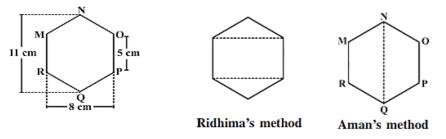
Class VIII Session 2023-24 Subject - Maths Sample Question Paper - 3


Time Al	lowed: 2 hours and 58 minutes	Maximum Marks	: 80
1.	The property represented by a \times (b + c) = a \times b + a	× c is	[1]
	a) closure property	b) distributive property	
	c) associative property	d) commutative property	
2.	Which statement is true?		[1]
	a. $-5 + 3 \neq 3 + (-5)$		
	b. $\frac{-8}{12} = \frac{10}{-15}$		
	c. 2 is not natural number		
	d. 17 is not prime number		
	a) Option (c)	b) Option (b)	
	c) Option (d)	d) Option (a)	
3.	Solve: $\frac{x-5}{3} = \frac{x-3}{5}$		[1]
	a) 8	b) 2	
	c) 6	d) 4	
4.	Solve for $y : \frac{1}{2}(3y + 1) - \frac{1}{3}(5y + 2) = y - 1$		[1]
	a) 75	b) $\frac{7}{5}$	
	c) $\frac{-5}{7}$	d) $\frac{5}{7}$	
5.	Two adjacent angles of a parallelogram are in the rational structure of the state of the structure of the st	o 1 : 5. Then, all the angles of the parallelogram are	[1]
	a) 85°, 95°, 85°, 95°	b) 30°, 180°, 30°, 180°	
	c) 45°, 135°, 45°, 135°	d) 30°, 150°, 30°, 150°	
6.	In the diagram, ABD and BCD are isosceles triangles	, where $AB = BC = BD$. The special name that is given to	[1]
	quadrilateral ABCD is:		
	a) parallelogram	b) trapezium	
	c) rectangle	d) Kite	

7. A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a red king.

[1]

	a) $\frac{1}{13}$	b) $\frac{1}{26}$	
	c) $\frac{1}{52}$	d) $\frac{1}{2}$	
8.	The square of 39 is-		[1]
	a) 1521	b) none of these	
	c) 378	d) 1500	
9.	The length of each side of a cubical box is 2.4 m. Its	volume is	[1]
	a) 1.3824×10^7 cu. cm	b) $_{1.3824} imes 10^{6}$ cu. cm	
	c) 13.824 cu. cm	d) 13.824 $ imes$ 10 ⁴ cu. cm	
10.	The cube root of $\frac{-343}{1331}$ is		[1]
	a) $\frac{11}{7}$	b) $\frac{-11}{7}$	
	c) $\frac{-7}{11}$	d) $\frac{7}{11}$	
11.	The cost of a vehicle is ₹ 1,75, 000. If its value depre	eciates at the rate of 20% per annum, then the total	[1]
	depreciation after 3 years was		
	a) ₹ 82,500	b) ₹ 86,400	
	c) ₹ 85,400	d) ₹ 84,500	
12.		ber of matches they played. If their win percentage was	[1]
	40%, then how many matches did they play in all?		
	a) 26	b) 30	
	c) 25	d) 20	
13.	Factorised form of $r^2 - 10r + 21$ is		[1]
	a) (r + 7) (r + 3)	b) (r - 7)(r - 3)	
	c) (r - 7) (r + 3)	d) (r -1) (r - 4)	
14.	A well 12 m deep with a diameter 3.5 m is dug up and long and 8.8 m wide. Find the height of the platform	nd earth from it is evenly spread to form a platform 10.5 m	[1]
	a) 2.5 m	b) 1.25 m	
	c) 12.5 m	d) 1.5 m	
15.	What is the surface area of the four walls of the wate	er tank, if its length is 8 ft, width 5 ft and height 5 ft?	[1]
	a) 132 ft ²	b) 130 ft ²	
	c) ₁₂₈ ft ²	d) _{126 ft²}	
16.	$\left(-\frac{5}{7}\right)^{-5}$ is equal to		[1]
	a) $\left(-\frac{7}{5}\right)^5$	b) $\left(\frac{5}{7}\right)^5$	
	C) $\left(\frac{5}{7}\right)^{-5}$	d) $\left(\frac{7}{5}\right)^5$	
17.	Find x, if $\left(\frac{7}{9}\right)^{-8} \times \left(\frac{9}{7}\right)^6 = \left(\frac{9}{7}\right)^x$.	\ ° /	[1]

	.) 10	1) 12	
	a) 10	b) 12	
	c) 14	d) 15	
18.	30 persons can reap a field in 17 days. How many days?	y more persons should be engaged to reap the same field in 10	[1]
	a) 51	b) 17	
	c) 30	d) 21	
19.	If x and y vary inversely as each other, and $x = 10$	0 when $y = 6$. Find y when $x = 15$.	[1]
	a) 6	b) 4	
	c) 3	d) 2	
20.	Factorise: $x^2 + 19x - 150$		[1]
	a) (x - 25) (x + 6)	b) (x - 6) (x - 25)	
	c) (x - 25) (x - 6)	d) (x + 25) (x - 6)	
21.	Using prime factorization, show that 729 is a performance of the second se		[2]
22.	How many bricks of size 22 cm \times 10 cm \times 7 cm cm thick if the cement and sand used in the const	n are required to construct a wall 11 m long, 3.5 m high and 40	[2]
23.	Work out the surface area of the shape:(Use $\pi = 3$		[2]
	1 cm 4 cm 1 cm		
24.	Simplify and write in exponential form $:(-2)^{-3} \times$	$(-2)^{-4}$	[2]
25.	Find the factors of $y^2 - 7y + 12$.		[2]
26.	Plot the following points. Verify if they lie on a li		[2]
27.	using appropriate properties find : $rac{2}{5} imes\left(-rac{3}{7} ight)$ –	$-rac{1}{6} imesrac{3}{2}+rac{1}{14} imesrac{2}{5}$.	[3]
28.	x_{-5} x_{-3}		[3]
29.	The adjacent angles of a parallelogram are $(2x - 4)$ parallelogram.	4)° and (3x - 1)°. Find the measures of all angles of the	[3]
30.	Find the length of the side of a square, if the leng	th of its diagonal is 10 cm.	[3]
31.	The population of a place increased to 54,000 in 2 in 2005.	2003 at a rate of 5% per annum. what would be its population	[3]
32.	What must be added to $2m^2 - 3mn + 3n^2$ to get 5	$m^2 + 2mn + 7n^2?$	[3]
33.	What price should a shopkeeper mark on article t 10%?	hat costs him ₹600 to gain 20%, after allowing a discount of	[4]
34.	Simplify $x(2x - 1) + 5$ and find its value at $x = -4$	4.	[4]
35.	There is a hexagon MNOPQR of side 5 cm (Fig.)). Aman and Ridhima divided it in two different ways (Fig).	[4]
	Find the area of this hexagon using both ways.		



- 36. A 5m 60cm high vertical pole casts a shadow 3m 20cm long. Find at the same time the length of the shadow cast [4] by another pole 10m 50cm high.
- 37. Factorize $a^2 1 + 2x x^2$.

[4]

Question No. 38 to 42 are based on the given text. Read the text carefully and answer the questions:[5]Dealed of the standard data is the standard data in the standard data in the standard data is the standard data in the standard data in the standard data is the standard data in the standard data in the standard data is the standard data in the standard data in the standard data is the standard data in the standard data in the standard data is the standard data in the standard data in the standard data is the standard data in the standard data in

Read the following pie chart carefully:

Percentage of Employees in different departments of an organization = 3600

38. What is the number of employees of accounts department?

a) 362	b) 432
c) 512	d) 482

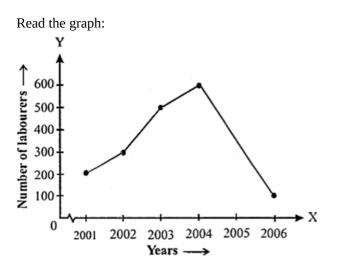
39. The ration of the number of employees of Production department to HR Department is _____

a) 4 : 7	b) 3 : 8
<i>,</i>	

c) 3 : 4	d) 7 : 12
-)	-, -

40. If 400 new employees are hired in the marketing department, then find the ratio of number of employees of the marketing department to the number of employees in the IT department.

a) 19 : 16	b) 17 : 196
c) 17 : 15	d) 289 : 225


41. If 300 employees are shifted from HR department to production department, then new ratio of number of employees of HR department to the production department is _____.

a) 91 : 37	b) 97 : 29
c) 38 : 17	d) 28 : 59

42. If 200 new employees are hired in accounts department and 100 employees of IT department left the organization, then new ratio of number of employees of IT department to accounts department is ______.

a) 79 : 100	b) 81 : 100
c) 85 : 97	d) 77 : 97

Question No. 43 to 47 are based on the given text. Read the text carefully and answer the questions:

43. In which year was the number of labourers maximum?

a) 2002	b) 2003
c) 2001	d) 2004

44. In Which year was the number of labourers minimum?

46. Find

a) 2004	b) 2005
c) 2003	d) 2006

45. What was the difference of the number of labourers in the years 2002 and 2003?

a) 400	b) 200
c) 100	d) 300
the rise in the number of labourers from 2001	to 2004.

a) 500	b) 300
c) 200	d) 400

47. Find the sum of the number of labourers in the years 2004 and 2006.

a) 500	b)	200

c) 700 d) 600

Solution

1.

(b) distributive property Explanation: Distributive property

2.

(b) Option (b)Explanation: By options,

a. -5 + 3 = -2 and 3 + (-5) = -2, whoch are equal. b. $\frac{-8}{12} = \frac{10}{-15} \Rightarrow \frac{-2}{3} = \frac{-2}{3}$, which are equal. c. 2 is not natural number. d. 17 is not prime number.

3. **(a)** 8

Explanation: $\frac{x-5}{3} = \frac{x-3}{5}$ by cross multiplication or, 5(x - 5) = 3(x - 3) or, 5x - 25 = 3x - 9 by transposing or, 5x - 3x = -9 + 25 or, 2x = 16 or, x = $\frac{16}{2}$ or, x = 8

4.

(d) ⁵/₇

Explanation: Given equation is $\frac{1}{2}(3y + 1) - \frac{-1}{3}(5y + 2) = y - 1$ To remove fractions, we multiply the equation on both sides by LCM of 2 & 3 i.e $6[\frac{1}{2}(3y + 1) - \frac{-1}{3}(5y + 2) = 6 (y - 1)$ $\Rightarrow 3(3y + 1) - 2(5y + 2) = 6y - 6$ $\Rightarrow 9y + 3 - 10y - 4 = 6y - 6$ $\Rightarrow 9y - 10y - 6y = -6 + 4 - 3$ $\Rightarrow -7y = -5$ $\Rightarrow y = \frac{5}{7}$

5.

(**d**) 30°, 150°, 30°, 150°

Explanation: Let the adjacent angles of a parallelogram be x and 5x, respectively. Then, $x + 5x = 180^{\circ}$ [·.· adjacent angles of a parallelogram are supplementary] $\Rightarrow 6x = 180^{\circ}$ $\Rightarrow x = 30^{\circ}$... The adjacent angles are 30° and 150°. Hence, the angles are 30°, 150°, 30°, 150° [·.· opposite angles are equal]

6.

(b) trapezium **Explanation:** In \triangle BAD, \angle BDA = \angle BAD = 57° (isos. \triangle property) In \triangle BDC, \angle BCD = \angle BDC = 66° (isos \triangle property) $\therefore \angle D = 57^{\circ} + 66^{\circ} = 123^{\circ} = 180^{\circ}$ $\angle A + \angle D + \angle C = 123^{\circ} + 66^{\circ} = 189^{\circ}$ Also, $\angle D + \angle C = 123^{\circ} + 66^{\circ} = 189^{\circ}$ Hence, by the property that co-int. angles are supplementary therefore lines are parallel, we have AB || DC and AD not || BC Hence, ABCD is a trapezium.

7.

Explanation: There are 2 red king out of 52 cards. So the probability that the card is drawn is a red king $\frac{2}{52} = \frac{1}{26}$

8. (a) 1521

(b) $\frac{1}{26}$

Explanation: $39^2 = 39 \times 39 = 1521$

9. **(a)** 1.3824×10^7 cu. cm

Explanation: Side of cubical box = 2.4 m

- \therefore Volume = (side)³ = (2.4 m)³
- = 13.824 m³ = 13.824 \times 10⁶ cm³
- $= 1.3824 \times 10^7 \text{ cm}^3$
- 10.

(c)
$$\frac{-7}{11}$$

Explanation:
$$\sqrt[3]{\frac{-343}{1331}} = \frac{\sqrt[3]{-343}}{\sqrt[3]{1331}} = \frac{\sqrt[3]{-7 \times -7 \times -7}}{\sqrt[3]{11 \times 11 \times 11}} = \frac{-7}{11}$$

(c) ₹ 85,400Explanation: Value of the vehicle after 3 years

$$= 1,75,000 \times \left(1 - \frac{20}{100}\right)^{3}$$

= 1,75,000 × $\frac{4}{5}$ × $\frac{4}{5}$ × $\frac{4}{5}$ = ₹ 89, 600
.:. Total depreciation = 1, 75,000 - 89,600
= ₹ 85,400

12.

(c) 25

Explanation: Let the total matches be = x According to question, $x \times \frac{40}{100} = 10$

 $x \times \frac{40}{100} = 10$ or, $x = \frac{10}{40} \times 100$ or, x = 25 matches

13.

(b) (r - 7)(r - 3)

Explanation: We have, $r^2 - 10r + 21$

 $= r^2 - 7r - 3r + 21 = r (r - 7) - 3(r - 7)$ [by splitting the middle term, so that the product of their numerical coefficients is equal constant term]

= (r - 7)(r - 3) [:: $x^2 + (a + b)x + ab = (x + a)(x + b)$]

14.

(b) 1.25 m **Explanation:** Let r and h be the radius and depth of well respectively. Volume of earth dug out = $\pi r^2 h$ = $\frac{22}{7} \times \frac{3.5}{2} \times \frac{3.5}{2} \times 12 = 115.5 \text{ m}^2$ Let x be the height of platform. Now, volume of platform = volume of earth dug out

$$\Rightarrow 10.5 \times 8.8 \times x = 115.5 \Rightarrow x = \frac{115.5}{10.5 \times 8.8} = 1.25 \text{ m}$$

15.

(b) 130 ft²

Explanation: length = 8 ft., breadth = 5 ft. and height = 5 ft. The surface area of the four walls of the water tank = $2 \times \text{height}(\text{length} + \text{breadth})$ S = $2 \times 5(8 + 5)$ S = $10(13) = 130 \text{ ft}^2$

The surface area of four walls of the water tank is 130 ft^2 .

16. **(a)**
$$\left(-\frac{7}{5}\right)$$

(a) 14

5

Explanation: Using law of exponents, $a^{-m} = \frac{1}{a^m}$ [:: a is non-zero integer] $\therefore \quad \left(\frac{-5}{7}\right)^{-5} = \frac{1}{\left(\frac{-5}{7}\right)^5} = \left(-\frac{7}{5}\right)^5$

17.

Explanation: We have,
$$\left(\frac{7}{9}\right)^{-8} \times \left(\frac{9}{7}\right)^6 = \left(\frac{9}{7}\right)^x$$

 $\Rightarrow \left(\frac{9}{7}\right)^8 \times \left(\frac{9}{7}\right)^6 = \left(\frac{9}{7}\right)^x \Rightarrow \left(\frac{9}{7}\right)^{8+6} = \left(\frac{9}{7}\right)^x$
 $\Rightarrow x = 8 + 6 = 14$

18.

(d) 21

Explanation: Since, more persons can reap a field in lesser days.

Hence, number of persons and number of days to reap a field are in inverse proportion.

Let number of persons = n and number of days = d

Here, n₁ = 30, d₁ = 17, d₂ = 10and n₂ =?

In case of inverse proportion,

$$n_1 d_1 = n_2 d_2$$

$$\Rightarrow 30 \times 17 = n_2 \times 10$$

$$30 \times 17$$

$$\Rightarrow n_2 = \frac{30 \times 17}{10} = 51$$

Hence, number of more persons which should be engaged = 51 - 30 = 21

19.

(b) 4

Explanation: Since x and y vary inversely as each other, therefore the product xy always remains constant.

 $\therefore 10 \times 6 = 15 \times y$ $\Rightarrow 60 = 15y$ $\Rightarrow \frac{60}{15} = y$ $\Rightarrow y = 4$

20.

(d) (x + 25) (x - 6)

Explanation: $x^2 + 19x - 150$

 $= x^{2} + 25x - 6x - 150$ [By splitting the middle term]

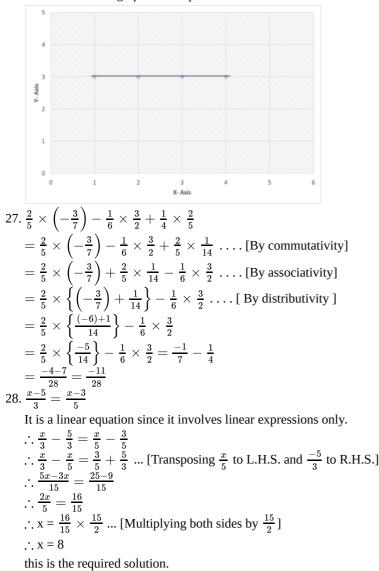
= x(x + 25) - 6(x + 25)

= (x - 6) (x + 25)

21. We have, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3$ Since the prime factors appear in triplets. So, 729 is a perfect cube.

22. Volume of each brick = 22 cm \times 10 cm \times 7 cm

 $= 1540 \text{ cm}^3 = 0.00154 \text{ m}^3$


Volume of wall = $l \times b \times h$ = 11 m \times 3.5 m $\times \frac{40}{100}m$ [:: 1 m = 100 cm]

= $11 \times 3.5 \times 0.4 = 15.4 \text{ m}^3$ If 1/10th part of the wall used in cement and sand, then part of wall used by cement and sand = $\frac{15.4}{10}m^3 = 1.54m^3$

 $\begin{array}{l} \text{Remaining part} = 15.4 - 1.54 = 13.86 \text{ m}^3\\ \text{Number of bricks} = \frac{\text{Volume of wall to be construct}}{\text{Volume of each brick}} = \frac{13.86}{0.00154} = 9000 \end{array}$

23. Surface area of the figure = TSA of upper block + TSA of lower block - area of contacted part Surface area of the figure = $2 [3 \times 1 + 1 \times 1 + 3 \times 1] + 2 [4 \times 1 + 1 \times 1 + 4 \times 1] - [1 \times 1 + 1 \times 1]$ = 2 [3 + 1 + 3] + 2[4 + 1 + 4] - [1 + 1]= 2 [7] + 2 [9] - [2]= 14 + 18 - 2= 32 - 2= 30 cm^2 24. $(-2)^{-3} \times (-2)^{-4}$ = $(-2)^{(-3) + (-4)}$ = $(-2)^{-7}$ 25. $y^2 - 7y + 12 = y^2 - 3y - 4y + 12$ = y(y - 3) - 4(y - 3) = (y - 3)(y - 4)Thus, the factors are (y - 3) and (y - 4).

26. Its clear from the graph that all points lie on the same line.

Verification,

L.H.S. = $\frac{8-5}{3} = \frac{3}{3} = 1$ R.H.S. = $\frac{8-3}{5} = \frac{5}{5} = 1$ Therefore, L.H.S. = R.H.S. 29. Since, the adjacent angles of a parallelogram are supplementary.

 $\therefore (2x - 4)^{\circ} + (3x - 1)^{\circ} = 180^{\circ}$ $\Rightarrow 5x - 5^{\circ} = 180^{\circ}$ $\Rightarrow 5x = 185^{\circ}$ $\Rightarrow x = \frac{185^{\circ}}{5} \Rightarrow x = 37^{\circ}$ Thus, the adjacent angles are $x = 37^{\circ}$ $2x - 4 = 2 \times 37^{\circ} - 4 = 74 - 4 = 70^{\circ}$ and $3x - 1 = 3 \times 37^{\circ} - 1 = 111 - 1 = 110^{\circ}$ Hence, the angles are 70°, 110°, 70°, 110°

- [:: opposite angles in a parallelogram are equal]
- 30. Given, length of diagonal = 10 cm Suppose, the length of side of a square is x cm . By using Pythagoras theorem,

$$(10)^2 = x^2 + x^2$$

$$\Rightarrow 100 = 2x^2$$

$$\Rightarrow x^2 = 50$$

 $\Rightarrow \quad x = \sqrt{50}$ [taking square root on both sides]

$$\therefore x = 5\sqrt{2}$$
cm

Hence, the length of the side of square is $\sqrt{50}$ or $5\sqrt{2}$ cm.

R = 5% p.a. n = 2 years

$$\therefore A = P \Big(1 + rac{R}{100} \Big)^n = 54000 \Big(1 + rac{5}{100} \Big)^2 \ = 54000 \Big(1 + rac{1}{20} \Big)^2 = 54000 \Big(1 + rac{21}{20} \Big)^2 \ = 54000 imes rac{21}{20} imes rac{21}{20} = 59535$$

Hence, the population in 2005 would be 59535.

32. Let the number added is \boldsymbol{x} ,

$$(2m2 - 3mn + 3n2) + x = (5m2 + 2mn + 7n2)$$

x = (5m² + 2mn + 7n²) - (2m² - 3mn + 3n²)
x = 5m² + 2mn + 7n² - 2m² + 3mn - 3n²
x = 3m² + 5mn + 4n²

So, the number is $3m^2 + 5 mn + 4n^2$.

33. We have given that,

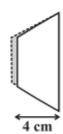
The cost price of the article = ₹ 600 Gain% = 20% ∴ Total Gain = $\frac{600 \times 20}{100}$ = ₹ 120 ∴ SP = Gain + CP = ₹600 + ₹120 = ₹ 720 Let marked price be ₹ x. Now shopkeeper allows a discount of 10%

According to the question, x -10% of x = ₹720

$$\Rightarrow \quad x - \frac{10 \times x}{100} = 720$$

$$\Rightarrow \quad \frac{100x - 10x}{100} = 720$$

$$\Rightarrow \quad \frac{90x}{100} = 720$$

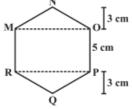

$$\Rightarrow \quad x = \frac{720 \times 100}{90}$$

$$x = \notin 800$$

Hence, the required marked price is \gtrless 800.

34. x(2x - 1) + 5= x(2x) - x(1) + 5= $2x^2 - x + 5$ If x = -4 $2x^2 - x + 5$ = $2(-4)^2 - (-4) + 5$ = 2(16) + 4 + 5= 32 + 9= 41

35. **Aman's method:** Since it is a hexagon so, NQ divides the hexagon into two congruent trapeziums. We can verify it by paper folding (Fig.)


Now area of trapezium MNQR = 4 $\times \frac{(11+5)}{2}$

 $= 32 \mathrm{cm}^2$

So, the area of hexagon MNOPQR = 2 \times 32

 $= 64 \text{ cm}^2$.

Ridhima's method: \triangle MNO and \triangle RPQ are congruent triangles with altitude 3 cm (Fig.)

We can verify this by cutting off these two triangles and placing them on one another. Area of \triangle MNO = $\frac{1}{2} \times 8 \times 3$

 $= 12 \text{ cm}^2$

So, Area of \triangle RPQ = = 12 cm² Area of rectangle MOPR = 8 × 5 = 40 cm² Now, area of hexagon MNOPQR = 40 + 12 + 12 = 64 cm²

36. Let the height of the vertical pole be xm and the length of the shadow by ym.

As the height of the vertical pole increases, the length of the shadow also increases in the same ratio, It is a case of direct proportion.

We make use of the relation of the type $\frac{x_1}{y_1} = \frac{x_2}{y_2}$.

Here,

x₁ = 5 m 60 cm = 5.60m y₁ = 3 m 20 cm = 3.20m x₂ = 10 m 50 cm = 10.50m Therefore, $\frac{x_1}{y_1} = \frac{x_2}{y_2}$ gives $\frac{5.6}{3.2} = \frac{10.5}{y_2}$ ∴ 5.6y₂ = 3.2 × 10.5 ∴ y₂ = $\frac{3.2 \times 10.5}{5.6}$ $\therefore y_2 = 6$

ł	Hence, the length of the shadow is 6m.
37. v	we have $a^2 - 1 + 2x - x^2$
=	$a^2 - (1 - 2x + x^2)$
=	$a^{2} - (1^{2} - 2 \times 1 \times x + (x)^{2})$
=	$a^2 - (1 - x)^2$
	$= \{a - (1 - x)^2\}$
	$= \{a - (1 - x)\} \{a + (1 - x)\}$
	= (a - 1 + x)(a + 1 - x)
38.	(b) 432
20	Explanation: 432
39.	(c) 3 : 4 Explanation: 3 : 4
40.	(d) 289 : 225
40.	Explanation: 289 : 225
41.	(b) 97 : 29
	Explanation: 97 : 29
42.	(a) 79 : 100
	Explanation: 79 : 100
43.	(d) 2004
	Explanation: $2004 \rightarrow 500$
44.	(d) 2006
	Explanation: $2006 \rightarrow 100$
45.	(b) 200
	Explanation: No. of the labourers 2002 = 300
	Number of the labourers $2003 = 500$ Difference of the number of labourers in year 2002 and $2003 = 500 - 300 = 200$
46.	(d) 400
40.	Explanation: Number of the labourers 2001 = 200
	Number of labourers in $2004 = 600$
	Rise in the labourers from 2001 to 2004 = 600 - 200 = 400
47.	(c) 700
	Explanation: Number of labourers in 2004 = 600

ł Number of labourers in 2006 = 100 Sum of the number of labourers in 2004 and 2006 600 + 100 = 700