
Chapter 3

Intermediate Code Generation

inTroduCTion
In the analysis–synthesis model, the front end translates a source
program into an intermediate representation (IR). From IR the
back end generates target code.

Source
code

Front
end

Intermediate
representation

Back
end

Target
representation

Target
independent,

source dependent

Mostly target
dependent,

source independent

Target
dependent,

source independent

There are different types of intermediate representations:

 • High level IR, i.e., AST (Abstract Syntax Tree)
 • Medium level IR, i.e., Three address code
 • Low level IR, i.e., DAG (Directed Acyclic Graph)
 • Postfi x Notation (Reverse Polish Notation, RPN).

In the previous sections already we have discussed about AST and
RPN.

Benefi ts of Intermediate code generation: The benefi ts of ICG
are

 1. We can obtain an optimized code.
 2. Compilers can be created for the different machines by

attaching different backend to existing front end of each
machine.

 3. Compilers can be created for the different source languages.

Directed acyclic graphs for expression: (DAG)
 • A DAG for an expression identifi es the common sub expressions

in the given expression.
 • A node N in a DAG has more than one parent if N represents a

common sub expression.
 • DAG gives the compiler, important clues regarding the genera-

tion of effi cient code to evaluate the expressions.

Example 1: DAG for a + a*(b – c) + (b – c)*d

P7 P13
P12

P11d
a

b c

P6

+
+

−

P5P10

P1P2

P3P8 P4P9

*

*

P
1
 = makeleaf (id, a)

P
2
 = makeleaf (id, a) = P

1

P
3
 = makeleaf (id, b)

P
4
 = makeleaf (id, c)

P
5
 = makenode (-, P

3
, P

4
)

P
6
 = makenode (*, P

1
, P

5
)

P
7
 = makenode (+, P

1
, P

6
)

P
8
 = makeleaf (id, b) = P

3

P
9
 = makeleaf (id, c) = P

4

P
10

 = makenode (-, P
8
, P

9
) = P

5

  Introduction

  Directed Acyclic Graphs (DAG)

  Three address code

  Symbol table operations

  Assignment statements

  Boolean expression

  Flow control of statements

  Procedure calls

  Code generation

  Next use information

  Run-time storage management

  DAG representations of basic blocks

  Peephole optimization

LEARNING OBJECTIVES

Chapter 3  •  Intermediate Code Generation  |  6.37

P
11

 = makeleaf (id, d)

P
12

 = makenode (*, P
10

, P
11

)

P
13

 = makenode (+, P
7
, P

12
)

Example 2:  a: = a – 10
:=

−

a 10

Three-Address Code
In three address codes, each statement usually contains 3
addresses, 2 for operands and 1 for the result.

Example:  -x = y OP z

•• x, y, z are names, constants or complier generated
temporaries,

•• OP stands for any operator. Any arithmetic operator (or)
Logical operator.

Example:  Consider the statement x = y * - z + y* - z

=

+
x

y
y

*
*

z
z

Unary-minus
Unary-minus

The corresponding three address code will be like this:

Syntax Tree DAG

t1 = -z t1 = -z

t2 = y * t1 t2 = y * t1

t3 = -z t5 = t2 + t2

t4 = y * t3 X = t5

t5 = t4 + t2

X = t5

The postfix notation for syntax tree is: xyz unaryminus *yz
unaryminus *+=.

•• Three address code is a ‘Linearized representation’ of
syntax tree.

•• Basic data of all variables can be formulated as syntax
directed translation. Add attributes whenever necessary.

Example:  Consider below SDD with following
specifications:
E might have E. place and E.code
E.place: the name that holds the value of E.
E.code: the sequence of intermediate code starts evaluating E.
Let Newtemp: returns a new temporary variable each time
it is called.
New label: returns a new label.
Then the SDD to produce three–address code for expressions
is given below:

Production Semantic Rules

S→ id ASN E S. code = E.code \\ gen (ASN, id.place, E.place)
E. Place = newtemp ();

E→ E1 PLUS E2 E. code = E1. code || E2. code || gen (PLUS, E. place, E1. place, E2. place);
E. place = newtemp();

E→ E1MUL E2 E. code = E1. code || E2. code || gen (MUL, E. place, E1. place, E2. place);
E. Place = Newtemp();

E→ UMINUS E1 E. code = E1 code || gen (NEG, E. Place, E1. place);
E. code = E1.code

E→ LP E1 RP E. Place = E1. Place

E→ IDENT E.place = id. place
E. code = empty.list ();

Types of Three Address Statement
Assignment

•• Binary assignment: x: = y OP z Store the result of y OP z
to x.

•• Unary assignment: x: = op y Store the result of unary
operation on y to x.

Copy

•• Simple Copy x: = y Store y to x
•• Indexed Copy x: = y[i] Store the contents of y[i] to x
•• x[i]:= y Store y to (x + i)th address.

Address and pointer manipulation

  x : = &y Store address of y to x

 x : = *y Store the contents of y to x

*x : = y Store y to location pointed by x .

Jump

•• Unconditional jump:- goto L, jumps to L.
•• Conditional:
if (x relop y)
goto L

1
;

else

6.38  |  Unit 6  •  Compiler Design

{
goto L

2
;

}
Where relop is <, < =, >, > = , = or ≠.

Procedure call

Param x
1
;

Param x
2
;

.

.

.

Param x
n
;

Call p, n, x;
Call procedure p with n parameters and
store the result in x.

return x Use x as result from procedure.

Declarations
•• Global x, n1, n2: Declare a global variable named x at off-

set n1 having n2 bytes of space.
•• Proc x, n1, n2: Declare a procedure x with n1 bytes of

parameter space and n2 bytes of local variable space.
•• Local x, m: Declare a local variable named x at offset m

from the procedure frame.
•• End: Declare the end of the current procedure.

Adaption for object oriented code
•• x = y field z: Lookup field named z within y, store address

to x
•• Class x, n1, n2: declare a class named x with n1 bytes of

class variables and n2 bytes of class method pointers.
•• Field x, n: Declare a field named x at offset n in the class

frame.
•• New x: Create a new instance of class name x.

Implementation of Three
Address Statements
Three address statements can be implemented as records
with fields for the operator and the operands. There are 3
types of representations:

	 1.	 Quadruples
	 2.	 Triples
	 3.	 Indirect triples

Quadruples
A quadruple has four fields: op, arg1, arg2 and result.

•• Unary operators do not use arg2.
•• Param use neither arg2 nor result.
•• Jumps put the target label in result.
•• The contents of the fields are pointers to the symbol table

entries for the names represented by these fields.
•• Easier to optimize and move code around.

Example 1:  For the expression x = y * - z + y * - z, the
quadruple representation is

OP Arg1 Arg2 Result
(0) Uminus z t1

(1) * y t1 t2

(2) Uminus z t3

(3) * y t3 t4

(4) + t2 t4 t5

(5) = t5 x

Example 2:  Read (x)

Op Arg1 Arg2 Result
(0) Param x
(1) Call READ (x)

Example 3:  WRITE (A*B, x +5)

OP Arg1 Arg2 Result
(0) * A B t1

(1) + x 5 t2

(2) Param t1

(3) Param t2

(4) Call Write 2

Triples
Triples have three fields: OP, arg1, arg2.

•• Temporaries are not used and instead references to
instructions are made.

•• Triples are also known as two address code.
•• Triples takes less space when compared with Quadruples.
•• Optimization by moving code around is difficult.
•• The DAG and triple representations of expressions are

equivalent.
•• For the expression a = y* – z + y*–z the Triple representa-

tion is

Op Arg1 Arg2
(0) Uminus z
(1) * y (0)
(2) Uminus z
(3) * y (2)

(4) + (1) (3)
(5) = a (4)

Array – references

Example:  For A [I]: = B, the quadruple representation is

Op Arg1 Arg2 Result
(0) [] = A I T1

(1) = B T2

The same can be represented by Triple representation also.
[] = is called L-value, specifies the address to an

element.

Chapter 3  •  Intermediate Code Generation  |  6.39

Op Arg1 Arg2
(0) [] = A I
(1) = (0) B

Example 2:  A: = B [I]

Op Arg1 Arg2
(0) = [] B I
(1) = A (0)

= [] is called r-value, specifies the value of an element.

Indirect Triples

•• In indirect triples, pointers to triples will be there instead
of triples.

•• Optimization by moving code around is easy.
•• Indirect triples takes less space when compared with

Quadruples.
•• Both indirect triples and Quadruples are almost equally

efficient.

Example:  Indirect Triple representation of 3-address code

Statement
(0) (14)
(1) (15)
(2) (16)
(3) (17)
(4) (18)
(5) (19)

Op Arg1 Arg2
(14) Uminus z
(15) * y (14)
(16) Uminus z
(17) * y (16)
(18) + (15) (17)
(19) = x (18)

Symbol Table Operations
Treat symbol tables as objects.

•• Mktable (previous);
•• create a new symbol table.
•• Link it to the symbol table previous.

•• Enter (table, name, and type, offset)
•• insert a new identifier name with type and offset into

table
•• Check for possible duplication.

•• Add width (table, width);
•• increase the size of symbol table by width.

•• Enterproc (table, name, new table)
•• Enter a procedure name into table.
•• The symbol table of name is new table.

•• Lookup (name, table);
•• Check whether name is declared in the symbol table, if

it is in the table then return the entry.

Example: 
Declaration → M

1
D

M
1
→ ∈ {TOP (Offset): = 0 ;}

D→ D ID

D→ id: T {enter (top (tblptr), id.name, T.type
top (offset)); top (offset): = top (offset)
+ T. width ;}

T→ integer {T.type : = integer; T. width: = 4 :}

T→ double {T.type: = double; T.width = 8 ;}

T→ * T
1
{T. type: = pointer (T. type); T.width

= 4;}

Need to remember the current offset before entering the
block, and to restore it after the block is closed.

Example:  Block → begin M4 Declarations statements end
{pop (tblptr); pop (offset) ;}

M
4
 → ∈{t: = mktable (top (tblptr); push (t,

tblptr); push (top (offset), offset) ;

Can also use the block number technique to avoid creating
a new symbol table.

Field names in records
•• A record declaration is treated as entering a block in

terms of offset is concerned.
•• Need to use a new symbol table.

Example:  T→ record M
5
 D end
{T. type: = (top (tblptr));
T. width = top (offset);
pop (tblptr);
pop (offset) ;}

M
5
 → ∈  {t: = mktable (null);

push (t, tblptr);
push {(o, offset) ;}

Assignment Statements
Expressions can be of type integer, real, array and record.
As part of translation of assignments into three address
code, we show how names can be looked up in the symbol
table and how elements of array can be accessed.

Code generation for assignment statements  gen ([address
1], [assignment], [address #2], operator, address # 3);

Variable accessing  Depending on the type of [address # i],
generate different codes.

Types of [address # i]:

•• Local temp space
•• Parameter
•• Local variable
•• Non-local variable
•• Global variable
•• Registers, constants,…

6.40  |  Unit 6  •  Compiler Design

Error handling routine  error – msg (error information);
The error messages can be written and stored in other

file. Temp space management:

•• This is used for generating code for expressions.
•• newtemp (): allocates a temp space.
•• freetemp (): free t if it is allocated in the temp space

Label management
•• This is needed in generating branching statements.
•• newlabel (): generate a label in the target code that has

never been used.

Names in the symbol table
S→ id: = E {p: = lookup (id-name, top (tblptr));

If p is not null then gen (p, “:=”,
E.place);
Else error (“var undefined”, id. Name)
;}
E→E

1
+ E

2
 {E. place = newtemp ();

gen (E.place, “: = “, E
1
.place, "+”,

E
2
.Place); free temp (E1.pace);

freetemp
(E2. place) ;}
E→ –E

1
 {E. place = newtemp ();

gen (E.place, “: =”, “uminus”,
E
1
.place);

Freetemp (E
1
. place ;)}

E→(E
1
) {E. place = E

1
. place ;}

E→ id {p: = lookup (id.name, top (tblptr);
If p ≠ null then E.place = p. place else error
(“var undefined”, id. name) ;}

Type conversions
Assume there are only two data types: integer, float.

For the expression,
E → E1 + E2

If E
1
. type = E

2
. type then

generate no conversion code
E.type = E

1
. type;

Else
E.type = float;
temp1 = newtemp ();
If E

1
. type = integer then

gen (temp1,’:=’ int - to - float, E
1
.place);

gen (E,’:=’ temp1, ‘+’, E
2
.place);

Else
gen (temp1,’:=’ int - to - float, E

2
. place);

gen (E,’:=’ temp1, ‘+’, E
1
. place);

Free temp (temp1);

Addressing array elements
Let us assume

low: lower bound
w: element data width

Start_addr: starting address
1D Array: A[i]

•• Start_addr + (i – low)* w = i * w + (start_addr - low *w)
•• The value called base, (start_addr – low * w) can be com-

puted at compile time and then stored at the symbol table.
Example:  array [-8 …100] of integer.
To declare [-8] [-7] … [100] integer array in Pascal.
2D Array A [i

1
, i

2
]

Row major order: row by row. A [i] means the ith row.
		 1st row A [1, 1]
 A [1, 2]

		 2nd row A [2, 1]
 A [2, 2]
 A [i, j] = A [i] [j]
		 Column major: column by column.

A [1, 1] : A [1, 2]
A [2, 1] A [2, 2]
1st Column 2nd column

		 Address for A [i
1
, i

2
]:

		 Start _ addr + ((i, - low
1
) *n

2
 + (i

2
 – low

2
))*w

Where low
1
 and low

2
 are the lower bounds of i

1
 and i

2
. n

2

is the number of values that i
2
 can take. High

2
is the upper

bound on the valve of i
2
. n

2
= high

2
 – low

2
 + 1

We can rewrite address for A [i1, i2] as ((i1 × n2) + i2)
× w + (start _ addr - ((low1 × n2) + low2) × w). The value
(start _ addr - low

1
× n

2
 × w – low

2
 × w) can be computed at

compiler time and then stored in the symbol table.

Multi-Dimensional Array A [i
1
, i

2
,…i

k
]

Address for A [i
1
, i

2
,…i

k
]

		 = + + +)= =i i i wi
k n

i
k n

k
i i

1 * * *π π2 2 3 �

+ −(
− − −)

=

=

start addr low w ni

low w low w

i
k

i
k n

k
i

_ * *

* * *

1 2

2 3

π

π �

It can be computed incrementally in grammar rules:
f (1) = i1;
f (j) = f (j -1) * n

j
 + i

j
;

f (k) is the value we wanted to compute.
Attributes needed in the translation scheme for addressing
array elements:
Elegize: size of each element in the array

Array: �a pointer to the symbol table entry containing
information about the array declaration.

Ndim: the current dimension index
Base: base address of this array

Place: where a variable is stored.
Limit (array, n) = n

m
 is the number of elements in the mth

coordinate.

Translation scheme for array elements
Consider the grammar
S → L: = E
E → L

Chapter 3  •  Intermediate Code Generation  |  6.41

L→ id

L→ [Elist]

Elist→ Elist
1
, E

Elist→ id [E]

E→ id

E→ E + E
E→ (E)

•• S → L: = E {if L. offset = null then /* L is a
simple id */ gen (L. place, “:=”, E.place);

Else
gen (L. place, “[“, L. offset, “]”,”:=”,
E.place);

•• E → E1 + E2 {E.place = newtemp ();
gen (E. place, “:=”, E1.place, "+”, E

2
.

place) ;}
•• E → (E1) {E.place= E

1
.place}

•• E →L {if L. offset = null then /* L is a
simple id */ E.place:= L .place);
Else begin
E.place:=newtemp();
gen (E.place, “:=”,L.place, “[“,L.offset,
‘]”);
end }

•• L → id {P! = lookup (id.name, top (tblptr));
If P ≠ null then
Begin
L.place: = P.place:
L.offset:= null;
End
Else
Error (“Var underfined”, id. Name) ;}

•• L → Elist {L. offset: = newtemp ();
gen (L. offset, “:=”, Elist.elesize,
“*”, Elist.place);
freetemp (Elist.place);
L.Place := Elist . base ;}

•• Elist→ Elist1, E {t: =newtemp (); m: = Elist1.
ndim+1;
gen (t, “:=” Elist1.place, “*”, limit (Elist1.
array, m));
Gen (t, “:=”, t"+”, E.place); freetemp
(E.place);
Elist.array: = Elist.array;
Elist.place:= t; Elist.ndim:= m ;}
Elist → id  [E {Elist.Place:= E.place; Elist.
ndim:=1;
P! = lookup (id.name, top (tblptr)); check
for id errors;
Elist.elesize:= P.size; Elist.base: = p.base;
Elist.array:= p.place ;}
•• E → id {P:= lookup (id,name, top (tblptr);

Check for id errors; E. Place: = Populace ;}

Boolean Expressions
There are two choices for implementation of Boolean
expressions:

	 1.	 Numerical representation
	 2.	 Flow of control

Numerical representation
Encode true and false values.
Numerically, 1:true 0: false.
Flow of control: Representing the value of a Boolean
expression by a position reached in a program.

Short circuit code:  Generate the code to evaluate a Boolean
expression in such a way that it is not necessary for the code
to evaluate the entire expression.

•• If a1 or a2
a1 is true then a2 is not evaluated.

•• If a1 and a2
a1 is false then a2 is not evaluated.

Numerical representation
E → id1 relop id2
{B.place:= newtemp ();
gen (“if”, id1.place, relop.op, id2.
place,”goto”, next stat +3);
gen (B.place,”:=”, “0”);
gen (“goto”, nextstat+2);
gen (B.place,”:=”, “1”)’}

Example 1:  Translate the statement (if a < b or c < d and e
< f) without short circuit evaluation.

100: if a < b goto 103

101: t
1
:= 0

102: goto 104

103: t
1
:= 1 /* true */

104: if c < d goto 107

105: t
2
:= 0 /* false */

106: goto 108

107: t
2
:= 1

108: if e < f goto 111

109: t
3
:= 0

110: goto 112

111: t
3
 := 1

112: t
4
 := t

2
 and t

3

113: t
3
:= t

1
 or t

4

Flow of Control Statements
B→ id

1
 relop id

2

{
B.true: = newlabel ();
B.false:= newlabel ();
B.code:= gen (“if”, id

1
. relop, id

2
, “goto”,

6.42  |  Unit 6  •  Compiler Design

B.true, “else”, “goto”, B. false) ||
gen (B.true, “:”)
}
S→if  B then S

1
 S.code:= B.code || S

1
.code ||gen

(B.false, ‘:’)
|| is the code concatenation operator.

	 1.	 If – then implementation:
S →if B then S1 {gen (Befalls,” :”);}

B.Code

S1.Code

To B.true
To B.false

B.true:

B.false:

	 2.	 If – then – else
P→S   {S.next:= newlabel ();
P.code:= S.code || gen (S.next,” :”)}
S → if B then S

1
 else S

2
 {S

1
.next:= S.next;

S2
.next:= S.next;

Secede: = B.code || S1
.code ||.

Gen (“goto” S.next) || B. false,” :”)
||S2

.code}
Need to use inherited attributes of S to define the
attributes of S

1
 and S

2

B.Code

S1.Code

S2.Code

Goto S.next

B.true:

B.false:

S.next

To B. true
To B.false

	 3.	 While loop:
B→ id

1
 relop id

2
 B.true:= newlabel ();

B.false:= newlabel ();
B.code:=gen (‘if ’, id.relop,
id

2
, ‘goto’, B.true ‘else’, ‘goto’, B. false) ||

gen (B.true ‘:’);
S→ while B do S

1
  S.begin:= newlabel ();

S.code:=gen (S.begin,’:’)||
B.code||S1.code || gen
(‘goto’, S.begin) || gen (B.false, ‘:’);

B.Code

S1.Code

Goto S.next

B. true
B.false

S.begin

B.true:

B.false:

	 4.	 Switch/case statement:
The c - like syntax of switch case is
switch epr {
case V [1]: S [1]

.

.

.
case V [k]: S[k]
default: S[d]
		 }

Translation sequence
•• Evaluate the expression.
•• Find which value in the list matches the value of the

expression, match default only if there is no match.
•• Execute the statement associated with the matched value.

How to find the matched value?  The matched value can be
found in the following ways:

	 1.	 Sequential test
	 2.	 Lookup table
	 3.	 Hash table
	 4.	 Back patching

Two different translation schemes for sequential test are
shown below:

	 1.	 Code to evaluate E into t
Goto test
L[i]: code for S [1]
goto next

L[k]: code for S[k]
goto next
L[d]: code for S[d]
Go to next test:
If t = V [1]: goto L [1]
.
.
.
goto L[d]
Next:

	 2.	 Can easily be converted into look up table
If t <> V [i] goto L [1]

Code for S [1]

goto next

L [1]: if t < > V [2] goto L [2]

Code for S [2]

Goto next

L [k - 1]: if t < > V [k] goto L[k]

Code for S[k]
Goto next

.

.

.
L[k]: code for S[d]

Next:

Chapter 3  •  Intermediate Code Generation  |  6.43

Use a table and a loop to find the address to jump

V [1] L [1]

V [2]

V [3]

L [2]

L [3] L [2]: S [2]

L[1] : S [1]

	 3.	 Hash table: When there are more than two entries
use a hash table to find the correct table entry.

	 4.	 Back patching:
•• Generate a series of branching statements with the

targets of jumps temporarily left unspecified.
•• To determine label table: each entry contains a list

of places that need to be back patched.
•• Can also be used to implement labels and gotos.

Procedure Calls
•• Space must be allocated for the activation record of the

called procedure.
•• Arguments are evaluated and made available to the called

procedure in a known place.
•• Save current machine status.
•• When a procedure returns:

•• Place returns value in a known place.
•• Restore activation record.

Example:  S → call id (Elist)
{for each item P on the queue Elist.
Queue do gen (‘PARAM’, q);
gen (‘call:’, id.place) ;}
Elist → Elist, E {append E.place to the end of
Elist.queue}
Elist → E {initialize Elist.queue to contain only
E.place}

Use a queue to hold parameters, then generate codes for
params.
Code for E

1
, store in t

1

.

.

.
Code for E

k
, store in t

k

PARAM t1
:
.
.
PARAM tk
Call P
Terminology:
Procedure declaration:
Parameters, formal parameters
Procedure call:
Arguments, actual parameters.
The values of a variable: x = y

r – value: value of the variable, i.e., on the right side of
assignment. Ex: y, in above assignment.
l – value: The location/address of the variable, i.e., on the
leftside of assignment. Ex: x, in above assignment.
There are different modes of parameter passing

	 1.	 call-by-value
	 2.	 call-by-reference
	 3.	 call-by-value-result (copy-restore)
	 4.	 call-by-name

Call by value
Calling procedure copies the r values of the arguments into
the called proceduce’s Activation Record.

Changing a formal parameter has no effect on the actual
parameter.

Example:  void add (int C)
{
C = C+ 10;
printf (‘\nc = %d’, &C);
}
main ()
{
int a = 5;
printf (‘a=%d’, &a);
add (a);
printf (‘\na = %d’, &a);
}

In main a will not be affected by calling add (a)
It prints a = 5

a = 5
Only the value of C in add () will be changed to 15.

Usage:
	 1.	 Used by PASCAL and C++ if we use non-var

parameters.
	 2.	 The only thing used in C.

Advantages:
	 1.	 No aliasing.
	 2.	 Easier for static optimization analysis.
	 3.	 Faster execution because of no need for redirecting.

Call by reference
 Calling procedure copies the l-values of the arguments into

the called procedure’s activation record. i.e., address
will be passed to the called procedure.

•• Changing formal parameter affects the corresponding
actual parameter.

•• It will have some side effects.

Example:  void add (int *c)
{
*c = *c + 10;
printf(‘\nc=%d’, *c);

6.44  |  Unit 6  •  Compiler Design

}
void main()
{
int a = 5;
printf (‘\na = %d’, a);
add (&a);
printf (‘\na = %d’, a);
output: a = 5

c = 15
a = 15

That is, here the actual parameter is also modified.
Advantages
	 1.	 Efficiency in passing large objects.
	 2.	 Only need to copy addresses.

Call-by-value-result
Equivalent to call-by-reference except when there is aliasing.
That is, the program produces the same result, but not the
same code will be generated.

Aliasing: Two expressions that have the same l-values are
called aliases. They access the same location from different
places.

Aliasing happens through pointer manipulation.
	 1.	 Call by reference with global variable as an argument.
	 2.	 Call by reference with the same expression as argu-

ment twice.
Example:  test (x,y,x)

Advantages:
	 1.	 If there is no aliasing, we can implement it by using

call – by – reference for large objects.
	 2.	 No implicit side effect if pointers are not passed.

Call by-name
used in Algol.
•• Procedure body is substituted for the call in calling procedure.
•• Each occurrence of a parameter in the called procedure is

replaced with the corresponding argument.
•• Similar to macro expansion.
•• A parameter is not evaluated unless its value is needed

during computation.

Example:
void show (int x)
{
for (int y = 0; y < 10; y++)
x++;
}
main ()
{
int j;
j = –1;
show (j);
}
Actually it will be like this
main ()
{

int j;
j = - 1;
For (in y= 0; y < 10; y ++)
x ++;
}

•• Instead of passing values or address as arguments, a func-
tion is passed for each argument.

•• These functions are called thunks.
•• Each time a parameter is used, the thunk is called, then

the address returned by the thunk is used.

y = 0: use return value of thunk for y as the � -value.

Advantages
•• More efficient when passing parameters that are never

used.
•• This saves lot of time because evaluating unused param-

eter takes a longtime.

Code Generation
Code generation is the final phase of the compiler model.

Input
(or)

Source
program

Front
end

Intermediate

code

code

Code
optimization

Intermediate

Code
generation

Target
program

The requirements imposed on a code generator are

	 1.  Output code must be correct.
	 2.  Output code must be of high quality.
	 3.  Code generator should run efficiently.

Issues in the Design of a Code Generator
The generic issues in the design of code generators are

•• Input to the code generator
•• Target programs
•• Memory Management
•• Instruction selection
•• Register Allocation
•• Choice of Evaluation order

Input to the code generator
Intermediate representation with symbol table will be the
input for the code generator.

•• High Level Intermediate representation

Example:  Abstract Syntax Tree (AST)

•• Medium – level intermediate representation

Example:  control flow graph of complex operations

•• Low – Level Intermediate representation

Chapter 3  •  Intermediate Code Generation  |  6.45

Example:  Quadruples, DAGS

•• Code for abstract stack machine, i.e., postfix code.

Target programs
The output of the code generator is the target program. The
output may take on a variety of forms:

	 1.	 Absolute machine language
	 2.	 Relocatable machine language
	 3.	 Assembly language

Absolute machine language
•• Final memory area for a program is statically known.
•• Hard coded addresses.
•• Sufficient for very simple systems.

Advantages:
•• Fast for small programs
•• No separate compilation

Disadvantages: Can not call modules from other languages/
compliers.

Relocatable code  It Needs

•• Relocation table
•• Relocating linker + loader (or) runtime relocation in

Memory management Unit (MMU).
Advantage: More flexible.

Assembly language  Generates assembly code and use an
assembler tool to convert this to binary (object) code. It needs
(i) assembler (ii) linker and loader.

Advantage: Easier to handle and closer to machine.

Memory management
Mapping names in the source program to addresses of data
objects in runtime memory is done by the front end and the
code generator.

•• A name in a three address statement refers to a symbol
entry for the name.

•• Stack, heap, garbage collection is done here.

Instruction selection
Instruction selection depends on the factors like

•• Uniformity
•• Completeness of the instruction
•• Instruction speed
•• Machine idioms

•• Choose set of instructions equivalent to intermediate rep-
resentation code.

•• Minimize execution time, used registers and code size.

Example:  x = y + z in three address statements:
MOV y, R0 / * load y into R0 * /
ADD z, R0

MOV R0, x /* store R0 into x*/

Register allocation
•• Instructions with register operands are faster. So, keep fre-

quently used values in registers.
•• Some registers are reserved.

Example:  SP, PC … etc.
Minimize number of loads and stores.

Evaluation order
•• The order of evaluation can affect the efficiency of the

target code.
•• Some orders require fewer registers to hold intermediate

results.

Target Machine
Lets us assume, the target computer is

•• Byte addressable with 4 bytes per word
•• It has n general purpose registers

R0, R1, R2, … R
n-1

•• It has 2 address instructions of the form
OP source, destination
[cost: 1 + added]

Example:  The op may be MOV, ADD, MUL.
Generally cost will be like this

Source Destination Cost

Register
Register
Memory
Memory

Register
Memory
Register
Memory

1
2
2
3

Addressing modes:

Mode Form Address Cost

Absolute M M 2

Register R R 1

Indexed C(R) C+contents(R) 2

Indirect
register

*R Contents (R) 1

Indirect
indexed

*C(R) Contents (C+contents
(R))

2

Example:  x: = y – z

MOV y, R0 → cost = 2

SUB z, R0 → cost = 2

MOV R
0
, x → cost = 2

6

6.46  |  Unit 6  •  Compiler Design

Runtime Storage Management

Storage Organization
To run a compiled program, compiler will demand the oper-
ating system for the block of memory. This block of mem-
ory is called runtime storage.

This run time storage is subdivided into the generated
target code, Data objects and Information which keeps track
of procedure activations.

The fixed data (generated code) is stored at the statically
determined area of the memory. The Target code is placed
at the lower end of the memory.

The data objects are stored at the statically determined
area as its size is known at the compile time. Compiler
stores these data objects at statically determined area
because these are compiled into target code. This static data
area is placed on the top of the code area.

The runtime storage contains stack and the heap. Stack
contains activation records and program counter, data
object within this activation record are also stored in this
stack with relevant information.

The heap area allocates the memory for the dynamic data
(for example some data items are allocated under the pro-
gram control)

The size of stack and heap will grow or shrink according
to the program execution.

Activation Record
Information needed during an execution of a procedure is
kept in a block of storage called an activation record.

•• Storage for names local to the procedures appears in the
activation record.

•• Each execution of a procedure is referred as activation of
the procedure.

•• If the procedure is recursive, several of its activation
might be alive at a given time.

•• Runtime storage is subdivided into
	 1.	 Generated target code area
	 2.	 Data objects area
	 3.	 Stack
	 4.	 Heap

Code

Static data

Stack

Heap

…
…

•• Sizes of stack and heap can change during program
execution.

For code generation there are two standard storage
allocations:

	 1.	 Static allocation: The position of an activation
record in memory is fixed at compile time.

	 2.	 Stack allocation: A new activation record is pushed
on to the stack for each execution of the procedure.

The record is poped when the activation ends.

Control stack  The control stack is used for managing active
procedures, which means when a call occurs, the execution
of activation is interrupted and status information of the
stack is saved on the stack.

When control is returned from a call, the suspended acti-
vation is resumed after storing the values of relevant reg-
isters it also includes program counter which sets to point
immediately after the call.

The size of stack is not fixed.

Scope of declarations  Declaration scope refers to the cer-
tain program text portion, in which rules are defined by the
language.

Within the defined scope, entity can access legally to
declared entities.

The scope of declaration contains immediate scope
always. Immediate scope is a region of declarative portion
with enclosure of declaration immediately.

Scope starts at the beginning of declaration and scope
continues till the end of declaration. Whereas in the over
loadable declaration, the immediate scope will begin, when
the callable entity profile was determined.

The visible part refers text portion of declaration, which
is visible from outside.

Flow Graph
A flow graph is a graph representation of three address
statement sequences.

•• Useful for code generation algorithms.
•• Nodes in the flow graph represents computations.
•• Edges represent flow of control.

Basic Blocks
Basic blocks are sequences of consecutive statements in
which flow of control enters at the beginning and leaves at
the end without a halt or branching.

	 1.	 First determine the set of leaders
•• First statement is leader
•• Any target of goto is a leader
•• Any statement that follows a goto is a leader.

	 2.	 For each leader its basic block consists of the leader
and all statements up to next leader.

Initial node: Block with first statement is leader.

Example:  consider the following fragment of code that
computes dot product of two vectors x and y of length 10.
begin
Prod: = 0;

Chapter 3  •  Intermediate Code Generation  |  6.47

i: = 1;
repeat
begin
Prod: = Prod + x [i] * y [i];
i: = i + 1;
end
until i < = 10;
end

B
1

(1) Prod : = 0

(2) I: = 1

B
2

(3) t1:= 4*i

(4) t2: =x[t1]

(5) t3: =4 * i

(6) t4: =y [t3]

(7) t5: =t2* t4

(8) t6; =Prod + t5

(9) Prod := t6

(10) t7: = i+1

(11) i:= t7

(12) if i < = 10 goto (3)

\The flow graph for this code will be

b1

b2

Here b
1
 is the initial node/block.

•• Once the basic blocks have been defined, a number of
transformations can be applied to them to improve the
quality of code.

	 1.	 Global: Data flow analysis
	 2.	 Local:

•• Structure preserving transformations
•• Algebraic transformations

•• Basic blocks compute a set of expressions. These expres-
sions are the values of the names live on exit from the
block.

•• Two basic blocks are equivalent if they compute the same
set of expressions.

Structure preserving transformations:

	 1.	 Common sub-expression elimination:

a : = b + c

⇒

a : = b + c
b : = a – d b : = a – d
c : = b + c c : = b + c
d : = a - d d : = b

	 2.	 Dead code elimination: Code that computes values
for names that will be dead i.e., never subsequently
used can be removed.

	 3.	 Renaming of temporary variables
	 4.	 Interchange of two independent adjacent statements

Algebraic Transformations
Algebraic identities represent other important class optimi-
zations on basic blocks. For example, we may apply arith-
metic identities, such as x + 0 = 0 + x = x,

x * 1 = 1 * x = x
x – 0 = x
x/1 = x

Next-Use Information
•• Next-use info used in code generation and register

allocation.
•• Remove variables from registers if not used.
•• Statement of the form A = B or C defines A and uses B

and C.
•• Scan each basic block backwards.
•• Assume all temporaries are dead or exit and all user vari-

ables are live or exit.

Algorithm to compute next use information
Suppose we are scanning

i: x: = y op z
in backward scan

•• attach to i, information in symbol table about x, y, z.
•• set x to not live and no next-use in symbol table
•• set y and z to be live and next-use in symbol table.

Consider the following code:
1: t

1
 = a * a

2: t
2
 = a * b

3: t
3
 = 2 * t

2

4: t
4
 = t

1
+ t

2

5: t
5
 = b * b

6: t
6
 = t

4
+ t

5

 7: x = t
6

Statements:
7: no temporary is live

6: t
6
: use (7) t

4
 t

5
 not live

5: t
5
: use (6)

4: t
4
: use (6), t

1
 t

3
 not live

3: t
3
: use (4) t

2
 not live

2: t
2
: use (3)

1: t
1
: use (4)

Symbol Table:
t
1
dead use in 4

6.48  |  Unit 6  •  Compiler Design

t
2
dead use in 3

t
3
dead use in 4

t
4
dead use in 6

t
5
dead use in 6

t
6
dead use in 7

The six temporaries in the basic block can be packed into
two locations t

1
 and t

2
:

1: t
1
 = a * a

2: t
2
 = a * b

3: t
2
 = 2 * t

2

4: t
1
 = t

1
+ t

2

5: t
2
 = b * b

6: t
1
 = t

1
+ t

2

 7: x = t
1

Code Generator
•• Consider each statement
•• Remember if operand is in a register
•• Descriptors are used to keep track of register contents and

address for names
•• There are 2 types of descriptors

	 1.	 Register Descriptor
	 2.	 Address Descriptor

Register Descriptor
Keep track of what is currently in each register. Initially all
registers are empty.

Address Descriptors
•• Keep track of location where current value of the name

can be found at runtime.
•• The location might be a register, stack, memory address

or a set of all these.

Issues in design of code generation  The issues in the
design of code generation are

	 1.	 Intermediate representation
	 2.	 Target code
	 3.	 Address mapping
	 4.	 Instruction set.

Intermediate Representation  It is represented in post fix,
3-address code (or) quadruples and syntax tree (or) DAG.

Target Code  The Target Code could be absolute code,
relocatable machine code (or) assembly language code.
Absolute code will execute immediately as it is having
fixed address relocatable, requires linker and loader to get
the code from appropriate location for the assembly code,
assemblers are required to convert it into machine level
code before execution.

Address mapping  In this, mapping is defined between
intermediate representations to target code address.

It is based on run time environment like static, stack or
heap.

Instruction set  It should provide a complete set in such a
way that all its operations can be implemented.

Code Generation Algorithm
For each three address statement x = y op z do
•• Invoke a function getreg to determine location L where x

must be stored. Usually L is a register.
•• Consult address descriptor of y to determine y′. Prefer a

register for y′. If value of y is not already in L generate
MOV y′, L.

•• Generate
OP z′, L
Again prefer a register for z. Update address descriptor

of x to indicate x is in L. If L is a register update its descrip-
tor to indicate that it contains x and remove x from all other
register descriptors.
•• If current value of y and/or z have no next use and are

dead or exit from block and are in registers then change
the register descriptor to indicate that it no longer contain
y and /or z.

Function getreg
	 1.	 If y is in register and y is not live and has no next use

after x = y OP z then return register of y for L.
	 2.	 Failing (1) return an empty register.
	 3.	 Failing (2) if x has a next use in the block or OP

requires register then get a register R, store its
contents into M and use it.

	 4.	 Else select memory location x as L.

Example:  D: = (a - b) + (a - c) + (a - c)

Stmt
Code

Generated reg desc addr desc
 t = a - b MOV a, R0

SUB b, R0

R0 contains t t in R0

 u = a – c MOV a, R1

SUB c, R1

R0 contains t
R1 contains u

 t in R0

 u in R1

 v = t + u ADD R1, R0 R0 contains v
R1 contains u

 u in R0

 v in R0

d = v + u ADD R1, R0

MOV R0,d
Ro contains d d in R0

d in R0 and
memory

Conditional Statements
Machines implement conditional jumps in 2 ways:

	 1.	 Based on the value of the designated register (R)
		 Branch if values of R meets one of six conditions.
	 (i)  Negative 		 (ii)  Zero
	 (iii)  Positive 			 (iv)  Non-negative
	 (v)  Non-zero 		 (vi)  Non-positive

Chapter 3  •  Intermediate Code Generation  |  6.49

Example:  Three address statement: if x < y goto z
It can be implemented by subtracting y from x in R, then
jump to z if value of R is negative.

	 2.	 Based on a set of condition codes to indicate whether
last quantity computed or loaded into a location is
negative (or) Zero (or) Positive.
•• compare instruction set codes without actually

computing the value.

Example:  CMP x, y
CJL Z.

•• Maintains a condition code descriptor, which tells the
name that last sets the condition codes.
Example:  X: = y + z

If x < 0 goto z
By
MOV y, R

o

ADD z, R
o

MOV R
o
, x

CJN z.

DAG Representation
of Basic Blocks
•• DAGS are useful data structures for implementing trans-

formations on basic blocks.
•• Tells, how value computed by a statement is used in sub-

sequent statements.
•• It is a good way of determining common sub expressions.
•• A DAG for a basic block has following labels on the nodes:

•• Leaves are labeled by unique identifiers, either variable
names or constants.

•• Interior nodes are labeled by an operator symbol.
•• Nodes are also optionally given as a sequence of identi-

fiers for labels.

Example:  1: t
1
:= 4 * i

2: t
2
:= a [t

1
]

3: t
3
:= 4 * i

4: t
4
:= b [t

3
]

5: t
5
:= t

2
* t

4

6: t
6
:= prod + t

5

7: prod: = t
6

8: t
7
:= i + 1

9: i= t
7

10: if i < = 20 got (1)

[] []

+

+

< =

t6, prod

t 5

t 4

t1, t3 t7, i
20

(1)

io
i

prod

a b

4

*

*

Code Generation from DAG:

S
1
 = 4 * i S

1
 = 4 * i

S
2
 = add(A) - 4 S

2
 = add(A) - 4

S
3
 = S

2
 [S

1
] S

3
 = S

2
 [S

1
]

S
4
 = 4 * i

S
5
 = add(B) - 4 S

5
 = add(B) - 4

S
6
 = S

5
[S

4
] S

6
 = S

5
[S

4
]

S
7
 = S

3
*S

6
S

7
 = S

3
*S

6

S
8
= prod + S

7
prod = prod + S

7

prod = S
8

S
9
= I + 1

I = S9 I = I + 1
if I < = 20 got (1) if I < = 20 got (1)

Rearranging order of the code
Consider the following basic block
t
1
:= a + b

t
2
:= c + d

t
3
:= e – t

2

x = t
1
- t

3
 and its DAG

− x

− t3

+t2

 t1

a b y

c d

Three address code for the DAG:
(Assuming only two registers are available)
MOV a, R

o

ADD b, R
o

MOV c, R
1

MOV R
o
, t

1	
Register Spilling

MOV e, R
o	

Register Reloading

SUB R
1
, R

o

MOV t
1
, R

1

SUB R
o
,

R

1

MOV R
1
,

x

Rearranging the code as
t
2
:= c + d

t
3
:= e – t

2

t
1
:= a + b

 x = t
1
 – t

3

The rearrangement gives the code:
MOV c, R

o

ADD d, R
o

MOV e, R
1

SUB R
o
, R

1

6.50  |  Unit 6  •  Compiler Design

MOV a, R
o

ADD b, R
o

SUB R
1
, R

0

MOV R
1
, x

Error detection and Recovery  The errors that arise while
compiling
	 1.	 Lexical errors
	 2.	 Syntactic errors
	 3.	 Semantic errors
	 4.	 Run-time errors

Lexical errors  If the variable (or) constants are declared
(or) defined, not according to the rules of language, special
symbols are included which were not part of the language,
etc is the lexical error.

Lexical analyzer is constructed based on pattern recog-
nizing rules to form a token, when a source code is made
into tokens and if these tokens are not according to rules
then errors are generated.

Consider a c program statement
printf (‘Hello World’);

Main printf, (, ‘, Hello world,’ ,),; are tokens.
Printf is not recognizable pattern, actually it should be

printf. It generates an error.

Syntactic error  These errors include semi colons, missing
braces etc. which are according to language rules.

The parser reports the errors

Semantic errors  This type of errors arises, when operation
is performed over incompatible type of variables, double
declaration, assigning values to undefined variables etc.

Runtime errors  The Runtime errors are the one which are
detected at runtime. These include pointers assigned with
NULL values and accessing a variable which is out of its
boundary, unlegible arithmetic operations etc.

After the detection of errors. The following recovery
strategies should be implemented.
  1.	 Panic mode recovery
  2.	 Phrase level recovery
  3.	 Error production
  4.	 Global correction.

Peephole Optimization
•• Target code often contains redundant instructions and

suboptimal constructs.
•• Improving the performance of the target program by

examining a short sequence of target instructions (peep-
hole) and replacing these instructions by a shorter or
faster sequence is peephole optimization.

•• The peephole is a small, moving window on the target
program. Some well known peephole optimizations are

	 1.	 Eliminating redundant instructions
	 2.	 Eliminating unreachable code
	 3.	 Flow of control optimizations or Eliminating jumps

over jumps
	 4.	 Algebraic simplifications
	 5.	 Strength reduction
	 6.	 Use of machine idioms

Elimination of Redundant Loads and stores

Example 1:  (1) MOV R
o
, a

(2) MOV a, R
o

We can delete instruction (2), because the value of a is
already in R

0
.

Example 2:  Load x, R
0

Store R0, x
If no modifications to R

0
/x then store instruction can be

deleted

Example 3:  (1) Load x, R
0

(2) Store R
0
, x

Example 4:  (1) store R
0
, x

(2) Load x, R
0

Second instruction can be deleted from both examples 3 and 4.

Example 5:  Store R
0
, x

Load x, R0
Here load instruction can be deleted.

Eliminating Unreachable code
An unlabeled instruction immediately following and uncon-
ditional jump may be removed.

•• May be produced due to debugging code intro-
duced during development.

•• May be due to updates in programs without consid-
ering the whole program segment.

Example:  Let print = 0

if print = 1 goto L1
goto L2
L1: print in

if print ! = 1 goto L2
print instructions
L2:

goto L2
print instructions
L2:

if 0! = 1 goto L2
print instructions
L2:

In all of the above cases print instructions are unreachable.
\ Print instructions can be eliminated.

Example:  goto L
2

…
L2:

Flow of control optimizations  The unnecessary jumps can
be eliminated.
Jumps like:
Jumps to jumps,
Jumps to conditional jumps,
Conditional jumps to jumps.

Chapter 3  •  Intermediate Code Generation  |  6.51

(A) (B) (C) (D)

Example 1:  we can replace the jump sequence
goto L

1

…
L

1
: got L

2

By the sequence
Got L

2

L
1
: got L

2,

…
If there are no jumps to L

1
 then it may be

possible to eliminate the statement L
1
: goto L

2
.

Example 2: 

Sometimes skips “goto L3”

Only one jump to
L

 goto L1
...
 L1: if a < b goto
L2
L3:
...

 if a < b goto L2
goto L3:
...
L3:

Reduction in strength
•• x2 is cheaper to implement as x * x than as a call to expo-

nentiation routine.
•• Replacement of multiplication by left shift.

Example:  x * 23 ⇒ x < < 3
•• Replace division by right shift.

Example:  x > > 2 (is x/22)

Use of machine Idioms
•• Auto increment and auto decrement addressing modes

can be used whenever possible.

Example:  replace add #1, R by INC R

Exercises

Practice Problems 1
Directions for questions 1 to 15:  Select the correct alterna-
tive from the given choices
	 1.	 Consider the following expression tree on a machine

with bad store architecture in which memory can be
accessed only through load and store instructions. The
variables p, q, r, s and t are initially stored in memory.
The binary operators used in this expression tree can
be evaluated by the machine only when the operands
are in registers. The instructions produce result only
in a register if no intermediate results can be stored
in memory, what is the minimum number of registers
needed to evaluate this expression?

− −

+

+p q

r

t

s

	 (A)	 2	 (B)	 9
	 (C)	 5	 (D)	 3

	 2.	 Consider the program given below with lexical scoping
and nesting of procedures permitted.

		 Program main ()

		 {

		 Var …

		 Procedure A1
 ()

		 {

		 Var …

		 call A2
;

		 }

		 Procedure A2
 ()

		 {

		 Var..

		 Procedure A21
 ()

		 {

		 Var…

		 call A21
 ();

		 }

		 Call A1
;

		 }

		 Call A1
;

		 }

		 Consider the calling chain: main ()→ A
1
 () → A

2
 () →

A
21

 () → A
1
 ().

		 The correct set of activation records along with their
access links is given by

Frame
Pointer

main main main main

A1 A1 A1 A1

A2 A2 A2 A2

A21 A 21 A21 A21

A1
A1

A1Access
links

6.52  |  Unit 6  •  Compiler Design

	 3.	 Consider the program fragment:

		 sum = 0;

		 For (i = 1; i < = 20; i++)

		 sum = sum + a[i] +b[i];

		 How many instructions are there in the three-address
code for this?

	 (A)	 15	 (B)	 16
	 (C)	 17	 (D)	 18

	 4.	 Suppose the instruction set of the processor has only
two registers. The code optimization allowed is code
motion. What is the minimum number of spills to
memory in the complied code?

		 c = a + b;

		 d = c*a;

		 e = c + a;

		 x = c*c;

		 If (x > a)

		 {

		 y = a*a;

		 Else

		 {

		 d = d*d; e = e*e;

		 }
	 (A)	 0	 (B)	 1
	 (C)	 2	 (D)	 3

	 5.	 What is the minimum number of registers needed to
compile the above problem’s code segment without any
spill to memory?

	 (A)	 3	 (B)	 4
	 (C)	 5	 (D)	 6

	 6.	 Convert the following expression into postfix notation:

		 a = (-a + 2*b)/a
	 (A)	 aa – 2b *+a/=	 (B)	 a – 2ba */+ =
	 (C)	 a2b * a/+	 (D)	 a2b – * a/+
	 7.	 In the quadruple representation of the following pro-

gram, how many temporaries are used?

		 int a = 2, b = 8, c = 4, d;

		 For ( j = 0; j< = 10; j++)

		 a = a * ( j* (b/c));

		 d = a * ( j* (b/c));
	 (A)	 4	 (B)	 7
	 (C)	 8	 (D)	 10

	 8.	 Let A = 2, B = 3, C = 4 and D = 5, what is the final value
of the prefix expression: + * AB – CD

	 (A)	 5	 (B)	 10
	 (C)	 –10	 (D)	 –5

	 9.	 Which of the following is a valid expression?
	 (A)	 BC * D – +	 (B)	 * ABC –
	 (C)	 BBB ***- +	 (D)	 -*/bc

	10.	 What is the final value of the postfix expression B C D
A D – + – + where A = 2, B = 3, C = 4, D = 5?

	 (A)	 5	 (B)	 4
	 (C)	 6	 (D)	 7

	11.	 Consider the expression x = (a + b)* –C/D. In the
quadruple representation of this expression in which
instruction ‘/’ operation is used?

	 (A)	 3rd 	 (B)	 4th
	 (C)	 5th	 (D)	 8th

	12.	 In the triple representation of x = (a + b)*– c/d, in which
instruction (a + b) * – c/d result will be assigned to x?

	 (A)	 3rd	 (B)	 4th
	 (C)	 5th	 (D)	 8th

	13.	 Consider the three address code for the following
program:

		 While (A < C and B > D) do

		 If (A = = 1) then C = C + 1;

		 Else

		 While (A < = D) do

		 A = A + 3;

		 How many temporaries are used?
	 (A)	 2	 (B)	 3
	 (C)	 4	 (D)	 0

	14.	 Code generation can be done by
	 (A)	 DAG	 (B)	 Labeled tree
	 (C)	 Both (A) and (B)	 (D)	 None of these

	15.	 Live variables analysis is used as a technique for
	 (A)	 Code generation 	 (B)	 Code optimization
	 (C)	 Type checking	 (D)	 Run time management

Practice Problems 2
Directions for questions 1 to 19:  Select the correct alterna-
tive from the given choices
	 1.	 Match the correct code optimization technique to the

corresponding code:

 (i) i = i * 1
 j = 2 * i

⇒  j = 2 * i (p) �Reduction in
strength

 (ii) A = B + C
 D = 10 + B + C

⇒  A = B + C
 D = 10 + A

(q) Machine Idioms

(iii) For i = 1 to 10
 A [i] = B + C

⇒  for i = 1 to 10
t = B + C
A [i] = t;

(r) �Common sub
expression
elimination.

 (iv) x = 2 * y ⇒  y << 2; (s) Code motion

	 (A)	 i – r, iii – s, iv – p, ii – q

	 (B)	 i – q, ii – r, iii – s, iv –p

	 (C)	 i – s, iii – p, iii – q, iv – r

	 (D)	 i – q, ii – p, iii – r, iv – s

Chapter 3  •  Intermediate Code Generation  |  6.53

	 2.	 What will be the optimized code for the following
expression represented in DAG?

		 a = q * - r + q * - r
	 (A)	 t

1
 = -r	 (B)	 t

1
 = -r	

		 t
2
 = q * t

1	
t
2
 = q * t

1

		 t
3
 = a * t

1	
t
3
 = t

2
 + t

2

		 t
4
 = t

2
 + t

3	
a = t

3

		 a = t
4

	 (C)	 t
1
 = -r	 (D)	 All of these

		 t
2
 = q

		 t
3
 = t

1
 * t

2

		 t
4
 = t

3
 + t

3

		 a = t
4

	 3.	 In static allocation, names are bound to storage at
_______ time.

	 (A)	 Compile 	 (B)	 Runtime
	 (C)	 Debugging	 (D)	 Both (A) and (B)

	 4.	 The actual parameters are evaluate d and their r-values
are passed to the called procedure is known as

	 (A)	 call-by-reference
	 (B)	 call-by-name
	 (C)	 call-by-value
	 (D)	 copy-restore

	 5.	 If the expression – (a + b) *(c + d) + (a + b + c) is trans-
lated into quadruple representation, then how many
temporaries are required?

	 (A)	 5	 (B)	 6
	 (C)	 7	 (D)	 8

	 6.	 If the above expression is translated into triples repre-
sentation, then how many instructions are there?

	 (A)	 6	 (B)	 10
	 (C)	 5	 (D)	 8

	 7.	 In the indirect triple representation for the expression
A = (E/F) * (C – D). The first pointer address refers to

	 (A)	 C – D
	 (B)	 E/F
	 (C)	 Both (A) and (B)
	 (D)	 (E/F) * (C – D)

	 8.	 For the given assembly language, what is the cost for it?

		 MOV b, a

		 ADD c, a
	 (A)	 3		 (B)	 4
	 (C)	 6		 (D)	 2

	 9.	 Consider the expression

		 ((4 + 2 * 3 + 7) + 8 * 5). The polish postfix notation for
this expression is

	 (A)	 423* + 7 + 85*+	 (B)	 423* + 7 + 8 + 5*
	 (C)	 42 + 37 + *85* +	 (D)	 42 + 37 + 85** +

Common data for questions 10 to 15: Consider the fol-
lowing basic block, in which all variables are integers, and
** denotes exponentiation.
a: = b + c

z: = a * * 2
x: = 0 * b
y: = b + c

w: = y * y
u: = x + 3
v: = u + w
Assume that the only variables that are live at the exit of this
block are v and z. In order, apply the following optimization
to this basic block.

	10.	 After applying algebraic simplification, how many
instructions will be modified?

	 (A)	 1	 (B)	 2
	 (C)	 4	 (D)	 5

	11.	 After applying common sub expression elimination to
the above code. Which of the following are true?

	 (A)	 a: = b + c	 (B)	 y: = a
	 (C)	 z = a + a	 (D)	 None of these

	12.	 Among the following instructions, which will be modi-
fied after applying copy propagation?

	 (A)	 a: = b + c	 (B)	 z: = a * a
	 (C)	 y: = a	 (D)	 w: = y * y

	13.	 Which of the following is obtained after constant
folding?

	 (A)	 u: = 3	 (B)	 v: = u + w
	 (C)	 x: = 0	 (D)	 Both (A) and (C)

	14.	 In order to apply dead code elimination, what are the
statements to be eliminated?

	 (A)	 x = 0
	 (B)	 y = b + c
	 (C)	 Both (A) and (B)
	 (D)	 None of these

	15.	 How many instructions will be there after optimizing
the above result further?

	 (A)	 1	 (B)	 2
	 (C)	 3	 (D)	 4

	16.	 Consider the following program:

		 L
0
: e: = 0

		 b: = 1

		 d: = 2

		 L
1
: a: = b + 2

		 c: = d + 5

		 e: = e + c

		 f: a*a

		 If f < c goto L
3

		 L
2
: e: = e + f

		 goto L
4

		 L
3
: e: = e + 2

		 L
4
: d: = d + 4

		 b: = b – 4

		 If b! = d goto 4

		 L
5
:

6.54  |  Unit 6  •  Compiler Design

		 How many blocks are there in the flow graph for the
above code?

	 (A)	 5

	 (B)	 6

	 (C)	 8

	 (D)	 7

	17.	 A basic block can be analyzed by

	 (A)	 Flow graph

	 (B)	 A graph with cycles

	 (C)	 DAG

	 (D)	 None of these

	18.	 In call by value the actual parameters are evaluated.
What type of values is passed to the called procedure?

	 (A)	 l-values
	 (B)	 r-values
	 (C)	 Text of actual parameters
	 (D)	 None of these

	19.	 Which of the following is FALSE regarding a Block?
	 (A)	 The first statement is a leader.
	 (B)	� Any statement that is a target of conditional / un-

conditional goto is a leader.
	 (C)	 Immediately next statement of goto is a leader.
	 (D)	 The last statement is a leader.

Previous Years’ Questions

	 1.	 The least number of temporary variables required to
create a three-address code in static single assignment
form for the expression q + r/3 + s – t * 5 + u * v/w is
________� [2015]

	 2.	 Consider the intermediate code given below.

	 (1)	 i = 1

	 (2)	 j = 1

	 (3)	 t
1
 = 5 * i

	 (4)	 t
2
 = t

1
 + j

	 (5)	 t
3
 = 4 * t

2

	 (6)	 t
4
 = t

3

	 (7)	 a[t
4
] = –1

	 (8)	 j = j + 1

	 (9)	 if j < = 5 goto (3)

	 (10)	 i = i + 1

	 (11)	 if i < 5 goto (2)

		 The number of nodes and edges in the control-flow-
graph constructed for the above code, respectively,
are� [2015]

	 (A)	 5 and 7	 (B)	 6 and 7
	 (C)	 5 and 5	 (D)	 7 and 8

	 3.	 Consider the following code segment.� [2016]
		 x = u – t;
		 y = x * v;
		 x = y + w;
		 y = t – z;
		 y = x * y;

		 The minimum number of total variables required to con-
vert the above code segment to static single assignment
form is _____ .

	 4.	 What will be the output of the following pseudo-
code when parameters are passed by reference and
dynamic scoping is assumed?� [2016]

		 a = 3;

		 void n(x) { x = x* a; print (x);}

		 void m(y) {a = 1; a = y – a; n(a) ; print (a)}

		 void main() {m(a);}
	 (A)  6,2 	 (B)  6,6
	 (C)  4,2 	 (D)  4,4

	 5.	 Consider the following intermediate program in three
address code

p = a − b

q = p * c

p = u * v

q = p + q

		 Which one of the following corresponds to a static
single assignment form of the above code?� [2017]

	 (A)	 p
1
 = a − b	 (B)	 p

3
 = a − b

		 q
1
 = p

1
 * c		 q

4
 = p

3
 * c

		 p
1
 = u * v		 p

4
 = u * v

		 q
1
 = p

1
 + q

1
		 q

5
 = p

4
 + q

4

	 (C)	 p
1
 = a − b	 (D)	 p

1
 = a − b

		 q
1
 = p

2
 * c		 q

1
 = p * c

		 p
3
 = u * v		 p

2
 = u * v

		 q
2
 = p

4
 + q

3
		 q

2
 = p + q

Chapter 3  •  Intermediate Code Generation  |  6.55

Answer Keys

Exercises

Practice Problems 1
	 1.  D	 2.  D	 3.  C	 4.  C	 5.  B	 6.  A	 7.  B	 8.  A	 9.  A	 10.  A
	11.  B	 12.  C	 13.  A	 14.  C	 15.  B

Practice Problems 2
	 1.  B	 2.  B	 3.  A	 4.  B	 5.  B	 6.  A	 7.  B	 8.  C	 9.  A	 10.  A
	11.  B	 12.  D	 13.  A	 14.  C	 15.  C	 16.  A	 17.  C	 18.  B	 19.  D

Previous Years’ Questions
	 1.  8	 2.  B	 3.  10	 4.  D	 5.  B

	Unit 6: Compiler Design
	Chapter 3: Intermediate Code Generation
	Introduction
	Three-Address Code
	Symbol Table Operations
	Assignment Statements
	Boolean Expressions
	Flow of Control Statements
	Procedure Calls
	Code Generation
	Runtime Storage Management
	DAG Representation of Basic Blocks
	Peephole Optimization
	Exercises
	Previous Years’ Questions
	Answer Keys

