The Language Of Chemistry

Exercise

Question.1 (1985)

 XCl_2 is the chloride of a metal X. State the formula of the sulphate and the hydroxide of the metal X.

Answer:

Chloride of metal X is $X_{1} \times Cl_{2} X_{2} \times Cl_{1}$

By inter changing subscript and writing as superscript Valency of metal X is 2

Valency of sulphate SO₄ is 2- and of hydroxide OH is 1-

∴ Formula of X²⁺ SO₄²⁻

Sulphate of X =
$$X = X = XSO_4$$

Formula of hydroxide of metal

$$\begin{array}{ccc} X^{2+} & OH^{1-} \Rightarrow X \\ \hline & OH^{1-} \Rightarrow X \\ \hline & OH \\ \hline & \Rightarrow X \\ \hline & OH \\ \hline & \Rightarrow X \\ \hline & OH \\ \end{bmatrix}_2 \end{array}$$

Question.1 (1987)

An element X is trivalent. Write the balanced equation for the combustion of X in oxygen. **Answer:**

Combustion of X^{3+} in oxygen means oxide of X

X3+ + O2-

$$X_{2}^{3} \xrightarrow{2} O_{3}^{2} \Rightarrow X_{2}O_{3}$$
 oxide of X

Question.1 (1991)

The formula of the nitride of a metal X is XN, state the formula of :

- 1. its sulphate
- 2. its hydroxide.

Answer:

Formula of nitride of metal X is XN

Since valency of nitrogen is 3-∴ Valency of X is 3+

(i) Sulphte of metal X^{3+} $[SO_4]^{2-} = X_2 SO_4^2 \Rightarrow X_2[SO_4]_3$

(ii) Hydroxide of metal X

$$X^{3+}$$
 [OH]⁻¹ = X_{1}^{1} OH_{3}^{1} = X_{1} [OH]₃ = X[OH]₃

Question.1 (1992)

What is the valency of nitrogen in :

- 1. NO
- 2. N₂O
- 3. NO₂

Answer:

Valency of nitrogen in

(i) NO = $N_1 = N^1 O^1$ But valency of O = 2

Multiplying by 2 \therefore N^{1 × 2} O^{1 × 2} = N²O²

... Valency of nitrogen is 2

(*ii*)
$$N_2 O = N_2 O = N^1 O^2$$

.: Valency of nitrogen is 1

(iii)NO₂ = N^V₁ \swarrow_2 interchanging the subscript and writing it as superscript.

N²O¹ but valency of O is 2

- $\therefore \text{ Multiplying by 2} \\ N^{2 \times 2} O^{1 \times 2} = N^4 O^2$
- .: Valency of nitrogen is 4

Additional Questions

Question 1.

What is meant by the term 'symbol'. Give the qualitative and quantitative meaning of the term 'symbol'.

Answer:

Symbol : "Is the short form that stands for the atom of a specific element."

Qualitative meaning : C is the symbol of atom of element carbon

S is the symbol of atom of element sulphur.

This means symbol stand for a specific element.

No two elements can have the same symbol.

Quantitative meaning : A symbol also represents quantity of the element i.e. atomic mass of element. Symbol C represents 12 g of carbon. In other words how many times that element is heavier than 1/12 th C¹²

Question 2.

Name three metals whose symbols are derived from :

(a) the first letter of the name of the element

(b) from their Latin names.

Answer:

Ni — nickel	Zn — zinc
Ca — calcium	Mg — magnesium

are symbols of metals derived from first letter of name of element.

K — kalium (potassium) Fe — Ferrum (iron)

Na — Natrium (sodium)

are symbols of metals derived the names from their latin names.

Question 3.

Explain the meaning of the term 'valency'.

State why the valency of the metal potassium is +1 and of the non-metal chlorine is -1. **Answer:**

Valency : "Is the combining capacity of atom or of a radical." OR

"Valency is the number of electrons, which an atom can lose/gain/share during a chemical reaction."

Metal potassium (K) has 1 electron in outer most shell which it loses and becomes K+ has valency [+1] whereas

Non-metal chlorine [Cl] has 7 electrons in valence shell and gains 1 electron and becomes [Cl⁻] has valency [-1]

Question 4.

What is meant by the term 'variable valency'. Give a reason why silver exhibits a valency of +1 and +2.

Answer:

Variable valency : "Certain elements exhibit more than one valency and show variable valency." **Reason :** Why silver exhibits valency +1 and +2 Ag 47 [2, 8, 18, 18, 1] has 1 electron in the outermost shell when loses this electron shows [+1] valency but when penultimate shell has not attained stability and one more electron jumps to the outermost shell there by increasing valency electron and new configuration [2, 8, 18, 17, 2] loses two electrons and has valency [+2] \therefore Silver exhibits Ag¹⁺ [ous] and Ag²⁺ [ic]

Question 5.

Give examples of eight metals which shows variable valency. State the valency of sulphur in :

(a) SO₂

(b) SO₃

Answer:

Eight metals which show variable valency are

(i) Copper	Cu ¹⁺ Cu ²⁺ [Cupric]
(ii) Silver	Ag ¹⁺ Ag ²⁺ [Argentic]
(iii) Mercury	Hg1+ [mercurous] Hg2+ [mercuric]

(iv) Iron	Fe ²⁺ [Ferrous] Fe ³⁺ [Ferric]
(v) Lead	Pb ²⁺ [Plumbous] Pb ⁴⁺ [Plumbic]
(vi) Tin	Sn ²⁺ [stannous] Sn ⁴⁺ [Stannic]
(vii) Gold	Au ¹⁺ [Auruous] Au ³⁺ [Auric]
(viii) Manganese	Mn ²⁺ [Mangnous] Mn ⁴⁺ [Manganic]
As valency of oxygen is 2	

Valency of sulphur in [a] $SO_2 = S_1^2 + O_2^0$ inter changing the subscript and writing

it as superscript.

$$= S^2O^1 = S^2 \times {}^2 O^1 \times {}^2 = S^4O^2$$

: Valency of sulphur is 4

(b)
$$SO_3 = S_1^3 = S_1^3 = S_1^3 \times O_1^1 \times O_2^2 = S_1^6O_2^2$$

Question 6.

State the valency in each case and name the following elements or radicals given below

1. K	2. Cr_2O_7	3. Cl	4. Ni
5. CIO ₃	6. CO ₃	7. Ba	8. HCO ₃
9. NO ₂	10. Na	11. Br	12. Zn
13. Mg	14.0	15. Co	16. CrO ₄
17. CIO	18. MnO ₄	19. Li	20. I
21. OH	22. O ₂	23. ZnO ₂	24. SiO ₃
25. NO ₃	26. SO3	27. SO4	28. PO ₄
29. N	30. C	31. PO ₃	32. Al
33. Ca	34. H	35. PbO ₂	36. HSO ₃
37. AlO ₂	38. Cr	39. HSO4	40. NH ₄
Answer:			
1. K	K1+	Potassium	
2. Cr_2O_7	Cr ₂ O ₇ ²⁻	Dichromate	
3. Cl	Cl1-	Chloride	
4. Ni	Ni ²⁺	Nickel	
5. CIO ₃	ClO ₃ ¹⁻	Chlorate	
6. CO ₃	CO ₃ ²⁻	Carbonate	
7. Ba	Ba ²⁺	Barium	
8. HCO3	HCO ₃ ¹⁻	Hydrogen [B	i] carbonate
9. NO ₂	NO ₂ ¹⁻	Nitrite	

10. Na	Na ¹⁺	Sodium
11. Br	Br ¹⁻	Bromide
12. Zn	Zn^{2+}	Zinc
13. Mg	Mg ²⁺	Magnesium
14. O	O ²⁻	Oxide
15. Co	Co ²⁺	Cobalt
16. CrO ₄	CrO ₄ ²⁻	Chromate
17. CIO	ClO1-	Hypochlorite
18. MnO ₄	MnO41-	Permanganate
19. Li	Li ¹⁺	Lithium
20. I	I1-	Iodide
21. OH	OH1-	Hydroxide
22. O ₂	O ₂ ²⁻	Peroxide
23. ZnO ₂	ZnO ₂ ²⁻	Zincate
24. SiO ₃	SiO ₃ ²⁻	Silicate
25. NO ₃	NO ₃ ¹⁻	Nitrate
26. SO ₃	SO3 ²⁻	Sulphite
27. SO ₄	SO4 ²⁻	Sulphate
28. PO ₄	PO ₄ ³⁻	Phosphate
29. N	N ³⁻	Nitride
30. C	C4-	Carbide
31. PO ₃	PO ₃ ³⁻	Phosphite
32. Al	Al ³⁺	Aluminium
33. Ca	Ca ²⁺	Calcium
34. H	H+	Hydrogen
35. PbO ₂	PbO ₂ ²⁻	Plumbate
36. HSO ₃	HSO ₃ -	Hydrogen sulphite
37. AlO ₃ & AlO ₂	AlO ₃ ³⁻ & AlO ₂ ¹⁻	Aluminate
38. Cr	Cr ³⁺	Chromium
39. HSO₄	HSO41-	Bisulphate ,
40. NH ₄	NH_4^+	Ammonium

Question 7.

State the variable valencies of the following elements and give their names.

(a) Cu, (b) Ag, (c) Hg, (d) Fe, (e) Pb, (f) Sn, (g) Mn, (h) Pt, (i) Au

Answer:

(a) Cu Cu¹⁺ - Copper [I] *i.e.* cuprous ; Cu²⁺ - Copper [II] *i.e.* cupric]

- (b) Ag Ag¹⁺ Silver [I] Argentous Ag²⁺ Silver [II] Argentic
- (c) Hg Hg¹⁺ Mercury [I] Mercurous Hg²⁺ Mercury [II] Mercuric
- (d) Fe Fe²⁺ [II] Ferrous Fe³⁺ Iron [III] Ferric
- (e) Pb Pb²⁺ Lead [II] Plumbous Pb⁴⁺ Lead [IV] Plumbic
- (f) Sn Sn²⁺ Tin [II] Stannous Sn⁴⁺ Tin [IV] Stannic
- (g) Mn Mn²⁺ Manganese [II] Manganous Mn⁴⁺ Manganese [IV] Manganic
- (n) Pt Pt²⁺ Platinum [II] Platinous Pt⁴⁺ Platinum [IV] Platinic
- (i) Au Au¹⁺ Gold [I] Aurous Au³⁺ Gold [III] Auric

Question 8.

State which of the following elements or radicals are divalent -

(a) Lithium, (b) Nickel, (c) Ammonium, (d) Bromide, (e) Sulphite, (f) Nitride, (g) Carbide, (h) Chromium, (i)Bisulphite, (j) Dichromate, (k) Permanganate. Answer:

- (b) Nickel(e) Sulphite
- (i) Dichromate are divalent

Question 9.

Explain the meaning of the term 'compound' with a suitable example. State the main characteristics of a compound with special reference to the compound iron [II] sulphide.

Answer:

Compound : "Is a pure substance made up of two or more elements combined chemically by in a fixed proportion."

Example : CO₂ carbon dioxide is made up of two elements carbon and oxygen C,

12 parts by weight and oxygen

 $2 \times 16 = 32$ parts by weight

i.e. in ratio C : O = 12 : 16 = 3 : 4

CHARACTERISTICS OF COMPOUND :

- 1. Components in definite proportion e.g. compound iron [II] sulphide FeS element Iron and sulphur are in definite ratio.
- 2. Compound is Homogeneous.
- 3. Particles in a compound are of J kind composition of iron (II) sulphide is uniform and components cannot be seen separately.
- 4. Compound has definite set of properties.

5. Component in FeS do not retain their original properties, i.e. iron cannot be attracted by a magnet, sulphur is insoluble in CS_2 and Fe does not gives H_2 with dil. acid. This means compound formed has new properties.

Question 10.

Name the elements in the compound and give the formula – of the following compounds : (a) Nitric acid, (b) Carbonic acid, (c) Phosphoric acid, (d) Acetic acid, (e) Blue vitriol, (f) Green vitriol, (g)Glauber's salt, (h) Ethane, (i) Ethanol Answer:

	Element in compound	Formula
(a) Nitric acid	H, N, O	HNO ₃
	Hydrogen, nitrogen, oxygen	
(b) Carbonic acid	H, C, O	H ₂ CO ₃
	Hydrogen, carbon, oxygen	
(c) Phosphoric acid	H, P, O	H ₃ PO ₄
	Hydrogen, phosphorous, oxygen	
(d) Acetic acid	С, Н, О	CH ₃ COOH
	Carbon, hydrogen, oxygen	
(e) Blue vitriol	Copper, sulphur, oxygen, hydrogen	CuSO ₄ .5H ₂ O
(f) Green vitriol	Iron, sulphur, oxygen, hydrogen	$FeSO_4.7H_2O$
(g) Glauber's salt	Sodium, sulphur, oxygen, hydrogen,	
(h) Ethane	Carbon, hydrogen	C_2H_6
(i) Ethanol	Carbon, hydrogen, oxygen	C ₂ H ₅ OH

Question 11.

Explain the term 'chemical formula'. State why the molecular formula of zinc carbonate is $ZnCO_3$ **Answer:**

Chemical Formula : "A molecule of a substance element or compound could be represented by symbols. Representation known as chemical formula i.e. molecular formula of oxygen gas is O_2 water H_2O , hydrochloric acid HCl etc.

Molecular formula of zinc carbonate : Zinc and carbonate both have valency

 Zn^{2+} CO_3^{2-} = Zn^{1+} CO_3^{1-}

Divide by H.C.F. 2 exchange of valency $Zn_1[CO_3]_1 = ZnCO_3$

Question 12.

Write the formula of the following compounds :

- (c) carbonate (a) chloride (b) nitrate 1. Potassium -(f) dichromate (d) bisulphate (e) sulphite (i) plumbite (g) permanganate (h) zincate (k) bicarbonate (l) aluminate (j) sulphate (n) iodide (o) nitrite (m) hydroxide (p) bisulphite (c) carbonate (b) nitrate (a) chloride 2. Sodium -(f) dichromate (e) sulphite (d) bisulphate (i) plumbite (h) zincate (g) permanganate (l) aluminate (k) bicarbonate (j) sulphate
 - (m) hydroxide
- (n) iodide
- (o) nitrite

		(-) blanktin		
	~	(p) bisulphite		
3	. Calcium –	(a) chloride	(b) nitrate	(c) carbonate
		(d) bisulphite	(e) sulphite	(f) sulphate
		(g) bicarbonate	(h) hydroxide	
. 4	. Magnesium -	(a) chloride	(b) nitrate	(c) carbonate
		(d) sulphate	(e) bicarbonate	(f) hydroxide
		(g) oxide		
5	. Zinc -	(a) chloride	(b) nitrate	(c) carbonate
		(d) sulphate	(e) hydroxide	(f) oxide
6	Aluminium –	(a) chloride	(b) nitrate	(c) carbonate
		(d) sulphate	(e) hydroxide	(f) oxide
7	. Copper –	Copper [I] chloride	; Copper [II] chlo	ride
		Copper [I] oxide; C	Copper [II] oxide	
		Copper [I] sulphide	; Copper [II] sulpl	hide
		Copper [II] nitrate;	Copper [II] sulph	nate
		Tetra amine copper	[II] sulphate	,
8	. Iron –	Iron [II] chloride;]	ron [III] chloride	
		Iron [II] oxide; Iron	n [III] oxide	
		Iron [II] sulphate;]	fron [III] sulphate	
		Iron [II] sulphide;]	ron [III] sulphide	
		Iron [II] hydroxide;	-	tide
9	. Lead –	Lead [II] chloride;		
		Lead [II] hydroxide	/	
		Lead [II] sulphate	,	
10). Silver –	Silver [I] chloride; S	ilver []] chloride	
		Diamine silver chlori		
An	swer:	Shining Shiver Chior		

1. Formula of

(a)	Potassium	chloride	KCI	K ¹⁺ Cl ¹⁻
(b)	Potassium	nitrate	KNO ₃ .	K ¹ NO ₃ ¹⁻
(c)	Potassium	carbonate	K ₂ CO ₃	K ¹ CO ₃ ²⁻
(d)	Potassium	bisulphate	KHSO₄	K ¹ [HSO ₄] ¹⁻
(e)	Potassium	sulphite	K ₂ SO ₃	K ¹ [SO ₃] ²⁻
(f)	Potassium	dichromate	K ₂ Cr ₂ O ₇	K ¹ [Cr ₂ O ₇] ²⁻
(g)	Potassium	permanganate	KMnO ₄	[MnO ₄] ¹⁻
(h)	Potassium	zincate	K ₂ ZnO ₂	ZnO ₂ ²⁻

	(i) Potassium plumbite	K,PbO,	PbO,2-
	(j) Potassium sulphate	K,SO	[SO] ²⁻
	(k) Potassium bicarbonate	KHCO,	HCO,1-
	(1) Potassium aluminate	KAIO,	AlO,1-
	(m) Potassium hydroxide	кон	OH1-
	(n) Potassium iodide	KI	I1-
	(o) Potassium nitrite	KNO ₂	NO ₂ ¹⁻
	(p) Potassium bisulphite	KHSO,	HSO,1-
2.	Formula of	3	
	(a) Sodium chloride	NaCl	Na ¹⁺ Cl ¹⁻
	(b) Sodium nitrate	NaNO ₃	NO ₃ ¹⁻
	(c) Sodium carbonate	Na ₂ CO ₃	Na ¹⁺ [CO ₃] ²⁻
	(d) Sodium bisulphate	NaHSO	[HSO ₄] ¹⁻
	(e) Sodium sulphite	Na ₂ SO ₃	Na ¹⁺ [SO ₃] ²⁻
	(f) Sodium dichromate	Na ₂ Cr ₂ O ₇	Na1+[Cr20,]2-
	(g) Sodium permanganate	NaMnO	Na ¹⁺ [MnO ₄] ¹⁻
	(h) Sodium zincate	Na ₂ ZnO ₂	Na1+[ZnO2]2-
	(i) Sodium plumbite	Na,PbO,	Na1+[PbO ₂] ²⁻
	(j) Sodium sulphate	Na ₂ SO ₄	Na ¹⁺ SO ²⁻
	(k) Sodium bicarbonate	NaHCO ₃	HCO ₃ -
	(1) Sodium aluminate	NaAlO ₂	AlO,1-
	(m) Sodium hydroxide	NaOH	[OH]1-
	(n) Sodium iodide	NaI	I1-
	(o) Sodium nitrite	NaNO ₂	[NO ₂] ¹⁻
	(p) Sodium bisulphite	NaHSO ₃	[HSO,]1-
	*	-	

3.	Formula of	•	- 3-
	(a) Calcium chloride	CaCl,	Ca ²⁺ Cl ¹⁻
	(b) Calcium nitrate	Ca[NO ₃] ₂	NO,1-
	(c) Calcium carbonate	CaCO ₃	CO,2-
	(d) Calcium bisulphite	Ca[HSO ₃] ₂	Ca ²⁺ [HSO ₃] ¹⁻
	(e) Calcium sulphite	CaSO ₃	[SO,] ²⁻
	(f) Calcium sulphate	CaSO	SO ²⁻
	(g) Calcium bicarbonate	Ca[HCO ₃],	Ca2+[HCO_3]1-
	(h) Calcium hydroxide	Ca[OH],	Ca ²⁺ [OH] ¹⁻
4.	Formula of		
	(a) Magnesium chloride	MgCl ₂	Mg ²⁺ Cl ¹⁻

	(b) Magnesium nitrate	Mg[NO ₃] ₂	Mg ²⁺ NO ₃ ¹⁻
	(c) Magnesium carbonate	MgCO ₃	Mg ²⁺ CO ₃ ²⁻
	(d) Magnesium sulphate	MgSO4	SO4 ²⁻
	(e) Magnesium bicarbonate	Mg[HCO ₃] ₂	HCO ₃ ¹⁻
	(f) Magnesium hydroxide	Mg[OH] ₂	OH1-
	(g) Magnesium oxide	MgO	Mg ²⁺ O ²⁻
5.	Formula of		
	(a) Zinc chloride	ZnCl ₂	Zn ²⁺ Cl ¹⁻
	(b) Zinc nitrate	$Zn[NO_3]_2$	Zn ²⁺ [NO ₃] ¹⁻
	(c) Zinc carbonate	ZnCO ₃	Zn ²⁺ CO ₃ ²⁻
	(d) Zinc sulphate	ZnSO ₄	Zn ²⁺ SO ₄ ²⁻
	(e) Zinc hydroxide	Zn[OH] ₂	Zn ²⁺ [OH] ¹⁻
	(f) Zinc oxide	ZnO	Zn ²⁺ O ²⁻
6.	Formula of		χ.
	(a) Aluminium chloride	AlCl ₃	Al ³⁺ Cl ¹⁻
	(b) Aluminium nitrate	Al[NO ₃] ₃	Al ³⁺ NO ₃ ¹⁻
	(c) Aluminium carbonate	Al ₂ [CO ₃] ₃	Al ³⁺ CO ₃ ²⁻
	(d) Aluminium sulphate	$Al_2[SO_4]_3$	Al ³⁺ [SO ₄] ²⁻
	(e) Aluminium hydroxide	Al[OH]3	Al ³⁺ [OH] ¹⁻
	(f) Aluminium oxide	Al ₂ O ₃	Al ³⁺ O ²⁻
7.	Formula of		
	Copper [I] chloride	CuCl	Cu ¹⁺ Cl ¹⁻
	Copper [II] chloride	CuCl ₂	Cu ²⁺ Cl ¹⁻
	Copper [I] oxide	Cu ₂ O	Cu ¹⁺ O ²⁻
	Copper [II] oxide	CuO	Cu ²⁺ O ²⁻
	Copper [I] sulphide	Cu ₂ S	Cu ¹⁺ S ²⁻
	Copper [II] sulphide	CuS	Cu ²⁺ S ²⁻

Copper [II] nitrate	Cu[NO ₃] ₂	Cu ²⁺ NO ₃ ¹⁻
Copper [II] sulphate	CuSO ₄	[SO₄] ^{2−}
Tetra amine copper [II] sulphate	[Cu(NH ₃) ₄]SO ₄	
8. Formula of		
Iron [II] chloride	FeCl ₂	Fe ²⁺ Cl ¹⁻
Iron [III] chloride	FeCl ₃	Fe ³⁺ Cl ¹⁻
Iron [II] oxide	FeO	Fe ²⁺ O ²⁻
Iron [III] oxide	Fe ₂ O ₃	Fe ³⁺ O ²⁻
Iron [II] sulphate	FeSO ₄	Fe ²⁺ SO ₄ ²⁻
Iron [III] sulphate	$Fe_2[SO_4]_3$	Fe ³⁺ SO ₄ ²⁻
Iron [II] sulphide	FeS	Fe ²⁺ S ²⁻
Iron [III] sulphide	Fe ₂ S ₃	Fe ³⁺ S ²⁻
Iron [II] hydroxide	Fe[OH] ₂	Fe ²⁺ OH ¹⁻
Iron [III] hydroxide	Fe[OH] ₃	Fe ³⁺ OH ¹⁻
9. Formula of	-	
Lead [II] chloride	PbCl ₂	Pb ²⁺ Cl ¹⁻
Lead [II] oxide	РЬО	O ²⁻
Lead [II] hydroxide	Pb[OH] ₂	OH1-
lead [II] nitrate	Pb[NO ₃] ₂	NO ₃ ¹⁻
Lead [II] sulphate	PbSO ₄	SO42-
10. Formula of		
Silver [I] chloride	AgCl	
Silver [II] chloride	AgCl ₂	
Diamine silver chloride	[Ag(NH ₃) ₂]Cl	

Question 13. Write the names of the following compounds :

(a) KClO	(b) HClO	(c) NaClO ₃	(d) AIN
(e) $K_2 Cr_2 O_7$	(f) KMnO ₄	(g) Ca_3N_2	(h) $Ca_3(PO_4)_2$
(i) H ₂ SO ₃	(j) HCl	(k) HNO ₃	(l) H ₂ SO ₄
(m) NH ₄ OH	(n) NaOH	(0) H ₂ CO ₃	(p) HNO ₂
(q) Mg(HCO ₃) ₂	(r) NaAlO ₂	(s) K ₂ PbO ₂	(t) $Cr_2(SO_4)_3$

(u) Na₂O

Answer:

Answer:	
(a) KClO	Potassium hypochlorite
(b) HClO	Hypochloric acid
(C) NaClO ₃	Sodium chlorate
(d) AlN	Aluminium nitride
(e) $K_2 Cr_2 O_7$	Potassium dichromate
(f) KMnO ₄	Potassium permanganate
(g) Ca_3N_2	Calcium nitride
(h) $Ca_{3}(PO_{4})_{2}$	Calcium phosphate
(i) H ₂ SO ₃	Sulphurous acid
(j) HCl	Hydrochloric acid
(k) HNO ₃	Nitric acid
(I) H ₂ SO ₄	Sulphuric acid
(m)NH ₄ OH	Ammonium hydroxide
(n) NaOH	Sodium hydroxide
(o) H_2CO_3	Carbonic acid
(p) HNO ₂	Nitrous acid
(q) Mg(HCO ₃) ₂	Magnesium bicarbonate
(r) NaAlO ₂	Sodium aluminate
(s) K_2PbO_2	Potassium plumbite
(t) $Cr_2(SO_4)_3$	Chromium sulphate
(u) Na_2O	Sodium peroxide

Question 14.

Explain the term 'chemical equation'. What is meant by 'reactants' and 'products' in a chemical

equation.

Answer:

Chemical equation : "Is the symbolic representation of a chemical reaction using symbols and the formulae of the substances involved in the reaction."

Sulphur bums in oxygen is a chemical reaction and sulphur dioxide is formed. This can be represented as sulphur + oxygen $\xrightarrow{heating}$ sulphur dioxide is word equation.

$S + O_2 \xrightarrow{\Delta} SO_2$ is chemical equation.

Reactants : Substances taking part in a reaction separated by (+) sign on the left hand side of arrow are called reactants.

Products : Substances formed in the reaction are called products.

Question 15.

Give an example of a chemical equation in which two reactants form -

(a) one product

- (b) two products
- (c) three products
- (d) four products

Answer:

(a) One product : $S + O_2 \xrightarrow{\Delta} SO_2$
(sulphur dioxide)
- one product
(b) Two products : $NH_4OH + HC1 \longrightarrow NH_4C1 + H_2O$
(Two products)
(c) Three products :
$CaCO_3 + 2HCl (dil.) \longrightarrow CaCl_2 + H_2O + CO_2(g)$
Cal. carbonate Hydrochloric acid Cal. chloride Carbon dioxide
Three products
(d) Four products :
$K_2Cr_2O_7$ + 14HCl \longrightarrow 2KCl + 2CrCl ₃ + 7H ₂ O + 3Cl ₂
Pot. dichromate Hydrochloric acid Pot. chloride Chromium chloride Chlorine
Four products

Question 16. $2KClO_3 \xrightarrow{MnO_2} 2KCl + 3O_2[g]$ – is a balanced equation.

- (a) State what is a 'balanced equation'.
- (b) Give a reason why the above equation is balanced.
- (c) State why the compound MnO₂ is written above the arrow.

Answer:

(a) **Balanced equation :** "Equation in which the total number of atoms of each element in the reactants, on the left side of the equation is equal to the number of atoms of each element in the products formed, on the right side of the equation."

(b) As the total number of [K, Cl, 0] atoms on the L.H.S. is equal to the number of the given atoms on the R.H.S., the given equation is balanced.

(c) MnO_2 is a catalyst in the reaction which does not under go any change and simply increases the rate of reaction is written above the arrow.

Question 17.

What do the symbols -

 $(i) \rightarrow (ii) \rightleftharpoons (iii)$ (s) (iv) (l) (v) (g) (vi) (aq.)

present in a chemical equation, mean.

Answer:

1.

(i) \rightarrow Arrow separates reactants from the products.

 $(ii) \rightleftharpoons$ Stands for reversible reaction. (iii)(s) Stands for solid state.

(iv)(l) or (l) Stands for liquid state. (v) (g) Stands for gas.

(vi) (aq.) Represents for solution in water (aqua).

Question 18. CaCO₃ + 2HCl [dil.] \rightarrow CaCl₂ + H₂O + CO₂ [g]

(a) State the information provided by the above chemical equation.

(b) State the information not conveyed by the above chemical equation.

Answer:

(a) Information provided by equation

 $CaCO_3 + 2HCl [dil.] \rightarrow CaCl_2 + H_2O + CO_2 [g]$ are that

1. Calcium carbonate reacts with [dil.] hydrochloric acid to produce calcium chloride, water and Carbondioxide.

- 2. One molecule of calcium carbonate reacts with two molecules of acid to produce one molecule of calcium chloride, one molecule of water and one molecule of carbondioxide.
- 3. About the chemical composition of respective, molecules like one molecule of calcium chloride contains one atom of calcium, one atom of carbon and three atoms of oxygen.
- 4. Molecular masses

CaCO ₃	+	2HCl [dil.]	\rightarrow	CaCl ₂	+	H,O	+	CO,
[40 + 12 + (3 >	< 16)]	2[1 + 35.5]	40	+ (2 × 35	.5)	2 × 1 + 16	1	$2 + 2 \times 16$
100	+	73						
	173		=			173		

that 100 parts by weight of calcium carbonate reacts with 73 parts by weight of hydrochloric acid to produce 111 parts by weight of calcium chloride 18 parts by weight of water and 44 parts by weight of carbon dioxide.

- 5. That reaction is irreversible.
- 6. That about the state of substances present i.e. solid, liquid or gas.

(b) Information not conveyed are :

- 1. Time, reaction takes to complete.
- 2. About the concentrations of reactants and products.
- 3. Speed of reaction.
- 4. Changes in colour occuring during the reaction.
- 5. Whether heat is given out or absorbed during the reaction.
- 6. The physical state of reactants and products.

Question 19.

Balance the following simple equation :

1. C	+	0,	\rightarrow	со		1
2. N ₂	+	0,	\rightleftharpoons	NO		7
3. ZnS	+	0,	\rightarrow	ZnO	+	SO ₂
4. Al	+	0,	\rightarrow	Al ₂ O ₃		
5. Mg	+	N ₂	\rightarrow	Mg ₃ N ₂		
6. Al	+	N ₂	\rightarrow	AIN		
7. NO	+	0,	\rightarrow	NO ₂		
8. SO ₂	+	0,	\rightleftharpoons	so,		
9. H ₂	+	Cl ₂	\rightarrow	HCI		
10. Fe	+	Cl ₂	\rightarrow	FeCl ₃		
11. H ₂ S	+	Cl ₂	\rightarrow	s	+	HCI
12. FeCl ₂	+	Cl, ~	\rightarrow	FeCl ₃		
13. CO ₂	+	С	\rightarrow	со		
14. KHCO ₃			\rightarrow	K ₂ CO ₃	+	$H_2O + CO_2$
15. K	+	CO,	→	к,0	+	С
16. Ca(OH) ₂	+	HNO,	→	Ca(NO ₃) ₂	+	н,о́
17. K	+	H ₂ O	→	кон	+	H,
18. Ca	+	H ₂ O	→	Ca(OH) ₂	+	н,
19. Al	+	H ₂ O	→	Al ₂ O ₃	+	H,
20. Fe	+	H ₂ O	←	Fe,O4	+	Н,
21. Zn	+	NaOH	→	Na ₂ ZnO ₂	+	н,
22. Zn	+	HCI	→	ZnCl ₂	+	н,

23. Al	+	H ₂ SO ₄	\rightarrow	$Al_2(SO_4)_3$	+	H ₂	
24. H ₂	+	0,	\rightarrow	H ₂ O			
25. N ₂	+	H ₂	\rightleftharpoons	NH3			
26. Fe ₂ O ₃	+	H ₂	\rightarrow	Fe	+	H ₂ O	
27. KBr	+	Cl ₂	\rightarrow	KCl	+	Br ₂	
28. NaOH	+	Cl,	\rightarrow	NaCl	+	NaClO+	H ₂ O
29. NaHCO,	+	H ₂ SO ₄	\rightarrow	Na ₂ SO ₄	+	$H_2O + 0$	CO2
30. Mg	+	CO ₂	→	MgO	+	С	
31. Fe ₂ O ₃	+	со	\rightarrow	Fe	+	CO ₂	
32. CaO	+	HCl	\rightarrow	CaCl ₂	+	H ₂ O	

Answer:

1. 2C	+	0 ₂	\rightarrow	2CO		
2. N ₂	+	0 ²		2NO		
3. 2ZnS	+	30 ₂	\rightarrow	2ZnO	+	2SO ₂
4. 4Al	+	30,	\rightarrow	2Al ₂ O ₃		4
5. 3Mg	+	N ₂	\rightarrow	Mg ₃ N ₂		/
6. 2AI	+	N ₂	\rightarrow	2AIN		1
7. 2NO	+	0,	\rightarrow	2NO ₂		· · · ·
8. SO,	+	0 ₂		250,		
9. H ₂	+	Cl ₂	\rightarrow	2HCI		
10. 2Fe	+	3Cl ₂	\rightarrow	2FeCl ₃		
11. H ₂ S	+	Cl2	\rightarrow	s	+	2HCl
12. 2FeCl,	+	Cl ₂	\rightarrow	2FeCl,		
13. CO,	+	c	\rightarrow	2C0 ²		
14. 2KHCO,			\rightarrow	K ₂ CO ₃	+	$H_2O + CO_2$
15.4K	+	CO2	\rightarrow	2K20	+	c í
16. Ca(OH) ₂	+	2HNO ₃	→	Ca(NO ₃) ₂	+	H ₂ O
17.2K	+	2H,0	→	2КОН	+	H ₂
18. Ca	+	2H ₂ O	→	Ca(OH) ₂	+	H ₂
19. 2Al	+	3H ₂ O	→	Al ₂ O,	+	3H ₂ .
20. 3Fe	+	4H,O		Fe ₃ O ₄	+	4H,
21. Zn	+	2NaOH	→	Na ₂ ZnO ₂	+	H,
22. Zn	+	2HC1	→	ZnCl ₂	+	H ₂
23. 2A1	+	3H,SO	→	Al ₂ (SO ₄) ₃	+	3Н,
24. 2H ₂	+	0,	→	2H20		•
25. N ₂	+	3H,		2NH,		
-		-	2			

26. Fe ₂ O ₃	+	3H2	\rightarrow	2Fe	+	3H ₂ O
27. 2KBr	+	Cl ₂	\rightarrow	2KCl	+	Br ₂
28. 2NaOH	+	Cl ₂	\rightarrow	NaCl	+	NaClO + H_2O
29. 2NaHCO ₃	+	H ₂ SO ₄	->	Na ₂ SO ₄	+	$2H_2O + 2CO_2$
30. 2Mg	+	CO2	→	2MgO	+	С
31. Fe ₂ O ₃	+	3CO	\rightarrow	2Fe	+	3CO ₂
32. CaO	+	2HCl	\rightarrow	CaCl ₂	+	H ₂ O

Question 20.

Write balanced equations for the following word equations :

- 1. Potassium nitrate \rightarrow Potassium nitrite + Oxygen
- 2. Calcium + Water \rightarrow Calcium hydroxide + Hydrogen
- 3. Iron + Hydrochloric acid \rightarrow Iron [II] chloride + Hydrogen
- 4. Nitrogen dioxide + Water + Oxygen \rightarrow Nitric acid
- 5. Lead dioxide [lead (IV) oxide] \rightarrow Lead monoxide + Oxygen
- 6. Aluminium + Oxygen \rightarrow Aluminium oxide
- 7. Iron + Chlorine \rightarrow Iron [III] chloride
- 8. Potassium bromide + Chlorine \rightarrow Potassium chloride + Bromine
- 9. Potassium bicarbonate \rightarrow Potassium carbonate + Water + Carbon dioxide
- 10. Calcium hydroxide + Ammonium chloride \rightarrow Calcium chloride + Water + Ammonia

Answer:

1. $2\text{KNO}_3 \xrightarrow{\Delta} 2\text{KNO}_2 + \text{O}_2$ 2. $\text{Ca} + 2\text{H}_2\text{O} \rightarrow \text{Ca}(\text{OH})_2 + \text{H}_2$ 3. $\text{Fe} + 2\text{HCl} \rightarrow \text{FeCl}_2 + \text{H}_2$ 4. $4\text{NO}_2 + 2\text{H}_2\text{O} + \text{O}_2 \rightarrow 4\text{HNO}_3$ 5. $2\text{PbO}_2 \rightarrow 2\text{PbO} + \text{O}_2$ 6. $4\text{Al} + 3\text{O}_2 \rightarrow 2\text{Al}_2\text{O}_3 -$ 7. $2\text{Fe} + 3\text{Cl}_2 \rightarrow 2\text{FeCl}_3$ 8. $2\text{KBr} + \text{Cl}_2 \rightarrow 2\text{KCl} + \text{Br}_2$ 9. $2\text{KHCO}_3 \xrightarrow{\text{heat}} \text{K}_2\text{CO}_3 + \text{H}_2\text{O} + \text{CO}_2$ 10. $\text{Ca}[\text{OH}]_2 + 2\text{NH}_4\text{Cl} \rightarrow \text{CaCl}_2 + 2\text{H}_2\text{O} + 2\text{NH}_3$ Question 21. Balance the following important equations :

1.	NaHCO ₃	+	H ₂ SO ₄	\rightarrow	Na ₂ SO ₄	+	H ₂ O	+	CO ₂
2.	NaOH	+	H ₂ SO ₄	\rightarrow	Na ₂ SO ₄	+	H ₂ O		
3.	Pb(NO ₃) ₂	+	NaCl	\rightarrow	NaNO ₃	+	PbCl ₂		
4.	FeSO ₄	+	NaOH	\rightarrow	Na ₂ SO ₄	+	Fe(OH) ₂		

5. FeCl ₃	+	NaOH	\rightarrow	NaCl	+	Fe(OH),
6. CuSO ₄	+	NaOH	\rightarrow	Na ₂ SO ₄	+	Cu(OH),
7. FeCl ₃	+	NH₄OH	\rightarrow	NH ₄ Cl	+	Fe(OH)
8. ZnO	+	NaOH	\rightarrow	Na ₂ ZnO ₂	+	H,Ò
9. Pb(OH) ₂	+	NaOH	\rightarrow	Na ₂ PbO ₂	+	H,O
10. Al ₂ O ₃ ·2H ₂ O	+	NaOH	\rightarrow	NaAlO ₂	+	H ₂ O
11. NaAlO ₂	+	H ₂ O	\rightarrow	NaOH	+	Al(OH),
12. Al(OH) ₃			\rightarrow	Al ₂ O ₃	+	H ₂ O
13. ZnS	+	02	\rightarrow	ZnO	+	SO,
14. Fe ₂ O ₃	+	Al	\rightarrow	Al ₂ O ₃	+	Fe
15. Al	+	Cl ₂	\rightarrow	AICI ₃		
16. NaCl	+	H ₂ SO ₄	\rightarrow	Na ₂ SO ₄	+	HCI
17. Fe	+	HCI	\rightarrow	FeCl ₂	+	H,
18. Na ₂ CO ₃	+	HCI	\rightarrow	NaCl	+	$H_2O + CO_2$
19. Pb(NO ₃) ₂	+	HCI	\rightarrow	PbCl ₂	+	HNO,
20. AgCl	+	NH₄ОН	\rightarrow	Ag(NH ₃) ₂ C	l +	H,O
21. MnO ₂	+	HCI	\rightarrow	MnCl,	+	$H_2O + Cl_2$
22. Pb ₃ O ₄	+	HCI	\rightarrow	PbCl ₂	+	$H_2O + Cl_2$
23. KMnO ₄	+	HCl \rightarrow	KCI	+ MnCl,	+	$H_2O + Cl_2$
24. K ₂ Cr ₂ O ₇	+	HCl →	KCI	+ CrCl,	+	$H_2O + Cl_2$
25. NH ₄ Cl	+	Ca(OH) ₂	\rightarrow	CaCl ₂	+	$H_2O + NH_3$
26. (NH ₄) ₂ SO ₄	+	NaOH	\rightarrow	Na ₂ SO ₄	+	$H_2O + NH_3$
27. $Mg_{3}N_{2}$	+	H ₂ O	\rightarrow	Mg(OH),	+	NH,
28. AIN	+	H ₂ O	\rightarrow	Al(OH)	+	NH,
29. NH ₃	+	0,	\rightarrow	N ₂	+	H2O [burning of NH,]
30. NH ₃	+	0,	\rightarrow	NO	+	H2O [catalytic oxidation of NII,]
						-

31. NH_OH	+	H,SO₄ →	(NH ₄) ₂ SO ₄	+	H,O		
32. NH,	+	CuO →	Cu	+	H,O	ŧ	N,
33. NH,	+	$Cl_2 \rightarrow$	HCI	+	NCI, Ini	trogen tr	
34. HNO,		→	H ₂ O	+	NO,	+	0,
35. Ca(HCO ₃) ₂	+	HNO, →	Ca(NO ₃),	+	н,о	+	co
36. C	+	HNO ₃ [conc.] →	co,	+	н,о	+	NO
37. S	+	HNO ₃ [conc] →	H,SO,	+	H,O	+	NO
38. Cu	+	HNO_3 [cone] \rightarrow	Cu(NO ₃) ₂	+	H ₂ O	+	NO
39. C	+	H_2SO_4 [conc.] \rightarrow	CO2	+	H ₂ O	+	SO2
40. S	+	$H_2SO_4 \text{ [conc.]} \rightarrow$	SO ₂	+	H ₂ O		
41. Cu	+	$H_2SO_4 \text{ [conc.]} \rightarrow$	CuSO ₄	+	H ₂ O	+	SO2
nswer:							

1. 2NaHCO ₃	+	H₂SO₄	\rightarrow	Na_2SO_4	+	$2H_2O$	+	$2CO_2$
2. 2NaOH	+	H ₂ SO ₄	\rightarrow	Na_2SO_4	+	$2H_2O$		
3. Pb(NO ₃) ₂	+	2NaCl	\rightarrow	2NaNO ₃	+	PbCl ₂		
4. FeSO₄	+	2NaOH	\rightarrow	Na_2SO_4	+	Fe(OH) ₂		
5. FeCl ₃	+	3NaOH	\rightarrow	3NaCl	+	Fe(OH) ₃		
6. CuSO ₄	+	2NaOH	\rightarrow	Na_2SO_4	+	Cu(OH) ₂		
7. FeCl ₃	+	3NH₄OH	\rightarrow	3NH₄Cl	+	Fe(OH) ₃		
8. ZnO	+	2NaOH	\rightarrow	Na ₂ ZnO ₂	+	H_2O		
9. Pb(OH) ₂	+	2NaOH	\rightarrow	Na ₂ PbO ₂	+	$2H_2O$		
10. Al ₂ O ₃ ·2H ₂ O	+	2NaOH	\rightarrow	2NaAlO ₂	+	3H ₂ O		
11. NaAlO ₂	+	$2H_2O$	\rightarrow	NaOH	+	Al(OH)3	7	
12. 2Al(OH) ₃		-	\rightarrow	Al ₂ O ₃	+	$3H_2O$		
13. 2ZnS	+	30 ₂	\rightarrow	2ZnO	+	2SO ₂	5	
14. Fe ₂ O ₃	+	2A1	\rightarrow	Al ₂ O ₃	+	2Fe		
15. 2Al	+	3Cl ₂	\rightarrow	2AlCl ₃				
16. 2NaCl	+	H ₂ SO ₄	\rightarrow	Na ₂ SO ₄	+	2HCI		
17. Fe	+	2HCl	\rightarrow	FeCl ₂	+	H ₂		
18. Na ₂ CO ₃	+	2HCl	\rightarrow	2NaCl	+	H_2O	+	CO2
19. Pb(NO ₃) ₂	+	2HCl	\rightarrow	PbCl ₂	+	$2HNO_3$		
20. AgCl	+	2NH₄OH	\rightarrow	Ag(NH ₃) ₂ Cl	l +	$2H_2O$		
21. MnO ₂	+	4HCl	\rightarrow	MnCl ₂	+	$2H_2O$	+	Cl ₂
22. Pb ₃ O ₄	+	8HCl	\rightarrow	3PbCl ₂	+	$4H_2O$	+	Cl ₂
23. 2KMnO ₄								
24. K ₂ Cr ₂ O ₇								
25. 2NH4Cl								2NH ₃
•				2		-		-

26. (NH ₄) ₂ SO ₄	+	2NaOH	\rightarrow	Na ₂ SO ₄	+	$2H_2O$	+	$2NH_3$
27. Mg ₃ N ₂	+	$6H_2O$	\rightarrow	$3Mg(OH)_2$	+	2NH ₃		
28. AIN	+	3H ₂ O	\rightarrow	Al(OH)3	+	NH3		
29. 4NH ₃	+	30 ₂	\rightarrow	2N ₂	+	6H2O [bur	ning of	NHJ
30. 4NH ₃	+	50 ₂	\rightarrow	4NO	+	6H20 [catalytic oxidation of NH3]		
31. 2NH₄OH	+	H ₂ SO ₄	\rightarrow	$(NH_4)_2SO_4$	+	$2H_2O$		
32. 2NH ₃	+	3CuO	\rightarrow	3Cu	+	$3H_2O$	+	N ₂
33. NH ₃	+	$3Cl_2 \rightarrow$		3HCl	+	NCl ₃ [nitrogen trichloride]		
34. 4HNO ₃			\rightarrow	$2H_2O$	+	$4NO_2$	+	O ₂
35. Ca(HCO ₃) ₂	+	2HNO ₃	\rightarrow	$Ca(NO_3)_2$	+	$2H_2O$	+	2CO ₂
36. C	+	4HNO_3 [conc.] \rightarrow		CO ₂	+	$2H_2O$	+	$4NO_2$
37. S	+	6HNO3 [con	ic] →	H_2SO_4	+	$2H_2O$	+	6NO ₂
38. Cu	+	4HNO3 [con	ic] →	$Cu(NO_3)_2$	+	$2H_2O$	+	2NO ₂
39. C	+	2H2SO4 [con	nc.] →	CO2	+	$2H_2O$	+	2SO ₂
40. S	+	2H2SO4 Icon		3SO ₂	+	$2H_2O$		
41. Cu	+	$2H_2SO_4$ [co		CuSO4	+	$2H_2O$	+	SO ₂

Question 22.

Give balanced equations for (1) & (2) by partial equation method, [steps are given below] (1) Reaction of excess ammonia with chlorine – Ammonia as a reducing agent

- (a) Ammonia first reacts with chlorine to give hydrogen chloride and nitrogen.
- (b) Hydrogen chloride then further reacts with excess ammonia to give ammonium chloride.
- (2) Oxidation of Lead [II] Sulphide by Ozone
- (a) Ozone first decomposes to give molecular oxygen & nascent oxygen.
- (b) Nascent oxygen then oxidises lead [II] sulphide to lead [II] sulphate.

Answer:

(1)

- (a) Ammonia reacts with chlorine to give hydrogen chloride and nitrogen.
- (b) Hydrogen chloride reacts with excess ammonia to give ammonium chloride.

$$2NH_3 + 3Cl_2 \rightarrow 6HCl + N_2$$

$$6NH_3 + 6HCl \rightarrow 6NH_4Cl$$

$$\overline{8NH_3 + 3Cl_2 \rightarrow 6NH_4Cl + N_2}$$

(2)

(a) ozone decomposes to O_2 (molecular) and nascent oxygen.

(b) Nascent oxygen oxidises Pb [II] sulphide to Lead [II] sulphate and needs 4 atoms of oxygen to form sulphate. Hence 1st equation must be multiplied by 4. Cancelling 4 atom of oxygen from both sides and adding.

 $O_3 \rightarrow O_2 + O] \times 4$ $PbS + 4O \rightarrow PbSO_4$ $PbS + 4O_3 \rightarrow PbSO_4 + 4O_2$

Question 23.

Define the terms – (a) Relative atomic mass (b) Relative molecular mass. State why indirect methods are utilised to determine the absolute mass of an atom. Explain in brief the indirect method used.

Answer:

(a) Relative atomic mass [RAM] of an element :

"is the number of times one atom of an element is heavier than 1/12 the mass of an atom of carbon $[C^{12}]''$

or

"Mass of an atom of an element as compared with 1/12 mass of an atom of carbon $[C^{12}]''$ (b) Relative molecular mass [RMM] of an element/compound : "Is the number of times one molecule of the substance is heavier than 1/12 the mass of an atom of carbon $[C^{12}]$.

 $RAM = \frac{Mass of one atom of the element}{Mass of one atom of carbon [C¹²]}$

or

"Mass of one molecule as compared with the 1/12 mass of an atom of carbon[C^{12}]"

 $RMM = \frac{Mass of one molecule of the substance}{(\frac{1}{2})Mass of one atom of carbon [C¹²]}$

To determine the absolute mass of an atom indirect methods are utilised as Atom are extremely small and very light.

An isotope of carbon C^{12} [carbon -12 atom] has been assigned atomic mass of exactly 12 atomic mass unit] is used.

Question 24.

1. Calculate relative molecular mass of

- (a) ZnCO₃
- (b) CaSO₄ [Zn = 65, S=32, O = 16, Ca = 40, C = 12]

2. Calculate the percentage composition of

(a) calcium chloride

(b) calcium nitrate [Ca = 40 , Cl = 35.5 , N = 14 , O = 16]

Answer:

- 1. (a) Relative molecular mass of ZnCO₃
 - = Zn + C + 3[O]
 - = 65 + 12 + 3[16]
 - = 77 + 48 = 125
- (b) Relative molecular mass of CaSO₄

At wt. of Ca + At. wt. of S + 4 [at. wt. of O]

= 40 + 32 + 4(16) = 72 + 64= 136

 (a) Percentage composition of (a) calcium chlorine [CaCl₂] Molecular mass of CaCl₂ = Ca + 2[Cl]

$$= 40 + 2[35.5]$$

= 40 + 70 = 110

% of Ca = $\frac{\text{Mass of calcium}}{\text{Molecular mass}} \times 100$

$$=\frac{40}{110} \times 100 = \frac{400}{11} = 36.36\%$$

% age of chlorine =
$$\frac{\text{Mass of Cl}_2}{\text{Molecular mass of CaCl}_2}$$

$$=\frac{70}{110} \times 100 = \frac{700}{11} = 63.64\%$$

Or % of $Cl_2 = 100 - 36.36 = 63.64\%$

.

% of Ca =
$$\frac{40}{164} \times 100 = 24.39$$

% of N = $\frac{28}{164} \times 100 = 17.07$
% of O = $\frac{96}{164} \times 100 = 58.54$

The Language Of Chemistry Unit Test Paper 1

Q.1. Match the names of ions and radicals from 1 to 10 with their correct answer from A to Q.

	-							
A	: Hg ²⁺	B : MnO ₄ ¹⁻		C : Sn ⁴⁺	D : Pb ²⁺			
Ε	: Sn ²⁺	F : Pb4+		$G : SO_{3}^{2-}$	H : N ³⁻			
I	NO21-	J : MnO ₄ ²⁻		K : Hg ¹⁺	L : SO ₄ ²⁻			
М	: ClO ¹⁻	$N : ZnO_{2}^{2}$		$O : Cr_2 O_7^{2-}$	$P : CrO_{4}^{2-}$			
Q	: ClO ₃ ¹⁻	-						
1.	Hypochlorite		2.	Permanganate				
3.	Plumbous		4.	Zincate				
5.	Nitride		6.	Mercuric				
7.	Stannic		8.	Nitrite				
9.	Sulphite		10	. Dichromate				
Ans	wer:							
1.	Hypochlorite - M	I : ClO ^{1−}	2.	Permanganate — J : M	InO ₄ ²⁻			
3.	Plumbous — D : Pb ²⁺			4. Zincate – N : ZnO_2^{2-}				
5.	Nitride — H : N ³⁻			6. Mercuric — A : Hg^{2+}				
7.	Stannic — C : Sn	4+	8.	Nitrite — I : NO_2^{1-}				
9.	Sulphite — G : S	O ₃ ²⁻	10.	Dichromate — $O: Cr_2$	0, ²⁻			
				-				

Q.2. State which of the following formulas of compounds A to J are incorrect. incorrect write the correct formula.

$A : (NH_4)_3 SO_4$	B : NaZnO ₂
$C : KCr_2O_7$	D : NaCO ₃
$E : Ca_2(PO_4)_3$	$F : Mg(SO_4)_2$
G: KNO ₃	H : NaClO
I : NaO	J : BaCl ₂

Answer:

$A : (NH_4)_3SO_4$	Correct is -	$(NH_4)_2SO_4$
B : NaZnO ₂	Correct is	Na ₂ ZnO ₂
C : KCr ₂ O ₇	Correct is	K ₂ Cr ₂ O ₇
D : NaCO ₃	Correct is	Na ₂ CO ₃
$E : Ca_2(PO_4)_3$	Correct is	$Ca_3(PO_4)_2$
$F : Mg(SO_4)_2$	Correct is	MgSO ₄
I : NaO	Correct is	Na ₂ O

G, H, J are correct

Q.3. Fill in the blanks with the correct word from the words in brackets :

Question 1.

A symbol represents a short form of a / an _____ [atom / element / molecule]

Answer:

A symbol represents a short form of a / an **element.**

Question 2.

Compounds are always _____ (heterogeneous/homogeneous) in nature.

Answer:

Compounds are always **homogeneous** in nature.

Question 3.

Variable valency is exhibited, since electrons are lost from an element from the _____ [valence / penultimate] shell.

Answer:

Variable valency is exhibited, since electrons are lost from an element from the **penultimate** shell.

Question 4.

A chemical equation is a shorthand form for a _____ [physical / chemical] change.

Answer:

A chemical equation is a shorthand form for a **chemical** change.

Question 5.

Relative molecular mass of an element/compound is the number of times one _____ of the substance is heavier than -1/12th the mass of an atom of carbon [C₁₂]. (atom/ion/molecule)

Answer:

Relative molecular mass of an element/compound is the number of times one **molecule** of the substance is heavier than -1/12 th the mass of an atom of carbon [C12].

Q.4. Underline the compound in each equation given below, which is incorrectly balanced and write the correct balancing for the same.

1.	Na ₂ SO ₃	+	HCI	\rightarrow	2NaCl	+	H ₂ O	+	SO ₂
2.	CaC ₂	+	N ₂	\longrightarrow	2CaCN ₂	+	C		
3.	Fe ₂ O ₃	+	2H ₂	\rightarrow	2Fe	+	3H ₂ O		
4.	Cl ₂ + 2H	₂ 0 +	SO ₂	\rightarrow	4HCl	+	H ₂ SO ₄		
5.	6NaOH	+	3Cl ₂	\rightarrow	6NaCl	+	NaClO ₃	+	3H20
6.	C ₂ H ₅ OH	+	30 ₂	\rightarrow	2CO ₂	+	$2H_2O$		
7.	NaOH	+	CO2	\rightarrow	Na ₂ CO ₃	+	H ₂ O		
8.	2H ₂ O	+	2Cl ₂	\longrightarrow	2HCI	+	02		
9.	3CuO	+	NH,	\longrightarrow	3Cu	+	3H ₂ O	+	N ₂
10.	PbO ₂	+	4HCl	\longrightarrow	PbCl ₂	+	H ₂ O	+	Cl ₂
Ans	wer:								

1.	Na ₂ SO ₃	+	<u>HCI</u>	\rightarrow	2NaCl	+	H_2O	+	SO_2
	2HCL							•	
2.	CaC ₂	+	N ₂	\longrightarrow	2CaCN ₂	+	С		
	CaCN ₂								
3.	Fe ₂ O ₃	+	<u>2H</u> ₂	\rightarrow	2Fe	+	3H ₂ O		
	3H ₂								
4.	Cl ₂ + 2H	₂ 0 +	SO2	\rightarrow	<u>4HCl</u>	+	H_2SO_4		
	2HCl								
5.	6NaOH	+	3Cl,	\rightarrow	<u>6NaCl</u>	+	NaClO ₃	+	3H,O
	5NaCl		-				3		2
6.	C2H,OH	+	30 ₂	\longrightarrow	$2CO_2$	+	<u>2H₂O</u>		
	3H ₂ O		-		-		-		
7.	NaOH	+	CO2	\longrightarrow	Na ₂ CO ₃	+	H_2O		
	2NaOH								
8.	$2H_2O$	+	2Cl ₂	\rightarrow	<u>2HC1</u>	+	O ₂		
	4HCl								
	3CuO	+	\underline{NH}_{3}	\rightarrow	3Cu	+	$3H_2O$	+	N ₂
	2NH ₃								
10	PbO ₂	+	4HCl	\rightarrow	PbCl ₂	+	$\underline{H}_{2}\underline{O}$	+	Cl_2
	2H ₂ O								

Q.5. With reference to a chemical equation state which of the statements 1 to 5 pertain to A or B.

A : Information provided by a chemical equation. .

- **B** : Limitations of a chemical equation
 - 1. The nature of the individual elements.
 - 2. The speed of the reaction.
 - 3. The state of matter in which the substance is present.
 - 4. The completion of the reaction.
 - 5. The direction of the reaction.

Answer:

A : Information provided by a chemical equation.

- **1.** The nature of the individual elements.
- **3.** The state of matter in which the substance is present.

- **5.** The direction of the reaction.
- **B** : Limitations of a chemical equation
- **2.** The speed of the reaction.
- **4.** The completion of the reaction.