Sample Question Paper - 2 Class – X Session -2021-22 TERM 1 Subject- Mathematics (Standard) 041

Time Allowed: 1 hour and 30 minutes

1. The question paper contains three parts A, B and C.

General Instructions:

Maximum Marks: 40

	2. Section A consists of 20 questions of 1 mark	x each. Attempt any 16 questions.	
	3. Section B consists of 20 questions of 1 mark	each. Attempt any 16 questions.	
	4. Section C consists of 10 questions based on	two Case Studies. Attempt any 8 questions.	
	5. There is no negative marking.		
	Sec	tion A	
	Attempt any	y 16 questions	
1.	Which of the following rational numbers hav	e terminating decimal?	[1]
	a) $\frac{7}{250}$	b) $\frac{16}{225}$	
	c) $\frac{5}{18}$	d) $\frac{2}{21}$	
2.	The area of the triangle formed by $x + 3y = 6$,	2x – 3y = 12 and the y-axis is	[1]
	a) 15 sq. units	b) 18 sq. units	
	c) 16 sq. units	d) 12 sq. units	
3.	The zeroes of the polynomial x^2 - 3x - m (m + 3	3) are:	[1]
	a) –m, –(m + 3)	b) m, –(m + 3)	
	c) –m, m + 3	d) m, m + 3	
4.	The value of k for which the system of equation	ons $x + y - 4 = 0$ and $2x + ky = 3$ has no solution, is:	[1]
	a) 3	b) -2	
	c) 4	d) 2	
 5.	$\sqrt{rac{1+\cos A}{1-\cos A}}=?$		[1]
	a) cosec A - cot A	b) None of these	
	c) cosec A + cot A	d) cosec A cot A	
6.	What is the largest number that divides each	one of 1152 and 1664 exactly?	[1]
	a) 64	b) 256	
	c) 128	d) 32	
7.	The zeros of the quadratic polynomial x^2 + 88	x + 125 are	[1]

	a) both negative	b) both positive	
	c) both equal	d) one positive and one negative	
8.	If x is a positive integer such that the distance	e between points P (x, 2) and Q (3, - 6) is 10 units,	[1]
	then x =		
	a) 3	b) 9	
	c) -9	d) -3	
9.	If α , β are the zeros of the polynomial $p(x) = 4$	x^2 + 3x + 7, then $rac{1}{lpha}+rac{1}{eta}$ is equal to	[1]
	a) $\frac{3}{7}$	b) $-\frac{3}{7}$	
	c) $-\frac{7}{3}$	d) $\frac{7}{3}$	
10.	The graph of a polynomial is shown in Figure	e, then the number of its zeroes is:	[1]
	$x^{1} \qquad \qquad$		
	a) 4	b) 3	
	c) 1	d) 2	
11.	A die has its six faces marked 1, 2, 2, 2, 5, 6. The second secon	he probability of getting 2 is	[1]
	a) $\frac{1}{2}$	b) $\frac{1}{5}$	
	c) $\frac{1}{4}$	d) $\frac{1}{3}$	
12.	The decimal expansion of the rational number	er $\frac{14587}{1250}$ will terminate after	[1]
	a) 4 decimal places	b) 1 decimal place	
	c) 3 decimal places	d) 2 decimal places	
13.	A line intersects the y-axis and x-axis at the p point of PQ, then the coordinates of P and Q a	oints P and Q, respectively. If (2, –5) is the mid- are, respectively	[1]
	a) (0, – 5) and (2, 0)	b) (0, 4) and (– 10, 0)	
	c) (0, 10) and (– 4, 0)	d) (0, – 10) and (4, 0)	
14.	(0, 3), (4, 0) and (– 4, 0) are the vertices of		[1]
	a) a right triangle	b) an isosceles triangle	
	c) a scalene triangle	d) an equilateral triangle	
15.	If one zero of the polynomial $f(x) = (k^2 + 4)x^2$	+ 13x + 4k is reciprocal of the other, then k =	[1]
	a) 1	b) -1	
	c) 2	d) -2	
16.	If x = r sin θ cos ϕ , y = r sin θ sin ϕ and z = r c	os $ heta$, then	[1]
	a) $x^2 + y^2 + z^2 = r^2$	b) $x^2 - y^2 + z^2 = r^2$	
	c) $z^2 + y^2 - x^2 = r^2$	d) $x^2 + y^2 - z^2 = r^2$	
17.	The sum of two numbers is 8. If their sum is f	four times their difference, then the numbers are	[1]

	a) None of these	b) 7 and 1	
	c) 6 and 2	d) 5 and 3	
18.	A die is thrown once. The probability of get	ting an even number is	[1]
	a) $\frac{1}{3}$	b) $\frac{5}{6}$	
	c) $\frac{1}{6}$	d) $\frac{1}{2}$	
19.	If $a=2^3 imes 3, b=2 imes 3 imes 5, c=3^n imes 5$ a	nd LCM (a, b, c) $= 2^3 imes 3^2 imes 5$, then n =	[1]
	a) 1	b) 4	
	c) 3	d) 2	
20.	If the centroid of the triangle formed by (7,	x), (y, -6) and (9, 10) is at (6, 3), then (x,y)=	[1]
	a) (5, 4)	b) (5, 2)	
	c) (-5, -2)	d) (4, 5)	
	S	ection B	
	-	iny 16 questions	
21.	If $2^{x+y} = 2^{x-y} = \sqrt{8}$ then the value of y is		[1]
	a) none of these	b) 0	
	c) $\frac{3}{2}$	d) $\frac{1}{2}$	
22.	Which of the following is a polynomial?		[1]
	a) $\sqrt{2}x^2 - 3\sqrt{3}x + \sqrt{6}$	b) $x^{3/2} - x + x^{1/2} + 1$	
	c) $x^2-5x+4\sqrt{x}+3$	d) $\sqrt{x} + rac{1}{\sqrt{x}}$	
23.	If the HCF of 65 and 117 is expressible in th	e form 65m – 117, then the value of 'm' is	[1]
	a) 3	b) 1	
	c) 2	d) 4	
24.	If $\sin heta = rac{\sqrt{3}}{2}$ then (cosec $ heta$ + cot $ heta$) = ?		[1]
	a) $\sqrt{2}$	b) $(2+\sqrt{3})$	
	c) $2\sqrt{3}$	d) $\sqrt{3}$	
25.	The pair of equations x + 2y + 5 = 0 and –3x	– 6y + 1 = 0 have	[1]
	a) a unique solution	b) infinitely many solutions	
	c) no solution	d) exactly two solutions	
26.	If $lpha$ and eta are the zeros of 2x 2 + 5x - 9 then	the value of $\alpha\beta$ is	[1]
	a) $\frac{-9}{2}$	b) $\frac{9}{2}$	
	c) $\frac{5}{2}$	d) $\frac{-5}{2}$	
27.	If in $\triangle ABC$ and $\triangle DEF$, $\frac{AB}{DE} = \frac{BC}{FD}$, then	2	[1]
- <i>/</i> ·	a) $\angle B = \angle D$.	b) $\angle A = \angle D$.	r ⊸1
	a) $\angle B = \angle D$. c) $\angle A = \angle F$	d) $\angle A \equiv \angle D$.	
	$\cup \angle A - \angle F$	$\mathbf{u} \not \perp \mathbf{D} - \angle \mathbf{L}.$	

28.	The coordinates of the point which divides the	e join of (-6, 10) and (3, -8) in the ratio 2 : 7 is	[1]
	a) (4, -6)	b) (-4, 6)	
	c) (1, -3)	d) (-1, 3)	
29.	The value of sin 45° + cos 45° is		[1]
	a) $\sqrt{2}$	b) $\frac{1}{\sqrt{2}}$	
	c) 1	d) $\frac{1}{\sqrt{3}}$	
30.	Given that 2x + 3y = 11, 2x - 4y = -24 and y = m	x + 3, then the value of m is	[1]
	a) 2	b) 0	
	c) m= -1	d) 1	
31.	If two positive integers p and q can be express	sed as $p = ab^2$ and $q = a^3 b$; a, b being prime	[1]
	numbers, then LCM (p, q) is		
	a) _a ³ b ³	b) a ³ b ²	
	c) $a^2 b^2$	d) ab	
32.	If S is a point on side PQ of a $ riangle$ PQR such that	PS = QS = RS, then	[1]
	a) $PS^2 + RS^2 = PR^2$	b) $PQ^2 + QR^2 = PS^2$	
	c) $QS^2 + RS^2 = QR$	d) $PR^2 + QR^2 = PQ^2$	
33.	$\frac{\sin\theta}{1+\cos\theta}$ is equal to		[1]
	a) $\frac{1-\sin\theta}{\cos\theta}$	b) $\frac{1-\cos\theta}{\cos\theta}$	
	c) $\frac{1-\cos\theta}{\sin\theta}$	d) $\frac{1+\cos\theta}{\sin\theta}$	
34.	The points A(9, 0), B(9, 6), C(-9, 6) and D(-9, 0) a	are the vertices of a	[1]
	a) rhombus	b) trapezium	
	c) rectangle	d) square	
35.		rd is drawn at random. The probability of getting	[1]
	a jack of hearts is	G	
	a) $\frac{2}{52}$	b) $\frac{6}{52}$	
	c) $\frac{1}{52}$	d) $\frac{4}{52}$	
36.	A pair of linear equations which has a unique		[1]
	a) $x - 4y - 14 = 0$	b) $2x - y = 1$	
	5x - y + 13 = 0	3x + 2y = 0	
	c) $x + y = -1$ 2x - 3y = -5	d) $2x + 5y = -11$ 4x + 10y = -22	
37.	If 3 is the least prime factor of number 'a' and	2	[1]

the least prime factor of a + b, is

a) 3

	c) 5	d) 2	
38.	If $2\sin 2 heta=\sqrt{3}$ then $ heta$ = ?		[1]
	a) 45°	b) 90°	
	c) 60°	d) 30°	
39.	Two dice are thrown simultaneously. The pr on the dice is 1 is	obability that the sum of the numbers appearing	[1]
	a) 3	b) 0	
	c) 2	d) 1	
40.	The perimeter of the triangle formed by the	points (0, 0), (1, 0) and (0, 1) is	[1]
	a) $2+\sqrt{2}$	b) 3	
	a) $2+\sqrt{2}$ c) $\sqrt{2}+1$	d) $1\pm\sqrt{2}$	

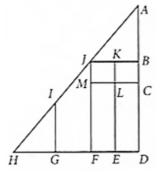
Section C

Attempt any 8 questions

Question No. 41 to 45 are based on the given text. Read the text carefully and answer the questions:

In a classroom, students were playing with some pieces of cardboard as shown below.

All of a sudden, teacher entered into classroom. She told students to arrange all pieces. On seeing this beautiful image, she observed that Δ ADH is right angled triangle, which contains


i. right triangles ABJ and IGH.

ii. quadrilateral GFJI

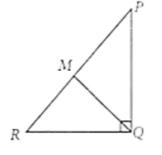
iii. squares JKLM and LCBK

iv. rectangles MLEF and LCDE.

After observation, she ask certain questions to students.

41. If an insect (small ant) walks 24 m from H to F, then walks 6 m to reach at M, then walks 4 m [1] to reach at L and finally crossing K, reached at J. Find the distance between initial and final position of insect.

a) 28 m	b) 25 m
c) 27 m	d) 26 m


42. If m, n and r are the sides of right triangle ABJ, then which of the following can be correct? [1]

a) $m^2 + n^2 + r^2 = 0$	b) $m^2 + n^2 = 2r^2$	
c) none of these	d) $m^2 + n^2 = r^2$	
If $ riangle ABJ \sim riangle ADH$, then which similarity crit	erion is used here?	[1]
a) SAS	b) AA	
c) SSS	d) AAS	
If $ riangle ABJ$ = 90° and B, J are mid points of sides	AD and AH respectively and BJ DH, then	[1]
which of the following option is false?		

[1]

a)
$$\triangle ABJ \sim \triangle ADH$$

b) $2BJ = DH$
c) $\frac{AB}{BD} = \frac{AJ}{AH}$
d) $AJ^2 = JB^2 + AB^2$

45. If \triangle PQR is right triangle with QM \perp PR, then which of the following is not correct?


43.

44.

a) $PR^2 = PQ + QR$	b) $ riangle PMQ \sim riangle QMR$	
c) $ riangle PMQ \sim riangle PQR$	d) $OR^2 = PR^2 - PO^2$	

Question No. 46 to 50 are based on the given text. Read the text carefully and answer the questions:

A group of friends ordered two pizzas for them. One of them was divided into four equal parts while the other in six equal parts. The pizzas were served in pans, exactly the size of the pizza, having a diameter of 35 cm each.

46.	6. The area of the pan covered by one part of pizza- I is:		[1]
	a) 962.5 cm ²	b) 240.625 cm ²	
	c) _{481.25} cm ²	d) 120.32 cm ²	
47.	The area of the pan covered by each part of	pizza II is:	[1]
	a) _{481.25} cm ²	b) 240.625 cm ²	
	c) 962.5 cm ²	d) 160.42 cm ²	
48.	The circumference of the pan is:		[1]
	a) 110 cm	b) 3850 cm	

c) 220 cm

d) 440 cm

- 49. The ratio of the area of two circles when the ratio of the circumference is 3:1 will be: [1]
 - a) 1:3 b) 9:1
 - c) 3:1 d) 1:9
- 50. The area of a sector of a circle with a central angle 20° and radius 2r units is given by: [1]
 - a) $\frac{2}{9}\pi r^2$ b) $\frac{1}{16}\pi r^2$ c) $\frac{1}{18}\pi r^2$ d) $\frac{1}{9}\pi r^2$

Solution

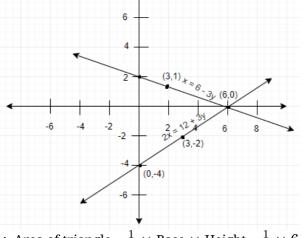
Section A

1. (a) $\frac{7}{250}$

Explanation: We have; $\frac{7}{250} = \frac{7}{2^1 \times 5^3}$

Theorem states:

Let $x=rac{P}{q}$ be a rational number, such that the prime factorization of q is of the form $2^m imes 5^n$, where m and n are non-negative integers.


Then, x has decimal expression which terminates after k places of decimal, where k is the larger of m and n.

Therefore, x has a decimal expression which will have terminating decimal after 3 places of decimal. Hence $\frac{7}{250}$ will have terminating decimal expansion.

2. (b) 18 sg. units

Explanation: Here are the two solutions of each of the given equations. x + 3y = 6

			0	
x	0	3	6	
y	2	1	0	
2x - 3y = 12				
x	0	3	6	
y	-4	-2	0	
<u></u>		'	·	

 \therefore Area of triangle = $\frac{1}{2} \times$ Base \times Height = $\frac{1}{2} \times 6 \times 6$ = 18 sq. units

(c) –m, m + 3 3.

> **Explanation:** Given: equation $x^2 - 3x - m(m + 3) = 0$, where m is a constant The given equation is the form of $ax^2 + bx + c = 0$

 \therefore a = 1, b = -3, c = -m(m + 3) We know the roots of the equation can be find out using the formula, $x=rac{-b\pm\sqrt{b^2-4ac}}{c}$ 2aSubstituting the values of a, b, c, we get $-(-3)\pm \sqrt{(-3)^2-4(1)(-m(m+3))}$ $\Rightarrow x = rac{3\pm\sqrt{9+4m^2+12m}}{2} \ \Rightarrow x = rac{3\pm(2m+3)}{2}$

or $x = rac{3+(2m+3)}{2}, x = rac{3-(2m+3)}{2}$

 \Rightarrow x = m + 3 and x = -m are the required roots of the equation.

4. **(d)** 2

Explanation: x + y - 4 = 0, 2x + ky - 3 = 0for no solution $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ $\frac{1}{2} = \frac{1}{k}$ $\Rightarrow k = 2$

5. **(c)** cosec A + cot A

Explanation:
$$\sqrt{\frac{1+\cos A}{1-\cos A}} = \sqrt{\frac{(1+\cos A)}{(1-\cos A)}} \times \frac{(1+\cos A)}{(1+\cos A)} = \frac{(1+\cos A)}{\sqrt{1-\cos^2 A}} = \frac{(1+\cos A)}{\sqrt{\sin^2 A}}$$

= $\frac{(1+\cos A)}{\sin A} = \left(\frac{1}{\sin A} + \frac{\cos A}{\sin A}\right) = (cosec \ A + \cot A)$

6. **(c)** 128

Explanation: Largest number that divides each one of 1152 and 1664 = HCF (1152, 1664) We know, $1152 = 2^7 \times 3^2$

1164 = $2^7 \times 13$ ∴ HCF = 2^7 = 128

7. (a) both negative

Explanation: Given; $x^2 + 88x + 125 = 0$ $D = (88)^2 - 4(1)(125)$ D = 7244Now, $x = \frac{-(88) \pm \sqrt{7244}}{2(1)}$ $\Rightarrow x = \frac{-88 + 2\sqrt{1811}}{2}$ There roots are $x = -44 + \sqrt{1811}, -44 - \sqrt{1811}$

Which are both negative.

8. **(b)** 9

Explanation: Distance between P(x, 2) and Q(3, -6) = 10 units

$$\Rightarrow \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = 10$$

$$\Rightarrow \sqrt{(3 - x)^2 + (-6 - 2)^2} = 10$$

$$\Rightarrow \sqrt{(3 - x)^2 + (-8)^2} = 10$$

$$\Rightarrow \sqrt{(3 - x)^2 + 64} = 10$$

Squaring both sides,
 $(3 - x)^2 + 64 = 100$

$$\Rightarrow 9 + x^2 - 6x + 64 - 100 = 0$$

$$\Rightarrow x^2 - 6x - 27 = 0$$

$$\Rightarrow x^2 - 9x + 3x - 27 = 0 \left\{ \because -27 = -9 \times 3 \\ -6 = -9 + 3 \right\}$$

$$\Rightarrow x(x - 9) + 3(x - 9) = 0$$

(x - 9) (x + 3) = 0
Either x - 9 = 0, then x = 9 or x + 3 = 0, then x = -3 x is positive integer
Hence x = 9

9. **(b)** $-\frac{3}{7}$

Explanation: Since α and β are the zeros of the quadratic polynomial $p(x) = 4x^2 + 3x + 7$ $\alpha + \beta = \frac{-\text{Coefficient of } x}{\text{Coefficient of } x^2} = \frac{-3}{4}$

$$\alpha\beta = \frac{\text{Constant term}}{\text{coefficient of } x^2} = \frac{7}{4}$$

Now, $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha\beta} = \frac{\frac{-3}{4}}{\frac{7}{4}} = \frac{-3}{4} \times \frac{4}{7} = \frac{-3}{7}$
Thus, the value of $\frac{1}{a} + \frac{1}{\beta}$ is $\frac{-3}{7}$.

10. **(b)** 3

Explanation: The graph of given polynomial cuts the x-axis at 3 distinct points. therefore, No. of zeroes are 3.

11. (a) $\frac{1}{2}$

Explanation: Number of possible outcomes = 3 Number of total outcomes = 6 \therefore Required Probability = $\frac{3}{6} = \frac{1}{2}$

12. (a) 4 decimal places

Explanation:
$$\frac{14587}{1250} = \frac{14587}{2 \times 5^4}$$

Here, in the denominator of the given fraction the highest power of prime factor 5 is 4, therefore, the decimal expansion of the rational number $\frac{14587}{1250}$ will terminate after 4 decimal places.

13. **(d)** (0, – 10) and (4, 0)

Explanation:

Let the coordinates of P (0, y) and Q (x, 0). So, the mid - point of P (0, y) and Q (x, 0) = M Coordinates of M = $\left(\frac{0+x}{2}, \frac{y+0}{2}\right)$

 \therefore Mid - point of a line segment having points (x₁, y₁) and (x₂, y₂)

$$=\left(\frac{(x_1+x_2)}{2},\frac{(y_1+y_2)}{2}\right)$$

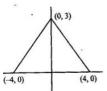
Given, Mid - point of PQ is (2, - 5)

$$\therefore 2 = \frac{x+0}{2} = 4 = x + 0$$

$$x = 4$$

$$-5 = \frac{y+0}{2} = -10 = y + 0$$

$$-10 = y$$
So,
$$x = 4 \text{ and } y = -10$$
Thus, the coordinates of P and


Thus, the coordinates of P and Q are (0, - 10) and (4, 0)

14. **(b)** an isosceles triangle

Explanation: Let vertices of a triangle ABC are A (0, 3), B(-4,0) and C (4, 0).

$$\therefore AB = \sqrt{(-4-0)^2 + (0-3)^2}$$

= $\sqrt{16+9} = \sqrt{25} = 5$ units
BC = $\sqrt{(4+4)^2 + (0-0)^2} = \sqrt{64+0} = \sqrt{64} = 8$ units
AC = $\sqrt{(4-0)^2 + (0-3)^2} = \sqrt{16+9} = \sqrt{25} = 5$ units

Since, two sides are equal, therefore, ABC is an isosceles triangle.

15. **(c)** 2

Explanation: We are given $f(x) = \left(k^2+4
ight)x^2+13x+4k$ then

$$\begin{aligned} \alpha + \beta &= \frac{-\text{Coefficient of } x}{\text{Coefficient of } x^2} \\ &= \frac{-13}{k^2 + 4} \\ \alpha \times \beta &= \frac{\text{Constant term}}{\text{Coefficient of } x^2} \\ &= \frac{4k}{k^2 + 4} \end{aligned}$$

One root of the polynomial is reciprocal of the other. Then, we have

$$egin{array}{lll} lpha imes eta = 1 \ \Rightarrow & rac{4k}{k^2 + 4} = 1 \ \Rightarrow & (k - 2)^2 = 0 \ \Rightarrow & k^2 - 4k + 4 = 0 \ \Rightarrow & k = 2 \end{array}$$

16. **(a)**
$$x^2 + y^2 + z^2 = r^2$$

Explanation:
$$x = r \sin \theta \cos \phi \Rightarrow \frac{x}{r} = \sin \theta \cos \phi$$
 ...(i)
 $y = r \sin \theta \sin \phi \Rightarrow \frac{y}{r} = \sin \theta \sin \phi$...(ii)
 $z = r \cos \theta \Rightarrow \frac{z}{r} = \cos \theta$...(iii)
Squaring and adding (i) and (ii)
 $\frac{x^2}{r^2} + \frac{y^2}{r^2} = \sin^2 \theta \cos^2 \phi + \sin^2 \theta \sin^2 \phi$
 $= \sin^2 \theta (\cos^2 \phi + \sin^2 \phi)$
 $= \sin^2 \theta \times 1 \quad \{\sin^2 \theta + \cos^2 \theta = 1\}$
 $= \sin^2 \theta$
Now adding (iii) in it
 $\frac{x^2}{r^2} + \frac{y^2}{r^2} + \frac{z^2}{r^2} = \sin^2 \theta + \cos^2 \theta = 1$
Hence $\frac{x^2}{r^2} + \frac{y^2}{r^2} + \frac{z^2}{r^2} = 1$
 $\Rightarrow \frac{x^2 + y^2 + z^2}{r^2} = 1$
 $\Rightarrow x^2 + y^2 + z^2 = r^2$

17. (d) 5 and 3

Explanation: x + y = 8 x = 8 - y ... (i) x + y = 4(x - y) ... (ii)Substitute (i) in (ii) 8 = 4x - 4y 2 = x - y 2 = 8 - y - y 2y = 8 - 2 y = 3therefore, x = 8 - 3 = 5Hence, Numbers are 5 and 3

18. **(d)** $\frac{1}{2}$

Explanation: Number of all possible outcomes = 6.

Even numbers are 2,4, 6. Their number is 3. \therefore P (getting an even number) = $\frac{3}{6} = \frac{1}{2}$

19. **(d)** 2

Explanation: LCM (a, b, c) $= 2^3 \times 3^2 \times 5$ (I) we have to find the value of n

Also we have

 $a = 2^3 \times 3$

 $b=2 imes 3 imes 5 \ c=3^n imes 5$

 $c = 3^{\circ} \times 5$

We know that the while evaluating LCM, we take greater exponent of the prime numbers in the factorisation of the number.

Therefore, by applying this rule and taking $n\geq 1$ we get the LCM as

LCM (a, b, c) = $2^3 \times 3^n \times 5$ (II) On comparing (I) and (II) sides, we get: $2^3 \times 3^2 \times 5 = 2^3 \times 3^n \times 5$ n = 2

Explanation: Centroid of (7, x), (y, -6) and (9, 10) is (6, 3) $\therefore \frac{x_1 + x_2 + x_3}{3} = 6 \Rightarrow \frac{7 + y + 9}{3} = 6$ $\Rightarrow 16 + y = 18$ $\Rightarrow y = 18 - 16 = 2$ and $\frac{y_1 + y_2 + y_3}{3} = 3 \Rightarrow \frac{x - 6 + 10}{3} = 3$

- \Rightarrow x + 4 = 9 \Rightarrow 9 4 = 5
- ∴ (x, y) = (5, 2)

Section B

21. **(b)** 0

Explanation: $2^{x+y} = 2^{x-y} = 2^{3/2} \Rightarrow x + y = \frac{3}{2}$ and $x - y = \frac{3}{2}$. So, by adding above two equations we get and x = y = 0

- 22. (a) $\sqrt{2}x^2 3\sqrt{3}x + \sqrt{6}$ Explanation: Clearly, $\sqrt{2}x^2 - 3\sqrt{3}x + \sqrt{6}$ is a polynomial.
- 23. **(c)** 2

```
Explanation: First, find the HCF of 65 and 117

117 = 65 \times 1 + 52

65 = 52 \times 1 + 13

52 = 13 \times 4 + 0 (zero remainder)

Therefore, HCF (117, 65) is 13

Now,

\therefore 65m - 117 = 13

\Rightarrow 65m = 13 + 117

\Rightarrow 65m = 130

\Rightarrow m = 2
```

```
24. (d) \sqrt{3}
```

Explanation: Given: $\sin \theta = \frac{\sqrt{3}}{2}$ and $\operatorname{cosec} \theta = \frac{2}{\sqrt{3}}$ $\operatorname{cosec}^2 \theta - \cot^2 \theta = 1$ $\Rightarrow \cot^2 \theta = \operatorname{cosec}^2 \theta - 1$ $\Rightarrow \cot^2 \theta = \frac{4}{2}$ 1 [Civen]

$$\Rightarrow \cot^{2} \theta = \frac{1}{3} - 1 \text{ [Given]}$$
$$\Rightarrow \cot \theta = \frac{1}{\sqrt{3}}$$
$$\therefore \operatorname{cosec} \theta + \cot \theta = \frac{2}{\sqrt{3}} + \frac{1}{\sqrt{3}}$$

$$= \frac{3}{\sqrt{3}}$$
$$= \frac{\sqrt{3} \times \sqrt{3}}{\sqrt{3}}$$
$$= \sqrt{3}$$

25. (c) no solution

Explanation: Given, equations are x + 2y + 5 = 0, and - 3x - 6y + 1 = 0. Comparing the equations with general form: $a_1x + b_1y + c_1 = 0$ $a_2x + b_2y + c_2 = 0$

Here, a₁ = 1, b₁ = 2, c₁ = 5

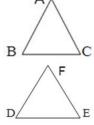
And a₂ = - 3, b₂ = - 6, c₂ = 1

Taking the ratio of coefficients to compare

 $\frac{a_1}{a_2} = \frac{-1}{3}, \frac{b_1}{b_2} = \frac{-1}{3}, \frac{c_1}{c_2} = \frac{5}{1}$

So
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

This represents a pair of parallel lines. Hence, the pair of equations has no solution.


26. (a) $\frac{-9}{2}$

Explanation: For $ax^2 + bx + c$, we have $\alpha\beta = \frac{c}{a}$ For $2x^2 + 5x - 9$, we have $\alpha\beta = \frac{-9}{2}$

27. (a) $\angle B = \angle D$.

Explanation: In $\triangle ABC$ and $\triangle DEF$, $\frac{AB}{DE} = \frac{BC}{FD}$, then if, $\angle B = \angle D$ (the included angles) are equal then the triangles are similar

6

28. **(b)** (-4, 6) **Explanation:** Given: $(x_1, y_1) = (-6, 10), (x_2, y_2) = (3, -8)$ and $m_1 : m_2 = 2 : 7$

$$\therefore \mathbf{x} = \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}$$

= $\frac{2 \times 3 + 7 \times (-6)}{2 + 7} = \frac{6 - 42}{9} = \frac{-36}{9} - 4$
And $\mathbf{y} = \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2} = \frac{2 \times (-8) + 7 \times 10}{2 + 7} = \frac{-16 + 70}{9} = \frac{54}{9} = \frac{54}{9}$

Therefore, the required coordinates are (-4, 6)

29. **(a)** $\sqrt{2}$

30.

Explanation: Given: $\sin 45^\circ + \cos 45^\circ$

$$= \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \\ = \frac{2}{\sqrt{2}} = \sqrt{2}$$

(c) m= -1 Explanation: Given: 2x + 3y = 11 ... (i) 2x - 4y = -24 ... (ii) Subtracting eq. (ii) from eq. (i), we get 7y = 35

 \Rightarrow y = 5 Putting the value of y in eq. (i), we get $2x + 3 \times 5 = 11$ \Rightarrow 2x = -4 \Rightarrow x = -2 Now, y = mx + 3 \Rightarrow 5 = m \times (-2) + 3 $\Rightarrow 2m = 3 - 5$ m = -1 **(b)** $a^3 b^2$ 31. **Explanation:** Let $p = ab^2 = a \times b \times b$ And $q = a^3b = a \times a \times a \times b$ \Rightarrow LCM of p and q = LCM (ab², a³b) = a × b × b × a × a = a³b² [Since, LCM is the product of the greatest power of each prime factor involved in the number] (d) $PR^2 + OR^2 = PO^2$ 32. **Explanation:** Given, in \triangle PQR $PS = QS = RS \dots(i)$ In \triangle PSR, PS = RS [fromEq. (i)] $\Rightarrow \angle 1 = \angle 2$ (ii) Similarly, in \triangle RSQ, $\Rightarrow \angle 3 = \angle 4 \dots$ (iii) [corresponding angles of equal sides are equal] Now, in \triangle PQR, sum of angles = 180° $\Rightarrow \angle P + \angle Q + \angle R = 180^{\circ}$ $\Rightarrow \angle 2 + \angle 4 + \angle 1 + \angle 3 = 180^{\circ}$ $\Rightarrow \angle 1 + \angle 3 + \angle 1 + \angle 3 = 180^{\circ}$ $\Rightarrow 2(\angle 1 + \angle 3) = 180^{\circ}$ $\Rightarrow \angle 1 + \angle 3 = \frac{180^{\circ}}{2} = 90^{\circ}$ $\therefore \angle R = 90^{\circ}$ In \triangle PQR by Pythagoras theorem, $PR^2 + QR^2 = PQ^2.$ (c) $\frac{1-\cos\theta}{\sin\theta}$ 33. **Explanation:** We have, $\frac{\sin\theta}{1+\cos\theta} = \frac{\sin\theta(1-\cos\theta)}{(1+\cos\theta)(1-\cos\theta)}$ $=\frac{\sin\theta(1-\cos\theta)}{1-\cos^2\theta}=\frac{\sin\theta(1-\cos\theta)}{\sin^2\theta}$ $=\frac{1-\cos\theta}{\sin\theta}$ (c) rectangle 34. Explanation: A (9, 0), B(9, 6), C(-9, 6) and D(-9, 0) are the given vertices. Then, $AB^2 = (9 - 9)^2 + (6 - 0)^2$ $= (0)^{2} + (6)^{2} = 0 + 36 = 36$ units $BC^2 = (-9 - 9)^2 + (6 - 6)^2$ $= (-18)^2 + (0)^2 = 324 + 0 = 324$ units $CD^2 = (-9 + 9)^2 + (0 - 6)^2 = (0)^2 + (-6)^2 = 0 + 3 = 36$ units $DA^2 = (-9 - 9)^2 + (0 - 0)^2 = (-18)^2 + (0)^2 = 324 + 0 = 324$ units Therefore, we have: $AB^2 = CD^2$ and $BC^2 = DA^2$ Now, the diagonals are:

 $AC^2 = (-9 - 9)^2 + (6 - 0)^2 = (-18)^2 + (6)^2 = 324 + 36 = 360$ units $BD^2 = (-9 - 9)^2 + (0 - 6)^2 = (-18)^2 + (-6)^2 = 324 + 36 = 360$ units Therefore, $AC^2 = BD^2$ Hence, *ABCD* is a rectangle.

35. (c) $\frac{1}{52}$

Explanation: Number of jacks of Heart in a pack of 52 cards = 1 Number of possible outcomes = 1 Number of Total outcomes = 52 \therefore Required Probability = $\frac{1}{52}$

36. **(d)** 2x + 5y = −11

4x + 10y = –22

Explanation: If x = 2 and y = - 3 is a unique solution of any pair of equation, then these values must satisfy that pair of equations.

Putting the values in the equations for every option and checking it -

LHS = 2x + 5y = 2(2+(-3) = 4 + (-15) = -11 = RHS

and

LHS = 4x + 10y = 4(2) +10(- 3) = 8 + (- 30) = - 22 = RHS

It satisfies the pair of linear equation and hence is the unique solution for the equation.

37. **(d)** 2

Explanation: Since 7 + 3 = 10

The least prime factor of a + b has to be 2; unless a + b is a prime number greater than 2. Suppose a + b is a prime number greater than 2. Then a + b must be an odd number and one of 'a' or 'b' must be an even number.

Suppose that 'a' is even. Then the least prime factor of a is 2; which is not 3 or 7. So 'a' can not be an even number nor can b be an even number. Hence a + b can not be a prime number greater than 2 if the least prime factor of a is 3 and b is 7.

Thus the answer is 2.

38. **(d)** 30°

Explanation: We have, $2\sin 2\theta = \sqrt{3} \Rightarrow \sin 2\theta = \frac{\sqrt{3}}{2} = \sin 60^{\circ}$ $\Rightarrow 2\theta = 60^{\circ}$ $\Rightarrow \theta = 30^{\circ}$

39. **(b)** 0

Explanation: Elementary events are

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6) (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6) (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6) (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6) (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6) (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6) \therefore Number of Total outcomes = 36 And Number of possible outcomes (sum of numbers appearing on die is 1) = 0 \therefore Required Probability = $\frac{0}{36} = 0$ (a) $2 + \sqrt{2}$

40. (a)
$$2 + \sqrt{2}$$

Explanation: Let

Explanation: Let the vertices of
$$\triangle ABC$$
 be A(0, 0), B(1, 0) and C(0, 1)
Now length of AB = $\sqrt{(1-0)^2 + (0-0)^2}$
= $\sqrt{(1)^2 + 0^2} = \sqrt{1^2} = 1$
Length of AC = $\sqrt{(0-0)^2 + (1-0)^2} = \sqrt{0^2 + (1)^2}$
= $\sqrt{1^2} = 1$

and length of BC = $\sqrt{(0-1)^2 + (1-0)^2}$ = $\sqrt{(1)^2 + (1)^2} = \sqrt{1+1} = \sqrt{2}$ Perimeter of $\triangle ABC$ = Sum of sides = $1 + 1 + \sqrt{2} = 2 + \sqrt{2}$

Section C

```
41.
       (d) 26 m
       Explanation: As JKLM is a square.
       \therefore ML = JM = 4 m
       So, JF = 6 + 4 = 10 m
       Required distance between initial and final position of insect = HJ
       = \sqrt{(HF)^2 + (JF)^2}
       =\sqrt{(24)^2+(10)^2}
       =\sqrt{676} = 26 \text{ m}
       (d) m^2 + n^2 = r^2
42.
       Explanation: By Pythagoras, n^2 + m^2 = r^2
       (b) AA
43.
       Explanation: In \triangleABJ and \triangleADH
       \angle B = \angle D = 90°
       \angle A = \angle A (common)
       \therefore By AA similarity criterion, \triangle ABJ \sim \triangle ADH.
       (c) \frac{AB}{BD} = \frac{AJ}{AH}
44.
       Explanation: Since, \DeltaABJ \sim \triangleADH [By AA similarity criterion]
       \therefore \frac{\overline{AB}}{AD} = \frac{AJ}{AH}
       (a) PR^2 = PQ + QR
45.
       Explanation: Since, PR^2 = PQ^2 + QR^2 [By Pythagoras theorem]
       (b) 240.625 cm<sup>2</sup>
46.
       Explanation: 240.625 cm<sup>2</sup>
       (d) 160.42 cm<sup>2</sup>
47.
       Explanation: 160.42 cm<sup>2</sup>
48.
       (a) 110 cm
       Explanation: 110 cm
       (b) 9:1
49.
       Explanation: 9:1
       (a) \frac{2}{9}\pi r^2
50.
       Explanation: \frac{2}{9}\pi r^2
```