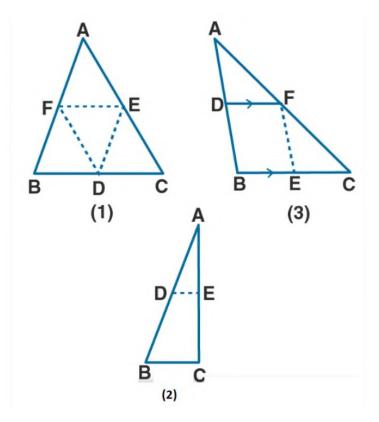
CHAPTER – 11

MID – POINT THEOREM

Exercise 11.1

1.

- (a) In the figure (1) given below, D, E and F are mid point of the sides BC, CA and AB respectively of \triangle ABC. If AB = 6 cm, BC = 4.8 cm and CA = 5.6 cm, find the perimeter of
 - (i) The trapezium FBCE
 - (ii) The triangle DEF.
- (b) In the figure (2) given below, D and E are mid-points of the side AB and AC respectively. If BC = 5.6 cm and \angle B = 72°, compute
 - (i) DE
 - (ii) ∠ADE.
- (c) In the figure (3) given below, D and E are mid-point of AB, BC respectively and DF || BC. Prove that DBEF is a parallelogram. Calculate AC if AF = 2.6 cm.

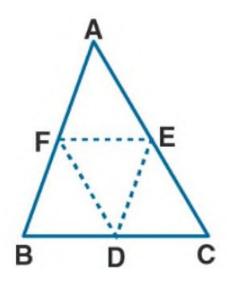


Solution:

(a)

(i) Given: AB = 6 cm, BC = 4.8 cm, and CA = 5.6 cm

To find: The perimeter of trapezium FBCA.



It is given that

F is the mid-point of AB

We know that

BF =
$$\frac{1}{2}$$
 AB = $\frac{1}{2}$ × 6 cm = 3 cm ... (1)

It is given that

E is the mid-point of AC

We know that

$$CE = \frac{1}{2}AC = \frac{1}{2} \times 5.6 \text{ cm} = 2.8 \text{ cm}$$
 ... (2)

Here F and E are the mid-point of AB and CA

FE || BC

We know that

$$FE = \frac{1}{2}BC = \frac{1}{2} \times 4.8 = 2.4 \text{ cm}$$
 ... (3)

Here

Perimeter of trapezium FBCE = BF + BC + CE + EF

Now substituting the value from all the equations

$$= 3 + 4.8 + 2.8 + 2.4$$

= 13 cm

Therefore, the perimeter of trapezium FBCE is 13 cm.

(ii) D, E and F are the midpoints of sides BC, CA and AB of Δ ABC Here EF \parallel BC

$$EF = \frac{1}{2}BC = \frac{1}{2} \times 4.8 = 2.4 \text{ cm}$$

$$DE = \frac{1}{2}AB = \frac{1}{2} \times 6 = 3 \text{ cm}$$

 $FD = \frac{1}{2} AC = \frac{1}{2} \times 5.6 = 2.8 \text{ cm}$

We know that

Perimeter of $\Delta DEF = DE + EF + FD$

Substituting the values

$$= 3 + 2.4 + 2.8$$

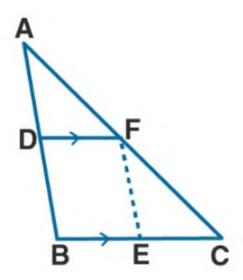
- = 8.2 cm
- (b) It is given that

D and E are the mid-point of sides AB and AC

BC = 5.6 cm and \angle B = 72°

To find:

- (i) DE
- (ii) ∠ADE.



We know that

In ΔABC

D and E is the mid-point of the sides AB and AC Using mid-point theorem.

 $DE \parallel BC$

(i) DE =
$$\frac{1}{2}$$
 BC = $\frac{1}{2}$ × 5.6 = 2.8 cm

(ii)
$$\angle ADE = \angle B$$
 are corresponding angles

It is given that

$$\angle B = 72^{\circ}$$
 and BC || DE

(c) It is given that

D and E are the midpoints of AB and BC respectively

DF
$$\parallel$$
 BC and AF = 2.6 cm

To find:

(i)	BEF is a parallelo	gram
(ii)	Calculate the valu	e of AC
Proof:		
(i)	In $\triangle ABC$	
D is the midpoint of AB and DF \parallel BC		
F is the midpoint of AC		(1)
F and E are the midpoints of AC and BC		
EF AF	3	(2)
Here DF BC		
DF BE		(3)
Using equation (2)		
EF AB		
EF DB		(4)
Using equation (3) and (4)		
DBEF is a parallelogram		
(ii)	F is the midpoint of	of AC
So we get		
$AC = 2 \times AF = 2 \times 2.6 = 5.2 \text{ cm}$		

2. Prove that the four triangle formed by joining in pairs the midpoint of the sides C of a triangle are congruent to each other.

Solution:

It is given that

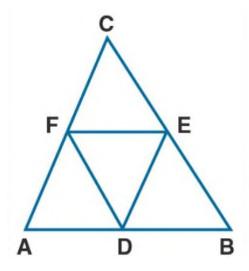
In $\triangle ABC$

D, E and F are the mid-point of AB, BC and CA

Now join DE, EF and FD

To find:

ΔADF ≅ΔDBE ≅ΔECF ≅ΔDEF



To prove:

In $\triangle ABC$

D and E are the mid-points of AB and BC

DE || AC or FC

Similarly DF || EC

DECF is a parallelogram

We know that

Diagonal FE divides the parallelogram DECF in two congruent triangle DEF and CEF

 $\triangle DBE \cong \triangle ECF$... (1)

Here we can prove that

 $\triangle DBE \cong \triangle DEF$... (2)

$$\Delta DEF \cong \Delta ADF \qquad \dots (3)$$

Using equation (1), (2) and (3)

ΔADF ≅ΔDBE ≅ΔECF ≅ΔDEF

3. If D, E and F are mid-point of sides AB, BC and CA respectively of an isosceles triangle ABC, probe that Δ DEF is also isosceles.

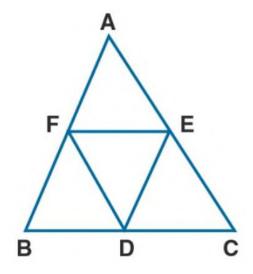
Solution:

It is given that

ABC is an isosceles triangle in which AB = AC

D, E and F are the midpoints of the sides BC, CA and AB

Now, D, E and F are joined.



To find:

 ΔDEF is an isosceles triangle

Proof:

D and E are the midpoints of BC and AC.

Here DE || AB and DE =
$$\frac{1}{2}$$
 AB ... (1)

D and F are the midpoints of BC and AB

Here DF || AC and DF =
$$\frac{1}{2}$$
 AC ... (2)

It is given that

$$AB = BC$$
 and $DE = DF$

Hence, ΔDEF is an isosceles triangle.

- 4. The diagonals AC and BD of a parallelogram ABCD intersect at O. If P is the midpoint of AD, prove that
 - (i) **PQ** || **AB**
 - (ii) PO = $\frac{1}{2}$ CD.

Solution:

It is given that

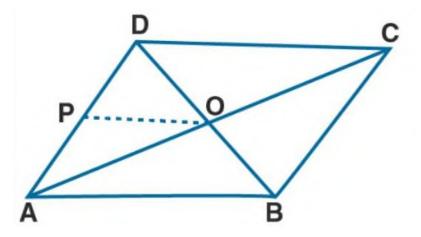
ABCD is a parallelogram in which diagonals AC and BD intersect each other

At the point O, P is the midpoint of AD

Join OP

To find:

- (i) $PQ \parallel AB$
- (ii) $PQ = \frac{1}{2} CD$



Proof:

(i) In parallelogram diagonals bisect each other

$$BO = OD$$

Here O is the midpoint of BD

In ΔABD

P and O is the midpoint of AD and BD

PO || AB and PO =
$$\frac{1}{2}$$
 AB (1)

Hence, it is proved that PO || AB.

(ii) ABCD is a parallelogram

$$AB = CD \qquad \dots (2)$$

Using both (1) and (2)

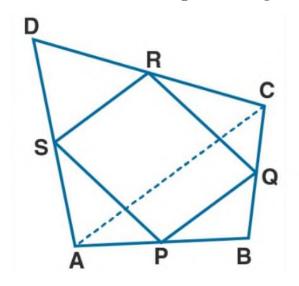
$$PO = \frac{1}{2}CD$$

5. In the adjoining figure, ABCD is a quadrilateral in which P, Q, R and S are mid-point of AB, BC, CD and DA respectively. AC is its diagonal. Show that

(i) SR || AC and SR =
$$\frac{1}{2}$$
 AC

(ii)
$$PQ = SR$$

(iii) PQRS is a parallelogram



Solution:

It is given that

In quadrilateral ABCD

P, Q, R and S are the midpoint of sides AB, BC, CD and DA

AC is the diagonal

To find:

(i) SR || AC and SR =
$$\frac{1}{2}$$
 AC

(ii)
$$PQ = SR$$

(iii) PQRS is a parallelogram

Proof:

(i) In $\triangle ADC$

S and R are the midpoint of AD and DC

SR || AC and SR =
$$\frac{1}{2}$$
 AC (1)

Using the mid-point theorem

(ii) In $\triangle ABC$

P and Q are the midpoint of AB and BC

PQ || AC and PQ =
$$\frac{1}{2}$$
 AC (2)

Using equation (1) and (2)

$$PQ = SR \text{ and } PQ \parallel SR$$

(iii)
$$PQ = SR \text{ and } PQ \parallel SR$$

Hence, PQRS is a parallelogram.

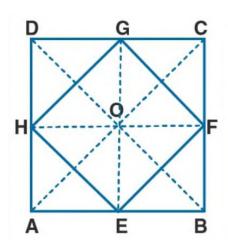
6. Show that the quadrilateral formed by joining the midpoint of the adjacent sides of a square, is also a square.

Solution:

It is given that

A square ABCD in which E, F, G and G are mid-points fo AB, BC, CD and DA

Join EF, FG, GH and HE.



To find:

EFGH is a square

Construct AC and BD

Proof:

In ΔACD

G and H are the midpoint of CD and AC

GH || AC and GH =
$$\frac{1}{2}$$
 AC (1)

In $\triangle ABC$, E and F are the midpoint of AB and BC

EF || AC and EF =
$$\frac{1}{2}$$
 AC (2)

Using both the equations

EF || AC and EF = GH =
$$\frac{1}{2}$$
 AC (3)

In the same way we can prove that

EF || GH and EH = GF =
$$\frac{1}{2}$$
 BD

We know that the diagonals of square are equal

$$AC = BD$$

By dividing both sides by 2

$$\frac{1}{2}$$
 AC = $\frac{1}{2}$ BD (4)

Using equation (3) and (4)

$$EF = GH = EH = GF$$
 (5)

Therefore, EFGH is a parallelogram

In \triangle GOH and \triangle GOF

OH and OF as the diagonals of parallelogram bisect each other

OG = OG is common

Using equation (5)

$$GF = GF$$

$$\Delta$$
GOH \cong Δ GOF (SSS axiom of congruency)

$$\angle GOH = \angle GOF$$
 (c.p.c.t.)

We know that

$$\angle GOH + \angle GOF = 180^{\circ}$$
 as it is a linear pair

$$\angle GOH + \angle GOH = 180^{\circ}$$

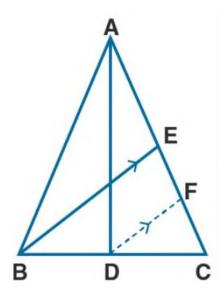
So we get

$$\angle GOF = \frac{180^{\circ}}{2} = 90^{\circ}$$

So the diagonals of a parallelogram ABCD bisect and perpendicular to each other

Hence, it is proved that EFGH is a square.

7. In the adjoining figure, AD and BE are medians of \triangle ABC. If DF || BE, Prove that CF = $\frac{1}{2}$ AC.



Solution:

It is given that

AD and BE are the medians of $\triangle ABC$

Construct DF || BE

To find:

$$CF = \frac{1}{4}AC$$

Proof:

In $\triangle BCE$

D is the midpoint of BC and DF \parallel BE

F is the midpoint of EC

$$CF = \frac{1}{2}EC$$
 (1)

E is the midpoint of AC

$$EC = \frac{1}{2} AC$$
 (2)

Using both the equations

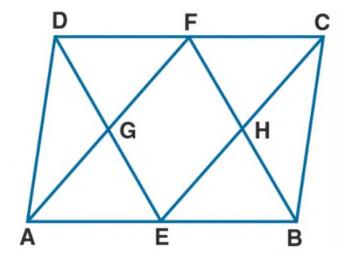
$$CF = \frac{1}{2} EC = \frac{1}{2} \left(\frac{1}{2} AC \right)$$

So we get

$$CF = \frac{1}{4}AC$$

Hence, it is proved.

- 8. In the figure (1) given below, ABCD is a parallelogram. E and F are midpoint of the sides AB and CO respectively. The straight lines ED and EC in points G and H respectively. Prove that
- (i) $\Delta HEB = \Delta HCF$
- (ii) **GEHF** is a parallelogram.



Solution:

It is given that

ABCD is a parallelogram

E and F are the midpoint of sides AB and CD

To prove:

- (i) $\Delta HEB = \Delta HCF$
- (ii) GEHF is a parallelogram.

Proof:

(i) We know that

ABCD is a parallelogram

FC || BE

 \angle CEB = \angle FCE are alternate angle

$$\angle$$
HEB = \angle FCH (1)

 $\angle EBF = \angle CEB$ are alternate angle

$$\angle EBH = \angle CFM$$
 (2)

Here E and F are midpoint of AB and CD

$$BE = \frac{1}{2}AB$$
 (3)

$$CF = \frac{1}{2} CD$$
 (4)

We know that

ABCD is a parallelogram

$$AB = CD$$

Now dividing both sides by $\frac{1}{2}$

$$\frac{1}{2}AB = \frac{1}{2}CD$$

Using equation (3) and (4)

$$BE = CF \qquad \dots (5)$$

In \triangle HEB and \triangle HCF

$$\angle$$
HEB = \angle FCH using equation (1)

$$\angle EBH = \angle CFH$$
 using equation (1)

BE = CF using equation (5) So we get Δ HEB $\cong \Delta$ HCF (ASA axiom of congruency) Hence, it is proved. (ii) It is given that

E and F are the midpoint of AB and CD

$$AB = CD$$

So we get

$$AE = CF$$

$$AE = CF$$
 and $AE \parallel CF$

So AECF is a parallelogram.

G and H are the midpoint of AF and CE

In the same way we can prove that GFHE is a parallelogram

So G and H are the points on the line DE and BF

$$GE \parallel HF \qquad \dots (7)$$

Using equation (6) and (7) GEHF is a parallelogram.

Hence, it is proved.

9. ABC is an isosceles triangle AB = AC. D, E and F are midpoint of the sides BC, AB and AC respectively. Prove that the line segment AD is perpendicular to EF and is bisected by it.

Solution:

It is given that

ABC is an isosceles triangle with AB = AC

D, E and F are mid-point of the sides BC, AB and AC

To find:

AD is perpendicular to EF and is bisected by it.

Proof:

In \triangle ABD and \triangle ACD

ABC is an isosceles triangle

$$\angle ABD = \angle ACD$$

Here D is the midpoint of BC

$$BD = BD$$

It is given that AB = AC

 $\triangle ABD \cong \triangle ACD$ (SAS axiom of congruency)

 $\angle ADB + \angle AOC = 180^{\circ}$ is a linear pair

$$\angle ADB + \angle ADB = 180^{\circ}$$

By further calculation

$$2\angle ADB = 180^{\circ}$$

So we get

$$\angle ADB = \frac{180}{2} = 90^{\circ}$$

So AD is perpendicular to BC (1)

D and E are the midpoint of BC and AB

DE
$$||$$
 AF (2)

D and F are the midpoint of BC and AC

$$EF \parallel AD \qquad \dots (3)$$

Using equation (2) and (3)

AEDF is a parallelogram

Here the diagonals of a parallelogram bisect each other

AD and EF bisect each other

Using equation (1) and (3)

EF || BC

So AD is perpendicular to EF

Hence, it is proved.

10.

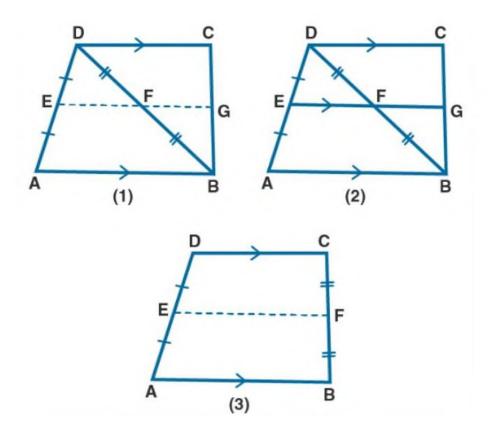
- (a) In the quadrilateral (1) given below, AB || DC, E and F are the midpoints of AD and BD respectively. Prove that:
 - (i) G is midpoint of BC

(ii)
$$EG = \frac{1}{2} (AB + DC)$$

- (b) In the quadrilateral (2) given below, AB \parallel DC \parallel EG. If E is mid-point of AD prove that:
 - (i) G is the mid-point of BC
 - (ii) 2EG = AB + CD
- (c) In the quadrilateral (3) given below, AB || DC

E and F are mid-point of non-parallel sides AD and BC respectively. Calculate:

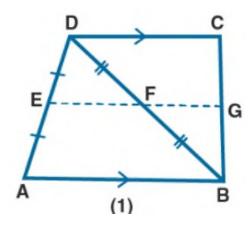
- (i) EF if AB = 6 cm and DC = 4 cm.
- (ii) AB if DC = 8 cm and EF = 9 cm.



Solution:

(a) It is given that

 $AB \parallel DC$, E and F are midpoints of AD and BD



To Prove:

(i) G is midpoint of BC

(ii)
$$EG = \frac{1}{2} (AB + DC)$$

Proof:

In ΔABD

F is the midpoint of BD

$$DF = BF$$

E is the midpoint of AD

EF || AB and EF =
$$\frac{1}{2}$$
 AB (1)

It is given that AB || CD

F is the midpoint of BD

G is the mid-point of BC

$$FG = \frac{1}{2}DC$$
 (2)

By adding both the equations

$$EF + FG = \frac{1}{2}AB + \frac{1}{2}DC$$

Taking $\frac{1}{2}$ as common

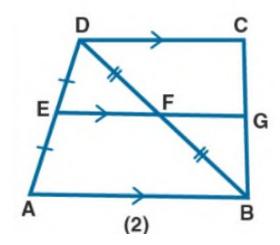
$$EG = \frac{1}{2} (AB + DC)$$

Therefore, it is proved.

(b) It is given that

Quadrilateral ABCD in which AB || DC || EG

E is the mid-point of AD



To Prove:

(i) G is the mid-point of BC

(ii)
$$2EG = AB + CD$$

Proof:

AB || DC

EG || AB

So we get

EG || DC

In ΔDAB ,

E is the midpoint of BD and EF = $\frac{1}{2}$ AB (1)

In ΔBCD ,

F is the midpoint of BD and FG || DC

$$FG = \frac{1}{2} CD$$
 (2)

By adding both the equations

$$EF + FG = \frac{1}{2}AB + \frac{1}{2}CD$$

Talking out the common terms

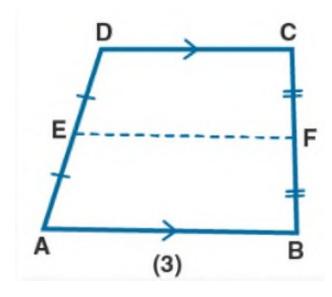
$$EG = \frac{1}{2} (AB + CD)$$

Hence, it is proved.

(c) It is given that

A quadrilateral in which AB || DC

E and F are the midpoint of non-parallel sides AD and BC



To Prove

- (i) EF if AB = 6 cm and DC = 4 cm.
- (ii) AB if DC = 8 cm and EF = 9 cm.

Proof:

We know that

The length of line segment joining the midpoint of two non-parallel sides is half the sum of the lengths of the parallel sides.

E and F are the midpoint of AD and BC

$$EF = \frac{1}{2}(AB + CD)$$
 (1)

(i)
$$AB = 6 \text{ cm} \text{ and } DC = 4 \text{ cm}$$

Substituting in equation (1)

$$EF = \frac{1}{2}(6+4)$$

By further calculation

$$EF = \frac{1}{2} \times 10 = 5 \text{ cm}$$

(ii)
$$DC = 8 \text{ cm} \text{ and } EF = 9 \text{ cm}$$

Substituting in equation (1)

$$EF = \frac{1}{2}(AB + DC)$$

By further calculation

$$9 = \frac{1}{2}(AB + 8)$$

$$18 = AB + 8$$

So we get

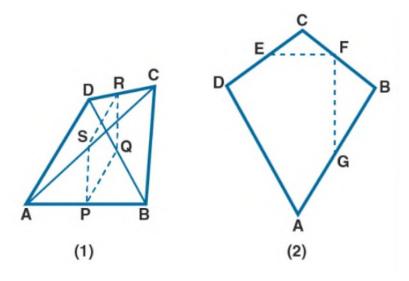
$$18 - 8 = AB$$

$$AB = 10 \text{ cm}$$

11.

- (a) In the quadrilateral (1) given below, AD = BC, P, Q, R and S are midpoint of AB, BD, CD and AC respectively. Prove that PQRS is a rhombus.
- (b) In the figure (2) given below, ABCD is a kite in which BC = CD, AB = AD, E, F, G are midpoint of CD, BC and AB respectively. Prove that:

- (i) $\angle EFG = 90^{\circ}$
- (ii) The line drawn through G and parallel to FE bisectes DA.



Solution:

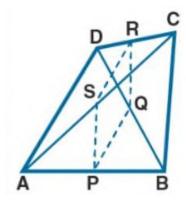
(a) It is given that

A quadrilateral ABCD in which AD = C

P, Q, R and S are midpoint of AB, BD, CD and AC

To prove:

PQRS is a rhombus



Proof:

In $\triangle ABD$

P and Q are midpoint of AB and BD

$$PQ \parallel AD \text{ and } PQ = \frac{1}{2} AB$$
 (1)

In $\triangle BCD$,

R and Q are midpoint of DC and BD

$$RQ \parallel BC \text{ and } RQ = \frac{1}{2}BC$$
 (2)

P and S are mid-point of AB and AC

PS || BC and PS =
$$\frac{1}{2}$$
 BC (3)

$$AD = BC$$

Using all the equations

$$PS \parallel RQ$$
 and $PQ = PS = RQ$

Here $PS \parallel RQ$ and PS = RQ

PQRS is a parallelogram

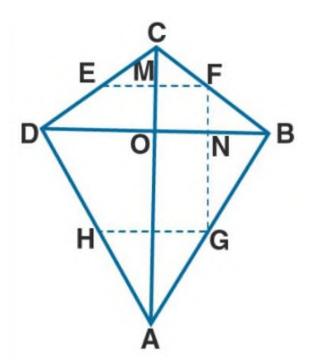
$$PQ = RS = PS = RQ$$

PQRS is a parallelogram

Therefore, it is proved.

(ii) It is given that

ABCD is a kite in which BC = CD, AB = AD, E, F, G are midpoint fo CD, BC and AB



To prove:

(i) $\angle EFG = 90^{\circ}$

(ii) The line drawn through G and parallel to FE bisects DA

Construction:

Join AC and BD

Construct GH through G parallel to FE

Proof:

(i) We know that

Diagonals of a kite interest at right angles

$$\angle MON = 90^{\circ}$$
 (1)

In $\triangle BCD$,

E and F are midpoint of CD and BC

EF || DB and EF =
$$\frac{1}{2}$$
DB (2)

Here

$$\angle$$
MON + \angle MFN = 180°

$$90^{\circ} + \angle MFN = 180^{\circ}$$

By further calculation

$$\angle MFN = 180 - 90 = 90^{\circ}$$

So
$$\angle EFG = 90^{\circ}$$

Hence, it is proved.

(ii) In $\triangle ABD$,

G is the midpoint of AB and HG || DB

Using equation (2)

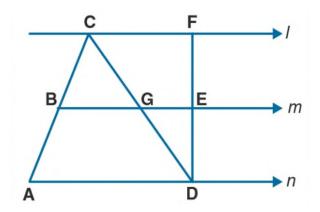
EF || DB and EF || HG

HG || DB

Here H is the midpoint of DA

Therefore, the line drawn through G and parallel to FE bisects DA.

- 12. In the adjoining figure, the lines l, m and n are parallel to each other, and G is midpoint of CD. Calculate:
- (i) BG if AD = 6 cm
- (ii) $CF ext{ if } GE = 2.3 ext{ cm}$
- (iii) AB if BC = 2.4 cm
- (iv) ED if FD = 4.4 cm



Solution:

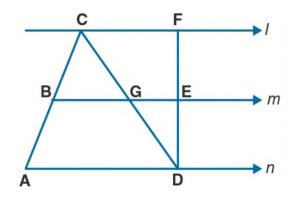
It is given that

The straight line l, m and n are parallel to each other

G is the midpoint of CD

To find:

- (i) BG if AD = 6 cm
- (ii) CF if GE = 2.3 cm
- (iii) AB if BC = 2.4 cm
- (iv) ED if FD = 4.4 cm



Proof:

(i) In \triangle ACD,

G is the midpoint of CD

 $BG \parallel AD$ as $m \parallel n$

Here B is the midpoint of AC and BG = $\frac{1}{2}$ AD

So we get

$$BG = \frac{1}{2} \times 6 = 3 \text{ cm}$$

(ii) In \triangle CDF,

G is the midpoint of CD

GE \parallel CF as m \parallel 1

Here E is the midpoint of DF and $GE = \frac{1}{2}CF$

So we get

$$CF = 2GE$$

$$CF = 2 \times 2.3 = 4.6 \text{ cm}$$

B is the midpoint of AC

$$AB = BC$$

We know that

$$BC = 2.4 \text{ cm}$$

So
$$AB = 2.4 \text{ cm}$$

E is the mid-point of FD

$$ED = \frac{1}{2} FD$$

We know that

$$FD = 4.4 \text{ cm}$$

$$ED = \frac{1}{2} \times 4.4 = 2.2 \text{ cm}.$$

CHAPTER TEST

1. ABCD is a rhombus with P, Q and R as midpoints of AB, BC and CD respectively. Prove that PQ \perp QR.

Solution:

It is given that

ABCD is a rhombus with P, Q and R as midpoints of AB, BC and CD

....(1)

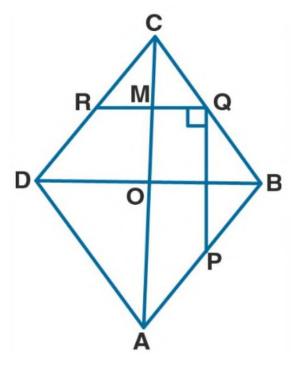
To prove:

 $PQ \perp QR$

Construction: Join AC and BD

Proof:

Diagonals of rhombus intersect at right angle



$$\angle MON = 90^{\circ}$$

In ΔBCD

Q and R are midpoint of BC and CD.

$$RQ \parallel DB \text{ and } RQ = \frac{1}{2} DB \dots (2)$$

Here

RQ || DB

 $MQ \parallel ON$

We know that

$$\angle$$
MON + \angle MON = 180°

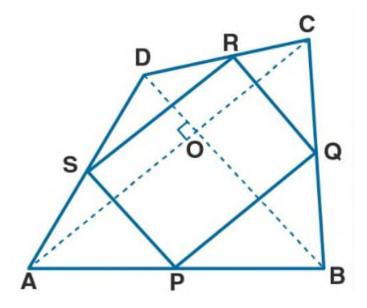
$$\angle$$
MON = $180 - 90 = 90^{\circ}$

So NQ \perp MQ or PQ \perp QR

Hence, it is proved.

2. The diagonals of a quadrilateral ABCD are perpendicular. Show that the quadrilateral formed by joining the midpoint of its adjacent sides is a rectangle.

Solution:



It is given that

ABCD is a quadrilateral in which diagonals AC and BD are perpendicular to each other

P, Q, R and S are mid-point of AB, BC, CD and DA

To prove:

PQRS is a rectangle

Proof:

We know that

P and Q are the midpoint of AB and BC

$$PQ \parallel AC \text{ and } PQ = \frac{1}{2}AC \qquad \dots (1)$$

S and R are midpoint of AD and DC

$$SR \parallel AC \text{ and } SR = \frac{1}{2}AC$$
 (2)

Using both the equations

 $PQ \parallel SR \text{ and } PQ = SR$

So PQRS is a parallelogram

AC and BD intersect at right angles

 $SP \parallel BD$ and $BD \perp AC$

So SP \perp AC i.e. SP \perp SR

$$\angle RSP = 90^{\circ}$$

$$\angle RSP = \angle SRQ = \angle RQS = \angle SPQ = 90^{\circ}$$

Hence, PQRS is a rectangle.

3. If D, E, F are midpoint of the sides BC, CA and AB respectively of a \triangle ABC, prove that AD and FE bisect each other.

Solution:

It is given that

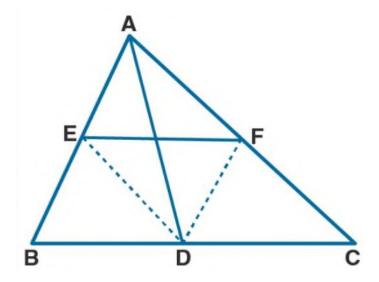
D, E, F are midpoint of sides BC, CA and AB of a \triangle ABC

To prove:

AD and FE bisect each other

Construction:

Join ED and FD



Proof:

We know that

D and E are the midpoint of BC and AB

DE || AC and DE || AF ... (1)

D and F are the midpoint of BC and AC

DF || AB and DF || AE ... (2)

Using both the equations

ADEF is a parallelogram

Here the diagonals of a parallelogram bisect each other

AD and EF bisect each other.

Therefore, it is proved.

4. In $\triangle ABC$, D and E are midpoint of the sides AB and AC respectively. Through E, a straight line is drawn parallel to AB to meet BC ant f. Prove that BDEF is a parallelogram. If AB = 8 cm and BC = 9 cm, find the perimeter of the parallelogram BDEF.

Solution:

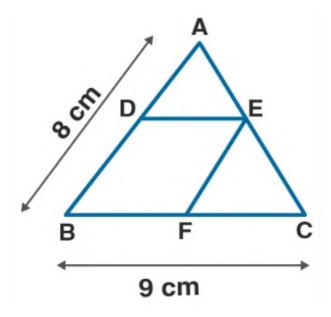
It is given that

In ΔABC

D and E are the midpoint of sides AB and AC

DE is joined from E

EF \parallel AB is drawn AB = 8 cm and BC = 9 cm



To Prove:

- (i) BDEF is parallelogram
- (ii) Find the perimeter of BDEF

Proof:

In ΔABC

B and E are the mid-point of AB and AC

Here DE || BC and DE =
$$\frac{1}{2}$$
 BC

So EF || AB

DEFB is a parallelogram

$$DE = BF$$

So we get

$$DE = \frac{1}{2}BD = \frac{1}{2} \times 9 = 4.5 \text{ cm}$$

$$EF = \frac{1}{2}AB = \frac{1}{2} \times 8 = 4 \text{ cm}$$

We know that

Perimeter of BDEF = 2 (DE + EF)

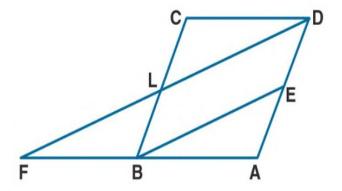
Substituting the value

$$=2(4.5+4)$$

$$= 2 \times 8.5$$

$$= 17 \text{ cm}$$

5. In the given figure, ABCD is a parallelogram and E is mid-point of AD, DL \parallel EB meets AB produced at F. Prove that B is midpoint of AB and EB – LF.



Solution:

It is given that

ABCD is a parallelogram

E is the midpoint of AD

DL || EB meets AB produced at F

To prove:

 $EB = \Gamma E$

B is the midpoint of AF

Proof:

We know that

BC || AD and BE || LD

BEDL is a parallelogram

BE = LD and BL = AE

Here E is the midpoint of AD

L is the midpoint of BC

In ΔFAD

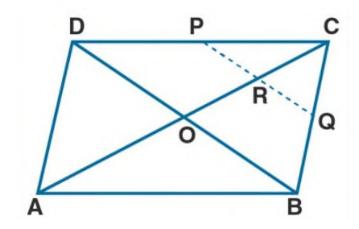
E is the mid-point of AD and BE || LD at FLD

So B is the midpoint of AF

Here

$$EB = \frac{1}{2} FD = LF.$$

6. In the given figure, ABCD is a parallelogram. If P and Q are midpoint of sides CD and BC respectively, show that $CR = \frac{1}{2}AC$.



Solution:

It is given that

ABCD is a parallelogram

P and Q are midpoint of CD and BC

To prove: $CR = \frac{1}{4}AC$

Construction: Join AC and BD

Proof:

In parallelogram ABCD

Diagonals AC and BD bisect each other at O

$$AO = OC \text{ or } OC = \frac{1}{2}AC \qquad \dots (1)$$

In ΔBCD

P and Q are midpoint of CD and BC

To prove: $CR = \frac{1}{4}AC$

Construction: Join AC and BD

Proof:

In parallelogram ABCD

Diagonals AC and BD bisect each other at O

$$AO = OC \text{ or } OC = \frac{1}{2} AC \qquad \dots (1)$$

In ΔBCO

Q is the midpoint of BC and PQ \parallel OB

Here is the midpoint of CO

So we get

$$CR = \frac{1}{2}OC = \frac{1}{2}\left(\frac{1}{2}BC\right)$$

$$CR = \frac{1}{4}BC$$

Hence, it is proved.