, then find x+y	1
14.	In a circle of diameter 42cm,if an arc subtends an angle of 60° at the centre where ∏=22/7, then what will be the length of arc.	1
15.	12 solid spheres of the same radii are made by melting a solid metallic cylinder of base diameter 2cm and height 16cm. Find the diameter of the each sphere.	1
16.	Find the probability of getting a doublet in a throw of a pair of dice.	1
	OR	1

	Find the probability of getting a black queen when a card is drawn at random from a well-shuffled pack of 52 cards.	
	Section-II Case study based questions are compulsory. Attempt any four sub parts of each question. Each subpart carries 1 mark	
17.	Case Study based-1 SUN ROOM The diagrams show the plans for a sun room. It will be built onto the wall of a house. The four walls of the sunroom are square clear glass panels. The roof is made using • Four clear glass panels, trapezium in shape, all the same size • One tinted glass panel, half a regular octagon in shape Y A B Top view Scale 1 cm = 1m	
(a)	Refer to Top View Find the mid-point of the segment joining the points J (6, 17) and I (9, 16). (i) (33/2,15/2) (ii) (3/2,1/2) (iii) (15/2,33/2) (iv) (1/2,3/2)	1

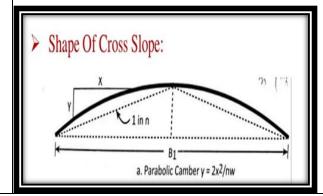
(b)	Refer to Top View	1						
` '	The distance of the point P from the y-axis is							
	(i) 4							
	(ii) 15							
	(iii) 19							
	(iv) 25							
	(11) 25							
(c)	Refer to Front View	1						
	The distance between the points A and S is							
	(i) 4							
	(ii) 8							
	(iii)16							
	(iv)20							
(d)	Refer to Front View	1						
()	Find the co-ordinates of the point which divides the line segment joining the							
	points A and B in the ratio 1:3 internally.							
	(i) (8.5,2.0)							
	(ii) (2.0,9.5)							
	(ii) (2.0,9.5) (iii) (3.0,7.5)							
	(iii) (3.0,7.3) (iv) (2.0,8.5)							
	(14) (2.0,0.0)							
(e)	Refer to Front View							
	If a point (x,y) is equidistant from the Q(9,8) and S(17,8),then							
	(i) x+y=13							
	(ii) x-13=0							
	(iii) y-13=0							
	(iv)x-y=13							
18.	Case Study Based- 2							
	SCALE FACTOR AND SIMILARITY							
	SCALE FACTOR							
	A scale drawing of an object is the same shape as the object but a different							
	size.							
	The scale of a drawing is a comparison of the length used on a drawing to							
	the length it represents. The scale is written as a ratio.							
	SIMILAR FIGURES							
	The ratio of two corresponding sides in similar figures is called the scale							
	factor.							
	length in image							
	Scale factor = $\frac{length in image}{corresponding length in object}$							
	If one shape can become another using Resizing then the							
	shapes are Similar							

(b)	What will effect the similarity of any two polygons? (i) They are flipped horizontally (ii)They are dilated by a scale factor (iii)They are translated down (iv)They are not the mirror image of one another	1
(c)	If two similar triangles have a scale factor of a: b. Which statement regarding the two triangles is true? (i)The ratio of their perimeters is $3a : b$ (ii)Their altitudes have a ratio a:b (iii)Their medians have a ratio $\frac{a}{2}$: b (iv)Their angle bisectors have a ratio a^2 : b^2	1
(d)	The shadow of a stick 5m long is 2m. At the same time the shadow of a tree 12.5m high is (i)3m (ii)3.5m (iii)4.5m (iv)5m	1
(e)	Below you see a student's mathematical model of a farmhouse roof with measurements. The attic floor, ABCD in the model, is a square. The beams that support the roof are the edges of a rectangular prism, EFGHKLMN. E is the middle of AT, F is the middle of BT, G is the middle of CT, and H is the middle of DT. All the edges of the pyramid in the model have length of 12 m.	1

What is the length of EF, where EF is one of the horizontal edges of the block?

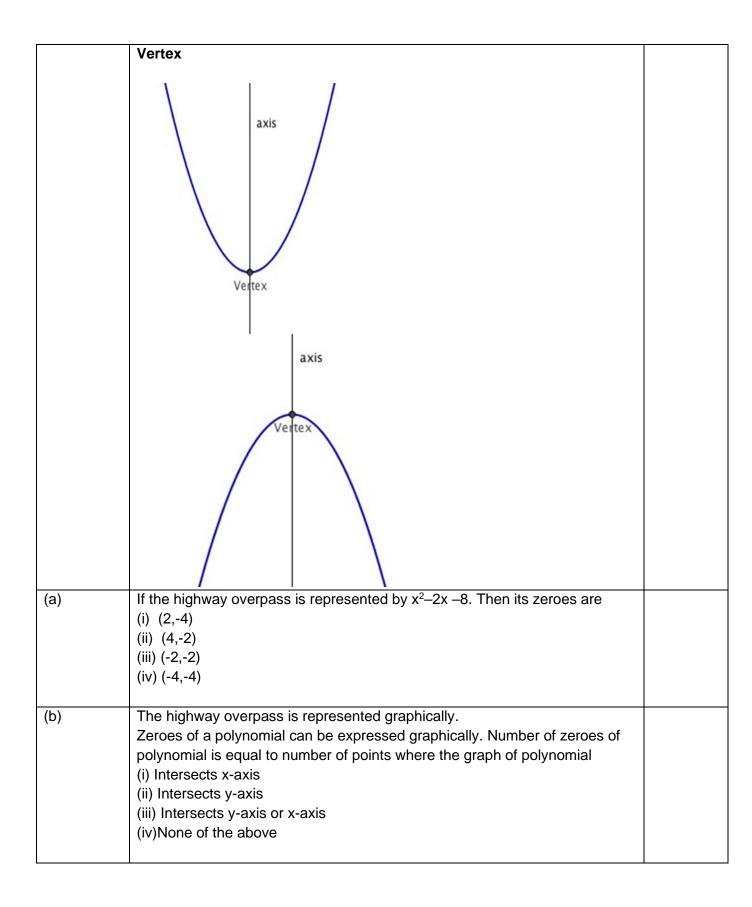
(i)24m

(ii)3m


(iii)6m

(iv)10m

19. Case Study Based- 3


Applications of Parabolas-Highway Overpasses/Underpasses A highway underpass is parabolic in shape.

Parabola

A parabola is the graph that results from **p(x)**=**a**x²+**b**x+**c** Parabolas are symmetric about a vertical line known as the **Axis of Symmetry**. The Axis of Symmetry runs through the maximum or minimum point of the parabola which is called the

(c)	Graph of a quadratic polynomial is a (i) straight line (ii) circle (iii)parabola (iv)ellipse								
(d)	The representation of Highway Underpass whose one zero is 6 and sum of the zeroes is 0, is $ (i)x^2-6x+2 \\ (ii)x^2-36 \\ (iii)x^2-6 \\ (iv)x^2-3 $								
(e)	The number of zeroes that polynomial $f(x) = (x - 2)^2 + 4$ can have is: (i)1 (ii) 2 (iii) 0 (iv) 3								
20.	Case Study Based- 4 100m RACE A stopwatch was used to find the time that it took a group of students to run 100 m.								
	Time 0-20 20-40 40-60 60-80 80-100 (in sec)								
	No. of 8 10 13 6 3 students								

		1
	(i)54	
	(ii)63	
	(iii)43	
	(iv)50	
(b)	What wiil be the upper limit of the modal class ?	
	(i)20	
	(ii)40	
	(iii)60	
	(iv)80	
(c)	The construction of cummulative frequency table is useful in determining the	
	(i)Mean	
	(ii)Median	
	(iii)Mode	
	(iv)All of the above	
(d)	The sum of lower limits of median class and modal class is	
	(i)60	
	(ii)100	
	(iii)80	
	(iv)140	
(e)	How many students finished the race within 1 minute?	
	(i)18	
	(ii)37	
	(iii)31	
	(iv)8	
	Part –B	
	All questions are compulsory. In case of internal choices, attempt any	
	one.	
21.	3 bells ring at an interval of 4,7 and 14 minutes. All three bell rang at 6 am,	2
	when the three balls will the ring together next?	
22.	Find the point on x-axis which is equidistant from the points (2,-2) and (-4,2)	2
	OR	

(3, 2) are two points. Find the co-ordinates of the point R on PR=2QR Ic polynomial whose zeroes are 5-3√2 and 5+3√2. Igment AB of length 9cm. With A and B as centres, draw as 5cm and 3cm respectively. Construct tangents to each circle of the other circle. Id the value of 1/sinA+1/cosA OR D=0 and 0°<0 <90°, find the value of Θ Luadrilateral ABCD is circumscribing a circle with centre O	2 2
gment AB of length 9cm. With A and B as centres, draw is 5cm and 3cm respectively. Construct tangents to each circle is of the other circle. In the value of 1/sinA+1/cosA OR OR D=0 and 0°<0 <90°, find the value of Θ Luadrilateral ABCD is circumscribing a circle with centre O	2
S 5cm and 3cm respectively. Construct tangents to each circle of the other circle. d the value of 1/sinA+1/cosA OR 9=0 and 0°<θ <90°, find the value of θ uadrilateral ABCD is circumscribing a circle with centre O	
OR Θ=0 and 0°<Θ <90°, find the value of Θ uadrilateral ABCD is circumscribing a circle with centre O	2
9=0 and 0°<θ <90°, find the value of θ uadrilateral ABCD is circumscribing a circle with centre O	
uadrilateral ABCD is circumscribing a circle with centre O	
•	
radius of incircle is 10cm, then the value of x is	2
B is irrational, given that $\sqrt{3}$ is irrational.	3
the quadratic equation $3x^2+px+4=0$ is 2/3, then find the value oner root of the equation.	3
OR	
d β of the quadratic equation x²-5x+3(k-1)=0 are such that α -value k.	
3	radius of incircle is 10cm, then the value of x is $\frac{27\text{cm}}{10\text{cm}} = \frac{27\text{cm}}{38\text{cm}} = \frac$

29.		In the figure, ABCD is a square of side 14 cm. Semi-circles are drawn with each side of square as diameter. Find the area of the shaded region.								3
				A		B				
30.	The perimeters of two similar triangles are 25cm and 15cm respectively. If one side of the first triangle is 9cm, find the length of the corresponding side of the second triangle.						-	3		
					OR					
	In an equilateral triangle ABC, D is a point on side BC such that BD = $1/3$ BC. Prove that $9 \text{ AD}^2 = 7 \text{ AB}^2$									
31.	The median of the following data is 16. Find the missing frequencies a and b if the total of the frequencies is 70.						a and b,	3		
	Class	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	
	Frequency	12	а	12	15	b	6	6	4	
32.										3
		•	1	<u> </u>	B .					
	If the angles cm and 'b' c 30° and 60°,	m (a>b	o) from i	its base	and in th	e same s				
										1

			Se	ection V						
33.	The mode of t	The mode of the following data is 67. Find the missing frequency x.								
	Class	40-50	50-60	60-70	70-80	80-90]			
	Frequency	5	Х	15	12	7				
34.	The two palm other on either between them are 60° and 30 distances of the	side of the on the rive on the rive or the rive	e river, whi er the ang ively. Find	5						
	The angles of high as observed Find the heigh building and the									
35.	Water is flowing through a cylindrical pipe of internal diameter 2cm, into a cylindrical tank of base radius 40 cm at the rate of 0.7m/sec. By how much will the water rise in the tank in half an hour?							5		
36.	A motorboat c in 6 hours. In t 36km downstr stream.	he same ti	me it cove	rs a dista	ance of 1	2 km upstı	eam and	5		

MARKING SCHEME SQP MATHEMATICS (STANDARD)

2020-21

CLASS X

S.NO.	ANSWER	MARKS
	Part-A	
1.	(LCM)(3) =180 LCM=60	1/ ₂ 1/ ₂
	OR	
	Four decimal places	1
2.	α+β=k/3 3=k/3	1/2
	K=9	1/2
3.	$ \frac{3}{6} = \frac{1}{k} \neq \frac{3}{8} \\ \frac{3}{6} = \frac{1}{k} $	1/2
	6 ⁻ k K=2	1/2
4.	Let the cost of 1 chair=Rs.x And the cost of 1 table=Rs. y	1/2
	3x+y=1500 6x+y=2400	1/2
5.	a _n =a+(n-1)d 0=27+(n-1)(-3)	1/2
	30=3n n =10 10 th	1/2
	OR	
	an=a+(n-1)d 4=a+6x(-4) a=-28	1/ ₂ 1/ ₂
6.	$9x^{2}+6kx+4=0$ $(6k)^{2}-4X9X4=0$ $36k^{2}=144$	1/2
	K ² =4 K=±2	1/2

7	.2.710.0	
7.	$x^2+7x+10=0$ $x^2+5x+2x+10=0$	1/
		1/2
	(x+5)(x+2)=0	1/2
	X=-5, x=-2	/2
	OR	
	OK .	
	$3ax^2-6x+1=0$	1/2
	$(-6)^2$ -4(3a) (1)<0	/2
	(0) 1(04) (1) (0	
	12a>36 =>a>3	1/2
8.	PQ=PT	
	PL+LQ=PM+MT	
	PL+LN=PM+MN	
	Perimeter(ΔPLM)	
	=PL+LM+PM	1/2
	=PL+LN+MN+PM	
	=2(PL+LN)	
	=2(PL+LQ)	
	=2X28=56cm	1/2
9.		
	P 30 B	
		4.
	In ΔPAO	1/2
	Tan30°=AO/PA 1/√3 =3/PA	1/2
	PA=3√3 cm	/2
	1 A=0 10 GH	
	OR	
	In ΔOPQ	
	2 <q+<p=180°< td=""><td>1/2</td></q+<p=180°<>	1/2
	2 <q+90°=180°< td=""><td>/2</td></q+90°=180°<>	/2
	2 <q=90°< td=""><td></td></q=90°<>	
	<q= 45°<="" td=""><td>1/2</td></q=>	1/2
I		_

	40.40	
10.	$\frac{AD}{BD} = \frac{AE}{CE}$	
	BD CE	4.4
	3 2	1/2
	— 	1/
	4.5 <i>CE</i> CE=3cm	1/2
	GL=3cm	
11.	8:5	1
11.	0.0	'
12.	Sin30°+cosB=1	
12.	½+cosB=1	1/2
	CosB=1/2	/2
	B=60°	1/2
		/2
13.	X+y	
	$=2\sin^2\Theta + 2\cos^2\Theta + 1$	1/2
	$=2(\sin^2\Theta + \cos^2\Theta)+1$	
	= 3	1/2
14.	length of arc=θ/360°(2∏r)	1/2
	= 60/360(2X22/7X21)	
	=22 cm	1/2
15.	$\prod R^2H=12X4/3\prod r^3$	
	4V4v4C 4/0V=3 V40	1/
	1X1x16=4/3Xr ³ X12 r ³ =1	1/2
	d=2cm	1/2
	u-zem	/2
16.	probability of getting a doublet=1/6	1
	proceeding of getting a deablet. 176	•
	OR	
	probability of getting a black queen=2/52=1/26	
17	(5) ;;;)(45/2-22/2)	1 1 1
17.	(a) iii)(15/2,33/2)	1x4=4
	(b) i) 4	
	(c) iii)16	
	(d) iv)(2.0,8.5)	
40	(e) ii) x-13=0	4 4
18.	(a) iii)15 cm	1x4=4
	(b) iv)They are not the mirror image of one another	
	(c) ii)Their altitudes have a ratio a:b	
	(d) iv) 5m	
	(e) iii)6m	
19.	(a) ii) (4,-2)	1x4=4
	(b) i) Intersects x-axis	
	(c) iii) parabola	

	(d) ii) $x^2 - 36$	
	(e) iii) 0	
20.	(a) iii)43	1x4=4
	(b) iii)60	
	(c) ii)Median	
	(d) iii)80	
	(e) iii)31	

	Part-B	
21.	4=2X2 7=7X1 14=2X7 LCM=2X2X7=28 The three bells will ring together again at 6:28 am	1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂
22.	Let P(x,0) be a point on X-axis PA=PB PA ² =PB ² (x-2) ² +(0+2) ² =(x+4) ² +(0-2) ² X ² +4-4x+4=x ² +16+8x+4 -4x+4=8x+16 X=-1 P(-1,0)	1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂
	OR	
	PR:QR=2:1 $R\left(\frac{1(-2)+2(3)}{2+1}, \frac{1(5)+2(2)}{2+1}\right)$ $R(4/3, 3)$	1/ ₂ 1 1/ ₂
23.	Sum of zeroes= $5-3\sqrt{2}+5+3\sqrt{2}=10$ Product of zeroes= $(5-3\sqrt{2})(5+3\sqrt{2})=7$ P(x)= $X^2-10x+7$	1/ ₂ 1 1/ ₂
24.	C A R P	Line seg=1/2 Circles=1 /2 Tangents =1/2+ ½

25.	tanA=3/4=3k/4k	1/2
25.		1/2
	sinA=3k/5k=3/5,cosA=4k/5k=4/5	/2
	1/sinA+1/cosA	1/
	=5/3+5/4	1/2
	=(20+15)/12	1/2
	=35/12	
	OR	
	$\sqrt{3} \sin\Theta = \cos\Theta$	1/2
	$sin\Theta/cos\Theta=1/\sqrt{3}$	1/2
	tan⊖=1/√3	1/2
	Θ=30°	1/2
26.	<a 90°<="" <opa="<OSA" =="" th=""><th>1/2</th>	1/2
	Hence, <sop=90°< th=""><th></th></sop=90°<>	
	Also, AP=AS	
	Hence, OSAP is a square	
	AP=AS=10cm	1/2
	CR=CQ=27cm	
	BQ=BC-CQ=38-27=11cm	1/2
	BP=BQ=11 cm	
	X=AB=AP+BP=10+11=21 cm	1/2
27.	Let 2-√3 be a rational number	1/2
	We can find co-prime a and b (b≠0) such that	
	2-√3=a/b	1/2
	2-a/b=√3	1/2
	So we get,(2a-b)/b=√3	
	Since a and b are integers, we get (2a-b)/b is irrational and so	
	$\sqrt{3}$ is rational. But $\sqrt{3}$ is an irrational number	1/2
	Which contradicts our statement	1/2
	Therefore 2-√3 is irrational	1/2
	Therefore 2 to le matterial	/2
28.	$3x^2+px+4=0$	1/2
	3(2/3)2+p(2/3)+4=0	
	4/3+2p/3+4=0	1/2
	P=-8	1/2
	$3x^2-8x+4=0$	
	$3x^2-6x-2x+4=0$	1/2
	X=2/3 or x=2	1/2
	Hence, x=2	1/2

	0.0	
	OR	1/
	$\alpha+\beta=5$ (1)	1/2
	α - β =1(2)	1/2
	Solving (1) and (2), we get	4.
	$\alpha=3$ and $\beta=2$	1/2
	also $\alpha\beta=6$	1/2
	or 3(k-1)=6	1/2
	k-1=2	
	k=3	1/2
29.		
	Area of 1 segment = area of sector –area of triangle	1/2
	$=(90^{\circ}/360^{\circ})\pi r^2 - \frac{1}{2} \times 7 \times 7$	/2
	$= \frac{1}{4} \times \frac{2}{7} \times 7 \times 7$ $= \frac{1}{4} \times \frac{2}{7} \times 7 \times 7$	1/2
	= 14cm ²	1/2
	Area of 8 segments=8x14= 112 cm ²	1/2
	Area of the shaded region = 14x14-112	1/2
	=196-112=84cm ²	1/2
	(each petal is divided into 2 segments)	
	,	
30.	ΔABC~ΔDEF	
	Perimeter ($\triangle ABC$) $AB+BC+CA$ AB	1
	$\frac{1}{Perimeter(\Delta DEF)} = \frac{1}{DE + EF + FD} = \frac{1}{DE}$	1/2
	25_9 15_X	1/2
	15 X	
	X=5.4cm	1
	DE=5.4cm	
	OR	
	A CONTRACTOR OF THE PROPERTY O	
		1/2
		/2
	B D M C	
	Construction-Draw AM I BC	
	BD \(\perp \) 1/3 BC , BM=1/2 BC	1/2
	In ΔABM,	
	$AB^2 = AM^2 + BM^2$	1/2
	$=AM^2+(BD+BM)^2$	
	$=AM^2+DM^2+BD^2+2BD. DM$	1/2
	$=AD^2+BD^2+2BD(BM-BD)$	/2
	=AD ² +(BC/3) ² +2. BC/3.(BC/2-BC/3)	
	$=AD^2+2BC^2/9$	1/
	$=AD^2+2AB^2/9$	1/2
	Hence,7AB ² =9AD ²	
		1/2

31.	Class	Frequency	Cumulative	1
			frequency	
	0-5	12	12	
	5-10	а	12+a	
	10-15	12	24+a	
	15-20	15	39+a	
	20-25	b	39+a+b	
	25-30	6	45+a+b	
	30-35	6	51+a+b	
	35-40	4	55+a+b	
	Total	70	001415	
	Total	170		
	FF. o.b. 70			1/2
	55+a+b=70			
	a+b=15			
	N			
	median=I+ $\frac{\frac{N}{2}-cf}{f}$ X h			1/2
	f	1-a		
	$16 = 15 + \frac{35 - 24}{15}$	" X 5		
	1=(11-a)/3			
	A=8			
				1/2
	55+a+b=70			1/2
	55+8+b=70			/2
	B=7			
	D=1			
32.				
JZ.		\mathbf{A}_{i}		1/2
		∕ 1₹		/2
	, ,	/ /		
		/		
		/ h m		
	30° \(\lambda 6	0° \		
	$\frac{1}{D}$ C	<u>B</u>		
	,	1907 O. •		1/2
	Let AB=candle			
	C and D are coins			
	Tan60°=AB/BC=h/b			
	√3=h/b			
	H=b√3	·(1)		1/2
	Tan30°=AB/BD=h/a	. ,		
	1/√3=h/a			
	$H=a/\sqrt{3}$ (2)	2)		1/2
	Multiplying (1) and (2			1,2
	$H^2 = b\sqrt{3}X \text{ a}/\sqrt{3}$.,, yo.		1/2
	$H^2 = b a$			/2
	H=√ab m			1/2
	II- Van III			/2

33.	Mode= $I + \frac{f1-f0}{2f1-f2-f0}$ xh $67 = 60 + \frac{15-x}{30-12-x}$ x 10 $7 = \frac{15-x}{18-x}$ x 10 7x(18-x)=10(15-x) 126-7x=150-10x 3x=150-126 3x=24 X=8	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
34.	Let BD=river AB=CD=palm trees=h BO=x OD=80-x In \triangle ABO, Tan60°=h/x $\sqrt{3}$ =h/x(1) H= $\sqrt{3}$ X In \triangle CDO, Tan 30°=h/(80-x) 1/ $\sqrt{3}$ = h/(80-x)(2) Solving (1) and (2), we get X=20 H= $\sqrt{3}$ x=34.6 the height of the trees=h=34.6m BO=x=20m DO=80-x=80-20=60m	1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/

	OR	
	X	1
	Let AB=Building of height 50m RT= tower of height= h m BT=AS=x m	1/2
	AB=ST=50 m RS=TR-TS=(h-50)m In \triangle ARS, tan30°=RS/AS	1/2
	$1/\sqrt{3}$ = (h-50)/x(1) In \triangle RBT, tan60°=RT/BT $\sqrt{3}$ = h/x(2)	1/2
	Solving (1) and (2), we get h= 75	½ ½
	from (2) $x=h/\sqrt{3}$	1/2
	=75/√3 =25√3	1/2
	Hence, height of the tower=h=75m Distance between the building and the tower=25√3=43.25m	1/2
35.	For pipe , $r = 1$ cm Length of water flowing in 1 sec, $h=0.7m=7$ cm Cylindrical Tank, $R=40$ cm , rise in water level=H Volume of water flowing in 1 sec= $\prod r^2h=\prod x1x1x70$ $=70\prod$ Volume of water flowing in 60 sec= $70\prod x60$ Volume of water flowing in 30 minutes= $70\prod x60x30$ Volume of water in Tank= $\prod r^2H=\prod x40x40xH$ Volume of water in Tank= Volume of water flowing in 30	1/2 1/2 1/2 1/2 1/2 1/2 1 1/2 1/2 1/2 1/
	minutes ∏x40x40xH = 70∏x60x30 H=78.75cm	/2

36.	Let speed of the boat in still water =x km/hr, and Speed of the current =y km/hr Downstream speed =(x+y) km/hr Upstream speed =(x-y) km/hr $\frac{24}{x+y} + \frac{16}{x-y} = 6$ (1)	1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂
	$\frac{36}{x+y} + \frac{12}{x-y} = 6$ Let $\frac{1}{x+y} = u$ and $\frac{1}{x-y} = v$	1/2
	Put in the above equation we get, 24u+16v=6 Or, 12u+8v=3 (3) 36u+12v=6 Or, 6u+2v=1 (4) Multiplying (4) by 4, we get,	1/2
	24u+8v=4v (5) Subtracting (3) by (5), we get, 12u=1	1/2
	⇒u=1/12 Putting the value of u in (4), we get, v=1/4 ⇒ $\frac{1}{x+y} = \frac{1}{12}$ and $\frac{1}{x-y} = \frac{1}{4}$ ⇒x+y=12 and x-y=4	1/2
	Thus, speed of the boat in still water = 8 km/hr, Speed of the current = 4 km/hr	1/ ₂ 1/ ₂