EXCERSISE 1.1

1) Find range of the following data: 575, 609, 335, 280, 729, 544, 852, 427, 967, 250.

SOL: Range = $L-S = 967\ 250 = 717$.

2) The following data gives number of typing mistakes done by Radha during a week.

Find the range of the data.

	Monday	Tuesday	Wednes-	Thursday	Friday	Saturday
Day			day			
No. of mistake	15	20	21	12	17	10

Sol. Range = L-S = 21 - 10 = 11

3) Find range of the following data.

	62-64	64-66	66-68	68-70	70-72
Classes					
Frequency	5	3	4	5	3

SOL: Range = L-S = Upper limit of highest class - Lower limit of lowest class

=72-62=210

4) Find the Q.D. for the following data 3,16,8,15,19,11,5,17,9,5,3

Sol: Arranging the data in ascending order, 3, 3, 5, 5, 8, 9, 11, 15, 16, 17, 19.

Here, ^{*n* =}11

 $Q_{1} = \left(\frac{n+1}{4}\right)^{th} \text{observation}$ $\left(\frac{11+1}{4}\right)^{th} \text{observation}$ $= 3^{rd} \text{ observation}$

 $\therefore Q_{1} = 5$ $Q_{3} = 3^{\left(\frac{n+1}{4}\right)^{th}} \text{ observation}$ $3^{\left(\frac{11+1}{4}\right)^{th}} \text{ observation}$ $= 9^{th} \text{ observation}$ $[::Q]]_{-}(3) = 16$ $Q.D. = \frac{Q_{8}+Q_{1}}{2}$ $= \frac{16-5}{2}$ $= \frac{11}{2}$ $\therefore Q.D. = 5.5$

5) Given below are the prices of shares of a company for the last 10 days. Find Q.D.

17-2, 164, 188, 214, 190, 237, 200, 195, 2'08, 230.

SOL: Arranging the data in ascending order, 164, 172,188, 190, 195, 200, 208, 214, 230, 237.

Here,
$$n = 10$$

 $Q_1 = \left(\frac{n+1}{4}\right)^{th}$ observation
 $= \left(\frac{10+1}{4}\right)^{th}$ observation

= 2.75th observation

= 2nd observation + 0.75 (3rd observation-2nd observation)

$$= 172 + 0.75 (188-172)$$

$$= 172 + 0.75 (16)$$

$$= 172 + 12$$

$$\therefore Q_{1} = 184$$

$$Q_{3} = 3\left(\frac{n+1}{4}\right)^{th} \text{ observation}$$

$$= 3\left(\frac{10+1}{4}\right)^{th} \text{ observation}$$

$$= 3(2.75) \text{ th observation}$$

$$= 8 \text{ th observation} + 0.25 (9 \text{ th observation} - 8 \text{ th observation})$$

$$= 214 + 0.25 (230 - 214)$$

$$= 214 + 0.25 (16)$$

$$= 214 + 4$$

$$\therefore Q_{3} = 218$$

$$Q.D. = \frac{Q_{3} + Q_{1}}{2}$$

$$= \frac{218 - 184}{2}$$

$$= \frac{34}{2}$$

$$\therefore Q. D. = 17$$

6) Calculate Q. D. for the following data:

	24	25	26	27	28	29	30
X							
Y	6	5	3	2	4	7	3

	f	c.f (less than type)
x		
24	6	6
25	5	11
26	3	14
27	2	16
28	4	20
29	7	27
30	3	30

Here, N = 30 $Q_1 = \left(\frac{N+1}{4}\right)^{th}$ observation $= \left(\frac{30+1}{4}\right)^{th}$ observation $= \left(\frac{31}{4}\right)^{th}$ = 7.75th observation $\frac{\mathbf{0} \mathbf{Q_1}}{\mathbf{Q_1}} = 25$ $Q_3 = 3\left(\frac{n+1}{4}\right)^{th}$ observation $= 3 \left(\frac{30+1}{4}\right)^{th}$ observation = 3(7.75)th observation = 23.2th observation $\frac{1}{2} \frac{Q_3}{2} = 29$ $Q.D. = \frac{Q_B + Q_1}{2}$ $=\frac{29-25}{2}$ $=\frac{\frac{4}{2}}{2}$ $\therefore Q.D.=2$

7) Following data gives the age distribution of 250 employees of a firm. Calculate Q.D. of the distribution.

	20-25	25-30	30-35	35-40	40-45	45-50
Age (in years)						
No. of employees	30	40	60	50	46	14

С	n	T	
J	υ	ь	

Age (in years	No.of employees (^f)	c.f (less than type)
	20	20
20-25	30	30
25-30	40	70
30-35	60	130
35-40	50	180
40-45	46	226
45-50	14	240
	N = 240	

Here, N = 240

For
$$Q_{1,} = \frac{N}{4} = \frac{240}{4} = 60$$

 $\therefore Q_1$ Lies in the class 25-30
 $\therefore L = 25; f = 40; c.f = 30; h = 5$
 $Q_1 = L + \frac{h}{f} (\frac{N}{4} - c.f)$
 $= 25 + \frac{5}{40} (60 - 30)$
 $= 25 + \frac{1}{8} (30)$
 $= 25 + \frac{1}{8} (30)$
 $= 25 + 3.75$
 $Q_1 = 28.75$
For $Q_{3,} = \frac{3N}{4} = 3(\frac{240}{4}) = 180$
 $\therefore Q_3$ Lies in the class 40-45
 $\therefore L = 40; f = 46; c.f = 180; h = 5$
 $Q_3 = L + \frac{h}{f} (\frac{3N}{4} - c.f)$
 $= 40 + \frac{5}{46} (180 - 180)$

 $= 40 + \frac{5}{46}$ $Q_3 = 40$ $Q. D. = \frac{Q_3 + Q_1}{2}$ $= \frac{40 - 28.75}{2}$ $= \frac{11.25}{2}$

 $\therefore Q. D. = 5.625$

8) Following data gives the weight of boxes. Calculate Q.D. for the data.

	10-12	12-14	14-16	16-18	18-20	20-22
Weight (Kg)						
No. of	3	7	16	14	18	2
boxes						
c.f.	3	10	26	40	58	60

SOL:

	No. of boxes	c.f (less than type)
Weight (Kg)		
10-12	3	3
12-14	7	10
14-16	16	26
16-18	14	40
18-20	18	58
20-22	2	60
	N = 60	

Here, N = 60

For $Q_{1,} = \frac{N}{4} = \frac{60}{4} = 15$

 $\therefore Q_1$ Lies in the class 14-16

: L = 14; f = 16; c.f = 10; h = 2

$$Q_{1} = L + \frac{h}{f} \left(\frac{N}{4} - c.f \right)$$

$$= 14 + \frac{2}{16} (15 - 10)$$

$$= 14 + \frac{2}{16} (5)$$

$$= 14 + 0.625$$

$$Q_{1} = 14.0.625$$
For $Q_{3} = \frac{3N}{4} = 3 \left(\frac{60}{4} \right) = 45$

$$\therefore Q_{3} \text{ Lies in the class } 18-20$$

$$\therefore L = 18; f = 18; c.f = 40; h = 2$$

$$Q_{3} = L + \frac{h}{f} \left(\frac{3N}{4} - c.f \right)$$

$$= 18 + \frac{2}{18} (45 - 40)$$

$$= 18 + \frac{1}{9} (5)$$

$$= 18 + 0.556$$

$$Q_{3} = 18.556$$

$$Q.D. = \frac{Q_{8} + Q_{1}}{2}$$

$$= \frac{18.556 - 14.625}{2}$$

$$= \frac{3.931}{2}$$

 $\therefore Q.D. = 1.9655$

EXERCISE 2.2

Find the various and S.D. for the following sets of numbers.

1) 7,11,2,4,9,6,3,7,11,2,5,8,3,6,8,8,8,2,6

	f _i	$f_i x_i$	x_i^2	$f_i x_i^2$
x _i				
2	3	6	4	12
3	2	6	9	18
4	1	4	16	16
5	1	5	25	25
6	3	18	36	108
7	2	14	49	98
8	3	24	64	192
9	1	9	81	81
11	2	22	121	242
	N = 18	108		792

Var
$${}^{(x)} = {}^{\sigma_x^2} = \frac{\sum f_i x_i}{N} - (\bar{x}) 2$$

 $= \frac{\sum f_i x_i}{N} - \left(\frac{\sum f_i x_i}{N}\right)^2$
 $= \frac{792}{18} - \left(\frac{108}{18}\right)^2$
 $= 44 - 36$
 $= 8$
S.D. $\sigma_x = \sqrt{Var(x)} = \sqrt{8} = 2\sqrt{2} = 2 \times (1.414)$
 $= 2.828$

2) 65,77,81,98,100,80,129.

	$u_i \underline{x}_i - a$	u_i^2
x _i		
65	-24	576
77	-12	144
80	-9	81
81	-8	64
98	9	121
100	11	81
129	40	1600
	7	2667

$$a = 89 \qquad N = \sum u_{i=7} \qquad \sum u_{i}^{2} = 2667$$

$$var(x) \sigma_{u}^{2} \qquad \frac{\sum u_{i}^{2}}{N} \qquad \overline{u} \qquad \frac{2227}{7} \qquad \left(\frac{7}{7}\right)^{2}$$

$$= -() 2 = -$$

$$= 381 - 1$$

$$= 380$$

$$\therefore \sigma_{x}^{2} = \sigma_{u}^{2} = 380$$

$$x = \sigma_{x} = \sqrt{Var(x)} \qquad \sqrt{380} \qquad \mathbf{19.41}$$
S.D. () = = =

3) Compute variance and standard deviation for the following data:

x	2	4	6	8	10
f	5	4	3	2	1

	f	fx	x ²	fx ²
x				
2	5	10	4	20
4	4	16	16	64
6	3	18	36	108
8	2	16	64	128
10	1	10	100	100
	15	70		420

$$\Sigma f = 15; \quad \Sigma f x^2 = 420 \quad \Sigma f x = 70$$
Mean, $\overline{x} = \frac{\Sigma f x}{\Sigma f}$

$$= \frac{70}{15}$$

$$= 4.67$$
Variance $= \frac{\Sigma x_1^2}{N} - (\overline{x})^2$

$$= \frac{420}{15} - (4.67)^2$$

$$= 28 - 21.8089$$

\therefore Variance = 6.1911

S.D., $\sigma = \sqrt{\text{Variance}}$ = $\sqrt{6.1911}$

∴*σ* = 2.4882

4) Compute the variance and S.D.

x	1	3	5	7	9
f	5	10	20	10	5

x	f	fx	x ²	fx ²
1	5	5	1	5
3	10	30	9	90
5	20	100	25	500
7	10	70	49	490
9	5	45	81	405
	50	250		1490

$$\Sigma f = 50; \quad \Sigma f x^2 = 1490 \quad \Sigma f x = 250$$

$$Mean, \overline{x} = \frac{\Sigma f x}{\Sigma f}$$

$$= 5$$

$$Variance = \frac{\Sigma x_i^2}{N} - (\overline{x})2$$

$$= \frac{1490}{50} - (5)2$$

$$= 29.8 - 25$$

$$\therefore Variance = 4.8$$

$$S.D., \sigma = \sqrt{Variance}$$

$\sigma = \sqrt{4.8}$

5) Following data gives age of 100 students in a school. Calculate variance and S.D.

	10	11	12	13	14
Age (in years)					
No. of students	10	20	40	20	10

SOL:

	No. of students	fx	x ²	fx^2
Age (in years)				
10	10	100	100	1000
11	20	220	121	2420
12	40	480	144	5760
13	20	260	169	3380
14	10	140	196	1960
	100	1200		14520

 $\Sigma f = 100; \quad \Sigma f x^{2} = 14520 \quad \Sigma f x = 1200$ Mean, $\overline{x} = \frac{\Sigma f x}{\Sigma f}$ $= \frac{1200}{100}$ = 12Variance $= \frac{\Sigma x_{1}^{2}}{N} - (\overline{x})^{2}$ $= \frac{14520}{100} - (12)^{2}$ = 145.2 - 144 $\therefore \text{ Variance} = 1.2$ S.D., $\sigma = \sqrt{\text{Variance}}$ $\sigma = \sqrt{1.2}$

6) The mean and variance of 5 observations are 3 and 2 respectively. If three of the five observations are 1, 3 and 5, find the values of other two observations.

SOL: Here, n = 5, $\overline{x} = 3$, $\sigma^2 = 2$.

Let the two unknown values be ^{*a*} and ^{*b*}. Here,

<i>xi</i>	x_i^2
1	1
3	9
5	25
а	a ²
b	b ²
9 + a + b	$35 + a^2 + b^2$

 $\Sigma x_i = 9 + a + b,$ $\Sigma x_i^2 35 + a^2 + b^2$

Mean, $\overline{x} = \frac{\sum x_i}{n}$

		9+ a+b
A	3	= 5

$$\therefore \quad 9^{+a+b} = 15$$

$$\therefore a + b = 6 \dots (1)$$
Variance $= \frac{\sum x_1^2}{N} - (\overline{x})_2$
 $\frac{1}{5}(35 + a^2 + b^2) - 32 = 2$
 $\frac{1}{5}(35 + a^2 + b^2) - 9 = 2$
 $\frac{1}{5}(35 + a^2 + b^2) = 11$
 $\therefore 35 + a^2 + b^2 = 55$
 $\therefore a^2 + b^2 = 20$ (2)

$b = 6^{-a}$	from (1)
Using this in (2) we get	
$a^{2} + (6^{-a})^{2} = 20$	
$a_2 + 36 - 12a + a^2 - 20$) = 0
$\therefore 2^{a^2} - 12a + 16$	= 0
$\therefore 2^{a^2} - 8a - 4a + 16$	= 0
$\therefore (a-4)(2a-4)$	= 0
$\therefore a - 4 = 0$	or $2a - 4 = 0$
a = 4	or $a = 2$
When $a = 4$; When $a = 2$
b = 6 - 4	b = 6 - 2

b = 2 *b* = 4

i.e. the two unknown values are 2 and 4.

7) Obtain standard deviation for the following date:

	60-62	62-64	64-66	66-68	68-70
Height(in inches)					
No. of students	4	30	45	15	6

	f _i	Mid_pt x _i	$u_i = \frac{x_i - 65}{2}$	f _i u _i	$f_i u_i^2$
Class					
60-62	4	61	-2	-8	16
62-64	30	63	-1	-30	30
64-66	45	65	0	0	0
66-68	15	67	1	15	15
68-70	6	69	2	12	24

Total 100	-11	85
-----------	-----	----

Since x_i Values are large and also have common difference of 2, we use stepdeviation method for easy calculation.

We take $u_i = \frac{x_i - a}{h}$, where a = 65, h = 2, $\Sigma f_i = 100$, $\Sigma f_i u_i 2 = 85 \Sigma f_i u_i = -11$, $\therefore \overline{u} = \frac{\Sigma f_i u_i}{\Sigma f_i}$ $= \frac{1}{100} \times (-11) = -0.11$ $\therefore \overline{u} = -0.11$ $\sigma_u^2 = \frac{\Sigma f_i u_i^2}{\Sigma f_i} - (\overline{u})_2$ $= \frac{1}{100} \times 85 - (-0.11)_2$ = 0.85 - 0.0121 $\sigma_u^2 = 0.8379$ $\sigma_u = 0.9154$ $\sigma_x = h, \sigma_u = 2 \times 0.9154 = 1.8307$ \therefore Standard deviation = 1.8307

8) The following distribution was obtained change of origin and scale of variable X.

	-4	-3	-2	-1	0	1	2	3	4
d _i									
f _i	4	8	14	18	20	14	10	6	6

If it is given that mean and variance are 59.5 and 413 respectively, determine actual class intervals.

SOL: We are given means and variance of variable X i.e. $\overline{x} = 59.5$ and $\sigma_x^2 = 413$

From t	he given	data, v	ve can	find mean	is and	variance	of ^d i
i.e. we	will find	d and	σ ² _d as f	ollows:			

	f _i	f _i d _i	$f_i d_{i2}$
d _i			_
-4	4	-16	64
-3	8	-24	72
-2	14	-28	56
-1	18	-18	18
0	20	0	0
1	14	14	14
2	10	20	40
3	6	18	54
4	6	24	96
Total	100	-10	414

 $\Sigma f_i = 100, \qquad \Sigma f_i d_i = -10, \ \Sigma f_i d_i = -414$ $\therefore \overline{d} = \frac{\sum f_i u_i}{\sum f_i}$ $=\frac{1}{100} \times (-10) = -0.1$ $\therefore \overline{d} = -0.1$ We have $d = \frac{x-a}{h}$ where x is mid-point of class intervals a = assumed meanh = class width $\therefore \quad \overline{x} = a + h\overline{d}$:. 59.5 = a + h(-0.1):... 59.5 = a - 0.1h ... (1) Next $\sigma_d^2 = \frac{1}{N} \sum f_i d_i 2^{-\overline{d}}$ $\sigma_d^2 = \frac{1}{100} (414) - (-0.01)2$ $\sigma_d^2 = 4.14 - 0.01$

 $\therefore \qquad \sigma_d^2 = 4.13$ Now, $\sigma_d^2 = h_2 \sigma_d^2$ $\therefore \qquad 413 = h_2 (4.13)$ $\therefore \qquad h_2 = \frac{413}{4.13}$ $\therefore \qquad h_2 = 100$ $\therefore \qquad h = 2$ Substituting h = 10 in equation (1) 59.5 = a - 0.1(10) $\therefore \qquad 59.5 = a - 1$

a = 60.5

4

With value of a = 60.5 and h = 10, we work out the actual class – intervals in the following tale;

4	Mid-point	Class-intervals
u _i		
-4	20.5	15.5-25.5
-3	30.5	25.5-35.5
-2	40.5	35.5-45.5
-1	50.5	45.5-55.5
0	60.5	55.5-65.5
1	70.5	65.5-75.5
2	80.5	75.5-85.5
3	90.5	85.5-95.5
4	100.5	95.5-105.5

Note that the value of a = 60.5 corresponds to the value of d = 0. Also since width h = 10, we have to add 5 and subtract 5 for each midpoint to get the class-intervals.

EXERCISE 2.3

1) Mean and standard deviation of two distributions of 100 and 150 items are 50, 5 and 40, 6 respectively. Find the mean and standard deviations of all the 250 items taken together.

SOL:
$${}^{n}1 = 100; {}^{n}2 = 150$$

 $\overline{x}1 = 50; {}^{\overline{x}}2 = 40$
 ${}^{\sigma}1 = 5; {}^{\sigma}2 = 6$
 $\overline{x} = ?; {}^{\sigma} = ?$

Combined Mean,

 $\overline{x} = \frac{n_1 x_2 + n_2 x_2}{n_1 + n_2}$ $= \frac{(100) (50) + (150) (40)}{100 + 150}$ $= \frac{5000 + 6000}{250}$ $= \frac{11000}{250}$ $\therefore \quad \overline{x} = 44$ Now, $d_1 = \overline{x}_1 - \overline{x}; \quad d_2 = \overline{x}_2 - \overline{x}$ $= 50 - 44 \qquad = 40 - 44$ $\therefore \qquad d_1 = 6 \qquad \therefore d_2 = -4$

Combined Standard Deviation,

$$\sigma = \sqrt{\frac{n_1(\sigma_1^2 + d_1^2) + n_2(\sigma_2^2 + d_2^2)}{n_1 + n_2}}$$
$$= \sqrt{\frac{100(5^2 + 6^2) + 150(6^2 + (-4)^2)}{100 + 150}}$$

2) For a certain bivariate data, following information is available.

	X	Y
Mean	13	17
S.D.	3	2
Size3.	10	10

Obtain the combined standard deviation. SOL: $\overline{x} = 13$; $\overline{y} = 17$

$$\sigma_x = 3; \quad \sigma_y = 2$$

 $n_x = 20; \quad n_y = 30$

Combined Mean,

$$\overline{xy} = \frac{n_x \overline{x} + n_y \overline{y}}{n_x + n_y}$$

$$= \frac{20(13) + (30)(17)}{20 + 30}$$

$$= \frac{360 + 510}{50}$$

$$= \frac{770}{50}$$

$$\therefore \qquad \overline{xy} = 15.4$$

Now, $d_x = \overline{x} - \overline{xy}$; $d_y = \overline{x} - \overline{xy}$ = 13 - 15.4 = 17 - 15.4 \therefore $d_1 = 2.4$ $\therefore d_2 = 1.6$ Combined variance $\sigma_{xy}^2 = \frac{n_x (\sigma_x^2 + d_x^2) + n_y (\sigma_x^2 + d_y^2)}{n_x + n_y}$ = $\frac{20(9+5.76)+30(4+2.56)}{20+30}$ = $\frac{20(14.76)+30(2.56)}{50}$ = $\frac{295.2+196.8}{50}$ = $\frac{492}{50}$ $\sigma_{xy}^2 = 9.84$ Combined S.D. $\sigma_{xy}^2 = \sqrt{9.84} = 3.1369$

3) Calculate coefficient of variation of marks secured by a student in the exam, where the marks are : 2,4,6,8,10 (Given: $\sqrt{9.6} = 1.8976$)

Sol:

x	* 2
2	4
4	16
6	36
8	64
10	100
30	220

$$\therefore \Sigma x = 30; \quad \Sigma x^2 = 220$$

$$n = 5$$
Mean, $\overline{x} = \frac{\Sigma x}{n}$
30

= 5

= 6

Standard deviation,

$$\sigma = \sqrt{\frac{\sum x^2}{n}} - (\bar{x}) 2$$
$$= \sqrt{\frac{220}{5}} - (6)2$$
$$= \sqrt{44 - 36}$$
$$= \sqrt{8}$$
$$= 2.83$$
Co-efficient of vari

iance;

$$C.V. = \frac{1}{8} \times 100$$
$$= \frac{2.83}{6} \times 100$$

C.V. = 47.17%

4) Find the coefficient of Variation of a sample which has mean equal to 25 and standard deviation of 5.

Sol:
$$\overline{x} = 25$$
 S.D. $(\sigma_x)_x = 5$
C.V. $\overline{x} \times 100 = \overline{25} \times 100$
 \therefore C.V. = 20

5) A group of 65 students of class XI have their average height is 150.4 cm with coefficient of variation 2.5%. What is the standard deviation of their height?

Sol: No. of students $^{n} = 65$

Average height of students = $\overline{x} = 150.4$ cm.

C.V.
$$\binom{x}{} = 2.5$$

S.D. $\sigma_x = ?$
C.V. $= \frac{\sigma_x}{x} \times 100$

 $\therefore \qquad 2.5 = \frac{\sigma_x}{150.4} \times 100$ $\therefore \qquad \frac{2.5 \times 150.4}{100} = \sigma_x$ $\therefore \qquad \sigma_x = \frac{376}{100}$ $\therefore \qquad \sigma_x = 3.76$

6) Two workers on the same job show following results:

Sol:

	Worker P	Worker Q
Mean time for	33	21
completing the job (hours)		
Standard Deviation (hours)	9	7

(I) Regarding the time r5equired to complete the job, which worker is more consistent?

(II) Which worker seems to be faster in completing the job?

Sol:

	Worker P	Worker Q
Mean time for	$\overline{x}_p = 33$	$\overline{x}_p = 21$
completing the		
job (hours)		
Standard	$\sigma_P = 9$	$\sigma_Q = 7$
Deviation (hours)		

$C.V_p = \frac{\sigma_p}{\overline{x}_p} \times 100$	$C.V_Q = \frac{\sigma_Q}{\overline{x}_Q} \times 100$
$=\frac{9}{33} \times 100$	$=\frac{9}{33} \times 100$
$C.V_p = 27.2727$	$C.V_Q = 27.2727$
$(I)^{C.V_p} < {}^{C.V_Q}$	

 \therefore Worker P is more consistent

(II) Average time in hours taken by worker Q is less than worker P.

 \therefore Worker ^{*Q*} is faster than worker^{*P*}.

7) A company has two departments with 42 and 60 employees respectively. Their average weekly wages are Rs. 750 and Rs. 400. The standard deviations are 8 and 10 respectively.

(I) Which department has a larger bill?

(II) Which department has larger variability in wages?

Sol: Given information can be consolidated as follows:

	Department Departmer				
	A B				
No. of employees	$n_{A} = 42$	$n_B = 60$			
Average weekly wages in Rs.	$\overline{x}_A = 750$	$\overline{x}_{B} = 400$			
S.D.	$\sigma_A = 8$	$\sigma_B = 10$			

(I) Average monthly bill

$$\frac{\overline{x}}{x} = \frac{Total amount of bill}{no. of employees} = \frac{\sum x_i}{n}$$

 \therefore Total amount of bill = $\sum x_i = n\overline{x}$

Here, Total bill of dept A is $\sum x_A$ and Total bill of dept is B is $\sum x_B$

$$\overline{x}_{A} = \frac{\sum x_{A}}{n} \qquad \overline{x}_{B} = \frac{\sum x_{B}}{n}$$

$$\therefore 750 = \frac{\sum x_{A}}{42} \qquad \therefore 400 = \frac{\sum x_{B}}{60}$$

$$\therefore \sum x_{A} = 750 \times 42 \qquad \therefore \sum x_{B} = 400 \times 60$$

$$= 31500 \qquad = 24000$$

$$31500 > 24000$$

^{..} Department A has larger total bill.

(II) C.VA = $\frac{\sigma_A}{x_A} \times 100 = \frac{8}{750} \times 100 = 1.0667$

 $\text{C.VB} = \frac{\frac{\sigma_B}{\pi_B}}{\pi_B} \times 100 = \frac{10}{400} \times 100 = 2.5$

C.VB > C.VA

^{..} Department A has larger variability is wages.

8) The following table gives weight of the students of class A. Calculate the Coefficient of variation.

(Given: $\sqrt{0.8 = 0.8944}$)

Weight (in kg)	Class A
25-35	8
35-45	4
45-55	8

Sol:

Weight (in kg)	Class A (^f)	x	fx	* 2	^{fx} 2
25-35	8	30	240	900	7200
35-45	4	40	160	1600	6400
45-55	8	50	400	2500	20000
	20		800		33600

 $\therefore \Sigma f = 20; \qquad \Sigma f x_2 = 33600 \qquad \Sigma f x = 800$

Mean, $\overline{x} = \frac{\Sigma f x}{\Sigma f}$ = $\frac{800}{20}$ $\therefore \quad \overline{x} = 40$

Standard deviation,

$$\sigma = \sqrt{\frac{\Sigma f x^2}{\Sigma f}} - (\bar{x}) 2$$

$$= \sqrt{\frac{33600}{20}} (40)2$$
$$= \sqrt{1680 - 1600}$$
$$= \sqrt{80}$$

 $\therefore \qquad \sigma = 8.944$

Co-efficient of variance;

$$C.V. = \frac{\sigma}{x} \times 100$$
$$= \frac{8.944}{40} \times 100$$

 \therefore C.V. = 22.36%

9) Compute coefficient of variation for team A and team B.

(Given: $\sqrt{26} = 5.099, \sqrt{22} = 4.6904$)

No. of goals	0	1	2	3	4
No. of matches played by team A	18	7	5	16	14
No. of matches played by team B	14	16	5	16	17

Which team is more consistent?

Sol: \rightarrow For team A

No. of goals (*)	No. of matches (^f)	fx	<i>*</i> 2	^{fx} 2
0	18	0	0	0
1	7	7	1	7
2	5	10	4	20
3	16	48	9	144
4	14	56	16	224
	60	121		395

$$\therefore \Sigma f = 60; \qquad \Sigma f x_2 = 395 \qquad \Sigma f x = 121$$

$$\overline{x} \qquad \frac{\Sigma f x}{\Sigma f}$$
Mean, $A = \frac{121}{60}$

$$= \overline{x}$$

$$\therefore \qquad A = 2.017$$

Standard deviation,

$$\sigma \sqrt{\frac{\Sigma f x^2}{\Sigma f}} - \frac{1}{x}$$

$$= () 2$$

$$\sqrt{\frac{395}{60}} - =$$

$$= (2.017)2$$

$$\sqrt{6.583 - 4.068}$$

$$=$$

$$\sqrt{2.515}$$

 $\therefore \qquad \sigma A = 1.59$

Co-efficient of variance;

$$C.V. = \frac{\sigma}{x} \times 100$$
$$= \frac{1.59}{2.027} \times 100$$

 \therefore C.V.A = 78.83%

 \rightarrow For team B

No. of goals (*)	No. of matches (^f)	fx	*2	fx2
0	14	0	0	0
1	16	16	1	16
2	5	10	4	20
3	18	54	9	162
4	17	68	16	272
	70	148		470

$$\therefore \Sigma f = 70; \qquad \Sigma f x_2 = 470 \qquad \Sigma f x = 148$$

$$\overline{x} \qquad \frac{\Sigma f x}{\Sigma f}$$
Mean, B =
$$\frac{148}{70}$$
=
$$\overline{x}$$

$$\therefore \qquad B = 2.114$$

Standard deviation,

$$\sigma \quad \sqrt{\frac{\Sigma f x^2}{\Sigma f}} - \frac{1}{x}$$

$$= () 2$$

$$\sqrt{\frac{470}{70}} -$$

$$= (2.114)2$$

$$\sqrt{6.714 - 4.469}$$

$$=$$

$$\sqrt{2.245}$$

$$=$$

$$\therefore \quad \sigma B = 1.5$$

Co-efficient of variance;

$$C.V. = \frac{\sigma}{x} \times 100$$
$$= \frac{1.5}{2.114} \times 100$$
$$C.V.B = 70.96\%$$

 $\therefore \qquad C.V.B > C.V.A$

...

 \therefore Team B is more consistent

10) Given below is the information about marks obtained in Mathematics and Statistics by 100 students in a class. Which subject shows A the highest variability in marks?

	Mathematics	Statistics
Mean	20	25
S.D.	2	3

Sol: From given information

	Mathematics	Statistics
Mean	$\overline{x}_{M} = 20$	$\overline{x}_{S} = 25$
S.D.	$\sigma M = 2$	$\sigma M = 3$

C.V. $(M) = \frac{\frac{\sigma_M}{\overline{x}_M}}{\times 100} = \frac{2}{20} \times 100 = 10\%$

C.V.
$$(S) = \frac{\sigma_S}{\overline{x}_S} \times 100 = \frac{3}{25} \times 100 = 12\%$$

C.V.(S) > C.V.(M)

 \therefore Statistics shows more variability than mathematics.