LATITUDE AND DEPARTURE

The latitude and departure of the line AB of length $\it l$ and reduced bearing θ are given by

$$L = +l\cos\theta$$
$$D = +l\sin\theta$$

Latitude: Projection of a line on N-S direction is called latitude.

Departure: Projection of a line on E – W direction is called departure.

Latitude and departure in various quadrants

Line	Reduced Bearing	Quadrants	Latitude	Departure
OA	Nθ _A E		$+l_1\cos\theta_A$	$+l_1 \sin \theta_A$
ОВ	Sθ _B E	IV	$-l_2\cos\theta_{\rm B}$	$+l_2 \sin \theta_B$
OC	SO _C W	32° - III	$-l_3 \cos \theta_{\rm C}$	$-l_3 \sin \theta_C$
OD	Nθ _D W	11	$+l_4\cos\theta_D$	$-I_4 \sin \theta_D$

Here, $l_{\rm 1},\ l_{\rm 2},\ l_{\rm 3},$ and $l_{\rm 4}$ are length of line OA, OB, OC and OD respectively.

INDEPENDENT COORDINATE

Coordinate of different point with respect to single origin is called independent coordinate.

$$A \equiv (L_1, D_1)$$

$$B = [(L_1 + L_2), (D_1 + D_2)]$$

$$C = [(L_1 + L_2 + L_3), (D_1 + D_2 - D_3)]$$

$$D = [(L_1 + L_2 + L_3 - L_4), (D_1 + D_2 - D_3 - D_4)] \sim (0, 0)$$

For a closed Traverse

$$\Sigma L = 0$$
 and $\Sigma D = 0$

where, $\Sigma L = Sum of all latitude$

 $\Sigma D = Sum of all departure$

CLOSING ERROR

If sum of latitude.

$$\Sigma L \neq 0$$

and sum of departure

$$\Sigma D \neq 0$$

then there is a closing error Closing error,

$$e = AA' = \sqrt{(\Sigma L)^2 + (\Sigma D)^2}$$

direction of closing error (δ)

$$\delta = \tan^{-1} \left(\frac{\Sigma D}{\Sigma L} \right)$$

The sign of ΣD and ΣL will thus define the quadrant in which the closing error lies.

ADJUSTMENT OF CLOSING ERROR

Sum of all internal angles of a closed traverse

$$= (2n - 4) \times 90^{\circ}$$

where
$$n = no.$$
 of sides

• Sum of all deflection angles = 360°

i.e.
$$\theta_A + \theta_B + \theta_C + \theta_D + \theta_E = 360^\circ$$

• Sum of latitude, $\Sigma L = 0$

Sum of departure,
$$\Sigma D = 0$$

BALANCING THE TRAVERSE

(a) Bowditch method

Error in linear measurement ∝ √1 where l = length of a line

Error in angular measurement $\propto \sqrt{l}$

correction to a particular line

$$C_{L} = \left(\frac{l}{\Sigma l}\right) \times \Sigma L$$

Here,
$$l = length of a line$$
,

re,
$$l = length of a line,$$

 $C_l = correction in latitude of a line$

$$\Sigma L = \text{total error in latitude.}$$

$$C_D = \left(\frac{l}{\Sigma l}\right) \times \Sigma D$$

$$\Sigma_{\rm D}$$
 = total error in departure

$$\Sigma l = \text{sum of length of all lines}$$

This method is mostly used to balance a traverse where linear and angular measurements have been taken with equal precision.

(b) Transit method

Correction in latitude of all line.

$$C_{L} = \left(\frac{L}{L_{T}}\right) \times \Sigma L$$

Correction in departure of a line,

$$C_{D} = \left(\frac{D}{D_{T}}\right) \times \Sigma D$$

Here,

 ΣL = Total error in latitude

 ΣD = total error in departure

L = latitude of a line

D = departure of a line

 L_T = sum of all latitude without considering sign

 $D_T = Sum of all departure without considering sign.$

This method is suitable where angular measurements are more precise than linear measurements.

(c) Axis method

Correction to any length = that length $\times \frac{\frac{1}{2} \text{Closing error}}{\text{Length of axis}}$

This method is used where angles are measured very accurately, so correction are done in length of line only, bearing of lines are not changed.