Classification of alcohols and phenols:

• Mono, di, tri or polyhydric –

- On the basis of hybridisation –
- 1. C_{sp³} OH
 - a. Primary, secondary and tertiary
 - b. Allylic alcohols

1. Benzylic alcohols

a. Vinylic alcohol

ОН

b. Phenol

Classification of ethers:

- Simple or symmetrical C₂H₅OC₂H₅, C₆H₅OC₆H₅
- Mixed or unsymmetrical C₂H₅OCH₃, CH₃OC₆H₅

Common names of some phenols:

• Preparation of alcohols –

1. From alkenes

2. Acid catalysed hydration

$$CH_3CH = CH_2 + H_2O \xrightarrow{H^+} CH_3 - CH - CH_3$$

|
OH

[According to Markovnikov's rule]

1. Hydroboration – oxidation

$$CH_3 - CH = CH_2 + (H - BH_2) \longrightarrow CH_3 - CH - CH_2$$

 $| | | H - BH_2$
 $CH_3 - CH = CH_2$
 $(CH_3 - CH_2 - CH_2)_3 B \leftarrow CH_3 - CH = CH_2$
 $(CH_3 - CH_2 - CH_2)_3 B \leftarrow CH_3 - CH = CH_2$
 $H_2O = 3H_2O_2, \overline{OH}$
 $3CH_3 - CH_2 - CH_2 - OH + B(OH)_3$
Propan-1-ol

- 1. From carbonyl compounds
- 2. By reduction of aldehydes and ketones.

Aldehydes give 1° and ketones give 2°alcohols.RCHO + H_2 H $\xrightarrow{\mathbb{Pd}}$ RCH2OH(1°alcohol)

1. By reduction of carboxylic acids and esters

 $\begin{array}{ccc} \text{RCOOH} & \xrightarrow{(i) \text{ LiAlH}_4} & \text{RCH}_2\text{OH} \\ \hline & (ii) \text{ H}_2\text{O} & \text{(1° alcohol)} \end{array}$

1. From Grignard reagents

Methanol gives 1°, other aldehydes give 2°, and ketones give 3° alcohols.

- Preparation of phenols -
- 1. From haloarenes

1. From benzenesulphonic acid

1. From diazonium salts

1. From cumene

5/5/2020

Boiling points:

- 1. The boiling points of alcohols and phenols increase with increase in number of carbon atoms as it involves increase in van der Waals forces.
- 2. The boiling points of alcohols decrease with increase of branching. This is because van der Waals forces decrease with decrease in surface area.

Solubility:

- 1. Alcohols and phenols form H-bonds, so they are soluble in water.
- 2. Their solubility decreases with increase in size of alkyl/aryl groups.

• Reactions that involve cleavage of O – H bond

1. Acidity of alcohols and phenols

2. Reaction with metals

• Phenols react with aq. NaOH to form sodium phenoxides.

Acidity of alcohols

The increasing order of acidity of alcohols is

Acidity of phenols

Phenols are more acidic than alcohols and water. Electron-withdrawing groups increase the acidity of phenols while electron-releasing groups decrease the acidity of phenols.

Esterification

$$Ar/R - OH + R'COCI \xleftarrow{Pyridine} Ar/ROCOR' + HCI$$

Acid Chloride

Acetylation of salicylic acid

• Reactions that involve cleavage of C – O bond in alcohols

Reaction with hydrogen halide

$$R - OH + HX \xrightarrow{ZnCl_2} R - X + H_2O$$

Lucas test – Used for distinguishing between 1° , 2° and 3° alcohols. (Lucas reagent – Concentrated HCl and anhydrous ZnCl₂)

Reaction with phosphorus trihalide

$$3R - OH + PX_3 \longrightarrow 3R - X + H_3PO_3(X = Cl,Br)$$

Dehydration

Treated with concentrated H₂SO₄ or H₃PO₄ or Anhyd. ZnCl₂, or Al₂O₃ $C_2H_5OH \xrightarrow{Conc.H_2SO_4}{443 \text{ K}} CH_2 = CH_2 + H_2O$

The order of increasing reactivity towards dehydration is 1° alcohol $< 2^{\circ}$ alcohol $< 3^{\circ}$ alcohol

Oxidation (also known as dehydrogenation)

It involves formation of a carbon–oxygen double bond.

Oxidising agent - Acidified KMnO4

Alcohol (directly) Carboxylic acid

Oxidising agent is Anhyd. CrO₃

 1° alcohol \rightarrow Aldehyde 2° alcohol \rightarrow Ketone

Pyridinium chlorochromate (PCC)

 1° alcohol \rightarrow Aldehyde

Oxidising agent \rightarrow Heated Cu at 573 K

 1° alcohol \rightarrow Aldehyde 2° alcohol \rightarrow Ketone

 3° alcohols do not undergo oxidation

- 1. Electrophilic aromatic substitution reaction
- 2. Nitration

The *o*-isomer is steam volatile due to intramolecular H-bonding while the *p*-isomer is less volatile due to intermolecular H-bonding. So, they can be separated by steam distillation.

1. Halogenation

2, 4, 6 - Tribromophenol

1. Kolbe's reaction

1. Reimer–Tiemann reaction

1. Reaction of phenol with zinc dust

1. Oxidation

Benzoquinone

Methanol (CH₃OH)

• Preparation

- Earlier produced by destructive distillation of wood
- Nowdays produced by catalytic hydrogenation of carbon monoxide
- Properties
 - Colourless liquid
 - Boiling point = 337 K
 - Highly poisonous Small quantities cause blindness and large quantities cause even death.
- Uses
 - As a solvent in paints and varnishes
 - In the preparation of formaldehyde (HCHO)

Ethanol (C₂H₅OH)

- Also known as spirit of wine and grain alcohol
- Preparation
 - By fermentation of mollases
 - By hydrolysis of alkyl halides with dilute hot alkali
 - By hydration of ethene using:
 - $\circ~$ Concentrated $\rm H_2SO_4$ at 80 oC and 30 atm
 - $\circ~$ $\rm H_{3}PO_{4}$ at 300 ^{o}C and 60 atm
- Properties
 - Colourless liquid
 - Boiling point = 351 K
 - Pleasant odour and inflammable
 - Very good organic solvent
 - Reacts with sodium
 - Undergoes dehydration to form corresponding alkene
 - Combustion reaction produces carbon dioxide, water and heat
 - Oxidised to corresponding aldehyde and carboxylic acid by acidified K₂Cr₂O₇
 - Undergoes esterification reaction with carboxylic acids
 - Reacts with phosphorous halide to form alkyl halide
- Uses
 - As a solvent in manufacture of paint and a number of carbon compounds
 - Denaturation of alcohol Making commercial alcohol unfit for drinking by mixing compounds like copper sulphate, pyridine in it.
 - Denatured alcohol:
 - Addition of poisonous substances like pyridine, methyl alcohol to pure ethanol for making it unfit for consumption
 - Also calles methylated spirit
 - Contains 5% methyl alcohol
 - Used for industrial purposes
 - Spurious alcohol:

- Illicit liquer prepared by improper distillation
- Contains large portions of methanol
- Fatal for human consumption
- Used as a solvent for paints and varnishes

Ethers:

- Preparation of ethers –
- 1. By dehydration of alcohols

1. Williamson synthesis

$$R - X + R' - O Na \longrightarrow R - O - R' + NaX$$

- 1. But in case of 2° and 3° halides, instead of substitution, elimination takes place, resulting in alkenes.
- 2. Phenols are converted into ethers.

• Physical properties of ethers -

1. Boiling points:

The boiling points of ethers are lower than those of alcohols of comparable molecular masses due to the presence of H-bonding in alcohols.

• Chemical reactions of ethers:

1. Cleavage of C – O bond

2. Least reactive; under drastic conditions with excess of hydrogen halides, the $\rm C-O$ bond is cleaved

$$R - O - R + HX \longrightarrow RX + R - OH$$

$$R - OH + HX \longrightarrow R - X + H_2O$$

$$0 - R \longrightarrow OH + H - X \longrightarrow H + R - X$$

- 1. The order of increasing reactivity of hydrogen halides is HCl < HBr < HI
- 1. Electrophilic substitution
- 2. Halogenation

1. Friedel Craft's alkylation

1. Friedel Craft's acylation

1. Nitration

