Exercise 18(A)

Solution 1:

(a) Discrete variable.

- (b) Continuous variable.
- (c) Discrete variable.
- (d) Continuous variable.
- (e) Discrete variable.

Solution 2:

The frequency table for the given distribution is

Marks	Tally Marks	Frequency
1-10		4
11-20)ní III	8
21-30)NĮ I	6
31-40) M	6
41 - 50	NI I	6

Solution 3:

The frequency table for the given distribution is

Marks	Tally Marks	Frequency
0 - 10		4
10 - 20	jur i	6
20-30	III	3
30 - 40		4
40 - 50	JAT II	7

In this frequency distribution, the marks 30 are in the class of interval 30 - 40 and not in 20 - 30. Similarly, marks 40 are in the class of interval 40 - 50 and not in 30 - 40.

Solution 4:

(a)Variable.

(b)Discrete variables.

(c)Continuous variable.

(d)The range is 25 - 6 = 19

(e)Lower limit is 35 and upper limit is 46

(f)The class mark is $22 - 29 = \frac{22 + 29}{2} = \frac{51}{2} = 25 \cdot 5$

Solution 5:

10.10	
In case of frequency 10 - 19 the lower class limit is 10, upper class limit is 20 and mid-value is $\frac{10 + 19}{2} = 14.1$	5
In case of frequency 20 - 29 the lower class limit is 20, upper class limit is 29 and mid-value is $\frac{20 + 29}{2} = 24.5$	5
In case of frequency 30 - 39 the lower class limit is 30, upper class limit is 39 and mid-value is $\frac{30 + 39}{2} = 34$.	5
In case of frequency 40 - 49 the lower class limit is 40, upper class limit is 49 and mid-value is $\frac{40 + 49}{2} = 44$.	5

Solution 6:

In case of frequency 1.1 - 2.0 the lower class limit is 1.1, upper class limit is 2.0 and class mark

$$rac{1.1+2.0}{2} = 1.55$$

In case of frequency 2.1 - 3.0 the lower class limit is 2.1, upper class limit is 3.0 and class mark

$$rac{2.1+3.0}{2} = 2.55$$

In case of frequency 3.1 - 4.0 the lower class limit is 3.1, upper class limit is 4.0 and class mark

$$\frac{3.1+4.0}{2} = 3.55$$

Solution 7:

(a)

The actual class limit of the fourth class will be:

44.5-49.5.

(b)

The class boundaries of the sixth class will be:

54.5-59.5

(c)

The class mark of the third class will be the average of the lower bound and the upper bound of the interval. Therefore class mark will be:

$\frac{40+44}{2} = 42$

(d)

The upper and lower limit of the fifth class is 54 and 50 respectively.

(e)

The size of the third class will be: 44 - 40 + 1 = 5.

Solution 8:

(i)The cumulative frequency distribution table is

C.I	c.f
0 - 8	9
8-16	22
16 - 24	34
24 - 32	41
32-40	56
40-48	62

(ii) The cumulative frequency distribution table is

C.I	c.f
1-10	12
11-20	30
21-30	53
31-40	68
41 - 50	78

Solution 9:

(i)The frequency distribution table is

C.I	c.f
10-19	8
20 - 29	11
30 - 39	4
40 - 49	7

(ii)The frequency distribution table is

C.I	c.f
5-10	18
10-15	12
15 - 20	16
20 - 25	27
25 - 30	17

Solution 10:

The frequency table is

C.I	c.f
0 - 10	б
10 - 20	9
20-30	15
30 - 40	9
40 - 50	14
50 - 60	17

Solution 11:

The frequency distribution table is

C.I	c.f
4 - 7	85
7-10	55
10-13	103
13-16	57

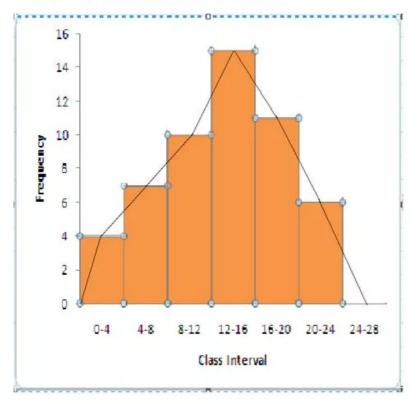
(i)The number of students in the age group 10-13 is 103

(ii) The age group which has the least number of students is 7-10

Solution 12:

Class Interval	Frequency	Cumulative Frequency
25-34	<u>15</u>	15
35 - 44	<u>13</u>	28
45 - 54	21	<u>49</u>
55 - 64	16	<u>65</u>
65 - 75	8	73
75 – 84	12	<u>85</u>

Solution 13:


X	0	1	2	3	4	5	6	7	8	9	
Ē.	2	5	5	8	4	5	4	4	5	8	

Most occurring digits are 3 and 9. Least occurring digits are 0.

Exercise 18(B)

Solution 1:

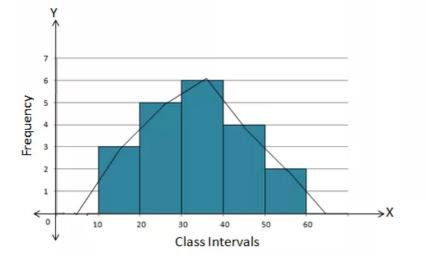
The frequency polygon is shown in the following figure

Steps:

(i)Drawing a histogram for the given data.

(ii) Marking the mid-point at the top of each rectangle of the histogram drawn.

(iii)Also, marking mid-point of the immediately lower class-interval and mid-point of the immediately higher class-interval.


(iv) Joining the consecutive mid-points marked by straight lines to obtain the required frequency polygon.

Solution 2:

Steps:

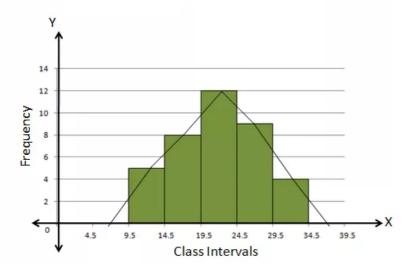
- i. Draw a histogram for the given data.
- ii. Mark the mid-point at the top of each rectangle of the histogram drawn.
- iii. Also, mark the mid-point of the immediately lower class-interval and mid-point of the immediately higher class-interval.
- iv. Join the consecutive mid-points marked by straight lines to obtain the required frequency polygon.

The required combined histogram and frequency polygon is shown in the following figure:

Solution 3:

The class intervals are inclusive. We will first convert them into the exclusive form.

Class-Interval	Frequency
9.5 - 14.5	5
14.5 - 19.5	8
19.5 - 24.5	12
24.5 - 29.5	9
29.5 - 34.5	4


Steps:

i. Draw a histogram for the given data.

ii. Mark the mid-point at the top of each rectangle of the histogram drawn.

iii. Also, mark the mid-point of the immediately lower class-interval and mid-point of the immediately higher class-interval. iv. Join the consecutive mid-points marked by straight lines to obtain the required frequency polygon.

The required frequency polygon is as follows:

Solution 4:

Steps:

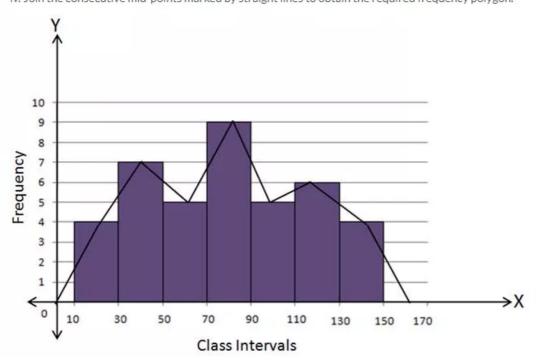
i. Draw a histogram for the given data.

ii. Mark the mid-point at the top of each rectangle of the histogram drawn.

iii. Also, mark the mid-point of the immediately lower class-interval and mid-point of the immediately higher class-interval.

iv. Join the consecutive mid-points marked by straight lines to obtain the required frequency polygon.

The required frequency polygon is as follows:


Solution 5(i):

(a) Using Histogram:

C.I.	f
10 - 30	4
30 - 50	7
50 - 70	5
70 - 90	9
90 - 110	5
110 - 130	6
130 - 150	4

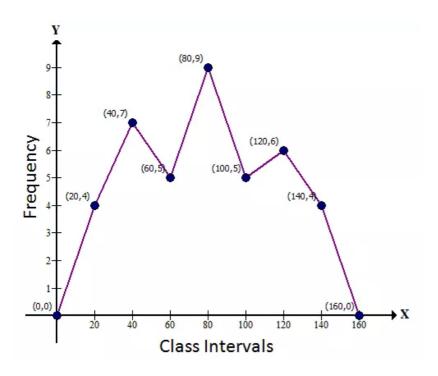
Steps:

- i. Draw a histogram for the given data.
- ii. Mark the mid-point at the top of each rectangle of the histogram drawn.
- iii. Also, mark the mid-point of the immediately lower class-interval and mid-point of the immediately higher class-interval. iv. Join the consecutive mid-points marked by straight lines to obtain the required frequency polygon.

(b) Without using Histogram:

Steps:

i. Find the class-mark (mid-value) of each given class-interval.


Class-mark = mid-value = $\frac{\text{Upper limit + Lower limit}}{2}$

ii. On a graph paper, mark class-marks along X-axis and frequencies along Y-axis.

iii. On this graph paper, mark points taking values of class-marks along X-axis and the values of their corresponding frequencies along Y-axis.

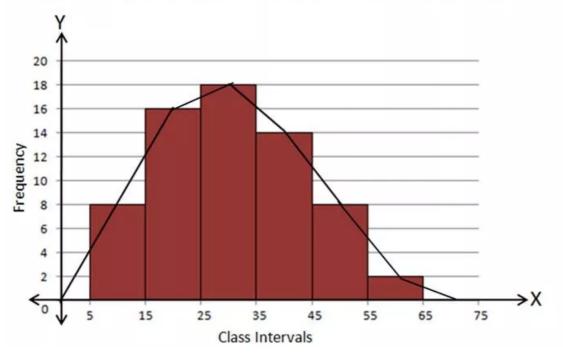
iv. Draw line segments joining the consecutive points marked in step (3) above.

C.I.	Class-mark	f
-10 - 10	0	0
10 - 30	20	4
<u> 30 - 50</u>	40	7
50 - 70	60	5
70 - 90	80	9
90 - 110	100	5
110 - 130	120	6
130 - 150	140	4
150 - 170	160	0

Solution 5(ii):

Using Histogram:

C.I.	f
5 - 15	8
15 - 25	16
25 - 35	18
35 - 45	14
45 - 55	8
55 - 65	2


Steps:

i. Draw a histogram for the given data.

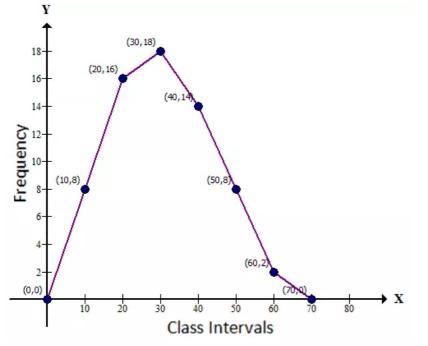
ii. Mark the mid-point at the top of each rectangle of the histogram drawn.

iii. Also, mark the mid-point of the immediately lower class-interval and mid-point of the immediately higher class-interval.

iv. Join the consecutive mid-points marked by straight lines to obtain the required frequency polygon.

Without using Histogram:

Steps:


i. Find the class-mark (mid-value) of each given class-interval.

$Class-mark = mid-value = \frac{Upper limit + Lower limit}{2}$

ii. On a graph paper, mark class-marks along X-axis and frequencies along Y-axis.

iii. On this graph paper, mark points taking values of class-marks along X-axis and the values of their corresponding frequencies along Y-axis. iv. Draw line segments joining the consecutive points marked in step (3) above.

C.I.	Class-mark	f
-5 - 5	0	0
5 - 15	10	8
15 - 25	20	16
25 - 35	30	18
35 - 45	40	14
45 - 55	50	8
55 - 65	60	2
65 - 75	70	0

