Solved Paper

Question 1

The function $f(x) = \sin\left(\frac{\pi x}{n!}\right) - \cos\left(\frac{\pi x}{(n+1)!}\right)$ is

Options:

A. not periodic

B. periodic, with period 2n!

C. periodic, with period 2(n + 1)!

D. constant

Answer: C

Solution:

Solution:

.....

Question 2

If
$$\Delta(\mathbf{n}) = \begin{cases} x^n & \sin x & \cos x \\ n! & \sin \frac{n\pi}{2} & \cos \frac{n\pi}{2} \\ \alpha & \alpha^2 & \alpha^3 \end{cases}$$

If then the value of $\frac{d^n}{dx^n}$ – [$\Delta(x)$] at x = 0 is

Options:

A. -1

B. 0

C. 1

D. 2

Answer: B

Solution:

Options:

A. 5!

B. 6!

C. $1.2^2 \cdot 3 \cdot 4^3 \cdot 5 \cdot 6^4$

D. $1.2^2 \cdot 3^3 \cdot 4^4$

Answer: A

Solution:

Solution:

Question 5

Which of the following statements are correct?

(i) If $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ exists, then f is differentiable at a

(ii) If f is continuous at a, then f is differentiable at a

(iii If limit of f at x = a exists, then f is differentiable at a)

(iv) If f is differentiable at a, then f is continuous at a

Options:

A. i and ii

B. ii and iii

C. iii and iv

D. i and iv

Answer: D

Solution:

Solution:

Question 6

The function corresponding to ti graph shown below is r. w is

Options:

A.
$$y^2 = (1 - x)$$

B.
$$y^2 = (x - 1)$$

C.
$$y^2 + 1 = (x - 1)$$

D.
$$y^2 = (1 + x)$$

Answer: A

Solution:

Solution:

Question 7

Question 9

The partial fraction decomposition of f (x) = $\frac{x^4 + 10x^2 + 3x^2 + 36}{(x-1)(x^2+1)}$ is of the form

Options:

A.
$$\frac{A}{x-1} + \frac{Bx+C}{x^2+1} + \frac{Cx+D}{(x^2+1)^2}$$

B.
$$\frac{A}{x-1} + \frac{B}{x^2+1} + \frac{C}{(x^2+1)^2}$$

C.
$$\frac{A}{x-1} + \frac{B}{x^2+1} + \frac{Cx+D}{(x^2+1)^2}$$

D.
$$\frac{A}{x-1} + \frac{Bx+C}{x^2+1} + \frac{\Gamma}{(x^2+1)^2}$$

Answer: A

Solution:

Solution:

Question 10

The equation |z - i| = |z + i| = k, represents a hyperbola, if

Options:

- A. 0 < k < 2
- B. k < 0
- C. k > 2
- D. 0 < |k| < 2

Answer: D

Solution:

Solution:

Question 11

 $\log_3 \log \sqrt[4]{\sqrt{7\sqrt{7}}}$ is equal to

Options:

- A. 3log₂7
- B. $\log_7 2$
- C. $1 3\log_7 2$
- D. $1 3\log_2 7$

Answer: C

Solution:
Question 12
If $\sin^2\theta = \frac{1}{4}$ and $0 < \theta < 90^\circ$, then the value of $\tan\theta$ is equal to
Options:
A. $\frac{2}{\sqrt{3}}$
B. $\frac{\sqrt{3}}{2}$
C. 1
D. $\frac{1}{\sqrt{3}}$
Answer: D
Solution:
Solution:
Question 13
The sum of all three digit numbers which are odd is
Options:
A. 247500
B. 155700
C. 175500
D. 156500
Answer: A
Solution:
Solution:
Question 14

The $(n+1)^{th}$ differentiation of an n^{th} order polyomial is Options:

A. zero
B. a polynomial of order n
C. a non-zero constant
D. a polynomial of or'. 2
Answer: A
Solution:
Solution:
Question 15
Last two digits of the natural number 19^{9^4} is
Options:
A. 99
B. 39
C. 20
D. 19
Answer: D
Solution:
Solution:
Question 16
If $\int_{a}^{b} f(x) dx = a + 2b$, then $\int_{a}^{b} f(x) + 5 dx = ??$
Options:
A. $a + 2b + 5$
B. 5b – 5a
C. $7b - 4a$
D. 7b – 6a

Answer: C

Solution:	
Question 17	
The number of ways that a circle car men standing on a ring, so that all t	
Options:	
A. 8564	
B. 8640	
C. 8644	
D. 8665	
Answer: B	
Solution:	
Solution:	
Question 18	
If f (9) = 9 and f'(9) = 4, then $\lim_{x\to 9}$	$\frac{\sqrt{f(x)}-3}{\sqrt{x}-3}$ is equal to
Options:	
A. 2	
B2	
C4	
D. 4	
Answer: D	
Solution:	
Solution:	
Question 19	

The equation $z\overline{z} + 2(z + \overline{z}) - 1 = 0$ represents

Options:

A. a hyperbola

B. a straight line
C. an ellipse
D. a circle
Answer: D
Solution:
Solution:
Question 20
Let f be a polynomial T T the second derivative of $f(e^x)$ is
Options:
A. $f'(e^2)$
B. $f''(e^x)e^{2x} + f'(e^x)e^x$
C. $f''(e^x)e^x + f'(e^x)$
D. $f''(e^x)e^{2x} + f'(e^x)$
Answer: B
Solution:
Solution:
Question 21
The eccentricity of the hyperbola whose length of the latus rectum is equal to 8 and the length of its conjugate axis is equal! to half of the distance between its foci, is
Options:
A. $\sqrt{3}$
B. 4 / 3
C. $4 / \sqrt{3}$

D. 2 / $\sqrt{3}$

Answer: D

olution:
Question 22
[$\sin (\log x) + \cos(\log x)$] dx is equal to
Options:
$\Delta x \cos(\log x) + c$
$3. \sin(\log x) + c$
$C.\cos(\log x) + c$
O. $xsin(log x) + c$
answer: D
Solution:
olution:
Question 23 Thousand tickets are sold in a lottery in which . here is one top prize of Rs.500, four prizes of Rs.100 each and five prizes of Rs. 10 each. A icket costs Rs.1. The expected gain when you buy a ticket is
Options:
a. Rs. 2
30.25 of a rupee
C0.5 of a rupee
D. Rs.1
answer: C
Solution:
olution:
Question 24

If $f: R \to R$ and $g: R \to R$ are one to one real valued functions, then the value of the integral $\int_{-\pi}^{\pi} [f(x) + f(-x)] [(g(x) - g(-x)] dx$ is

Options:

А. –п
В. п
C. 1
D. 0
Answer: D
Solution:
Solution:
Question 25
If E (X), = 276 and Variance of $X = 20$, then the value of E (X) is
Options:
A. 0
B. 16
C. 20
D. 256
Answer: B
Solution:
Solution:
Question 26
$\lim_{\mathbf{x} \to \frac{\pi}{4}} \frac{1 - \tan x}{1 - \sqrt{2}\sin x} =$
Options:
A. $\frac{1}{\sqrt{2}}$

D. 2

B. $\frac{1}{2}$

C. $\frac{1}{2\sqrt{2}}$

Answer: D

Question 27

Let $f(x) = \sin \frac{1}{x}$, $x \ne 0$. Then f(x) can be continuous at x = 0

Options:

- A. if f(0) = 1
- B. if f(0) = 0
- C. if f(0) = -1
- D. for no definite value of f (0)

Answer: D

Solution:

Solution:

Question 28

If one of the diameters f the circle, given by the equation $x^2 + y^2 + 4x + 6y - 12 = 0$, is a chord of a circle S, whose centre is at (-3, 2), then the radius of S is

Options:

- A. 10
- B. $5\sqrt{2}$
- C. $5\sqrt{3}$
- D. 5

Answer: C

Solution:

Solution:

Question 29

Let f(-x) = f(x). Then f'(x) must be

Options:

A. an even function	
B. an odd function	
C. a periodic function	
D. neither even nor odd	
Answer: B	
Solution:	
Solution:	
Question 30	
Let u be a vector coplanar with the vector is perpendicular to a and $\mathbf{u} \cdot \mathbf{b} = 24$, to	
Options:	
A. 84	
B. 336	
C. 315	
D. 256	
Answer: B	
Solution:	
Solution:	
Question 31	
The expression of dy/dx of the function	$\mathbf{n} \ \mathbf{y} = \mathbf{a}^{\mathbf{x}^{-1}} \ \mathbf{is}$
Options:	
v^2	

A.
$$\frac{y^2}{x(1-y\log x)}$$

B.
$$\frac{y^2 \log y}{x(1 - y \log x)}$$

C.
$$\frac{y^2 \log y}{x(1 - y \log x \log y)}$$

D.
$$\frac{y^2 \log y}{x(1 + y \log x \log y)}$$

Answer: C

Let y = y(x) be the solution of the differential equation $\sin x \frac{dy}{dx} + y \cos x = 4x$, $x \in (0, \pi)$. If $y\left(\frac{\pi}{2}\right) = 0$, then $y\left(\frac{\pi}{0}\right)$ is equal to **Options:** A. $-\frac{4}{9}\pi^2$ B. $\frac{4}{9\sqrt{3}}\pi^2$ $C. - \frac{8}{9\sqrt{3}}\pi^2$ D. $-\frac{8}{9}\pi^2$ **Answer: D Solution: Solution: Question 35** The value of b for which the function $f(x) = \sin x - bx + c$ is decreasing in the interval $(-\infty, \infty)$ is given by **Options:** A. b < 1B. b > 1C. b ≥ 1 D. b ≤ 1 **Answer: B Solution: Solution:**

Question 36

The least value of f (x) = $\frac{x^3}{3}$ – abx occurs at x =

Options:

A. G.M. of a, b

B. A.M. of a, b

C. H.M. of a, b
D. square of a and b
Answer: A
Solution:
Solution:
Question 37
Let $a = j - k$ and $c = i - j - k$. Then the vector b satisfying $a \times b + c = 0$ and $a \mid b = 3$ is
Options:
Ai + j - 2k
B. $2i - j + 2k$
C. $i - j - 2k$
D. $i + j - 2k$
Answer: A
Solution:
Solution:

Question 38

If f(a + x) = f(x), then $\int_0^{na} f(x) dx$, where $n \in N$, is equal to

Options:

A.
$$(n-1)\int_{0}^{a} f(x) dx$$

B.
$$n \int_{0}^{a} f(x) dx$$

C.
$$\int_0^{(n-1)} f(x) dx$$

D.
$$\int_0^{\text{na/2}} f(x) dx$$

Answer: B

Question 39

The area of the region bounded by the curves $y = x^2$ and $x = y^2$ is

Options:

- A. $\frac{1}{3}$
- B. $\frac{1}{2}$
- C. $\frac{1}{4}$
- D. 3

Answer: A

Solution:

Solution:

Question 40

The differential equation of the family of circles with centre on the \boldsymbol{x} axis is

Options:

A.
$$y \frac{d^2y}{dx^2} + \frac{dy}{dx})^2 + 1 = 0$$

B.
$$\frac{d^2y}{dx^2} + \left| \frac{dy}{dx} \right|^2 + 1 = 0$$

C.
$$y \frac{d^2y}{dx^2} - (\frac{dy}{dx})^2 + 1 = 0$$

D.
$$y \frac{d^2y}{dx^2} + \frac{dy}{dx} + 1 = 0$$

Answer: A

Solution:

Solution:

The value of the integral $\int_0^1 e^{dx}$ lies in the interval		
Options:		
A. (0, 1)		
B. (-1, 0)		
C. (1, e)		
D. (-1, e)		
Answer: C		
Solution:		
Solution:		
Question 42		
The equation of a plane passing throuplanes $x + 2y + 3z = 2$ and $x - y + z = 3$		
(3, 1, -1) is	, ,	
Options:		
A. $5x - 11y + z = 17$		
B. $\sqrt{2}x + y = 3\sqrt{2} - 1$		
$C. x + y + z = \sqrt{3}$		
D. $x - \sqrt{2}y = 1 - \sqrt{2}$		
Answer: A		
Solution:		
Solution:		
Question 43		
The integrating factor of the different	cial equation $\frac{dy}{dx} + y \tan x = \sec x$ is	
Options:		
A. secx		
B. tan x		

C. sin x

D. cos x			
Answer: A			
Solution:			
Solution:			
Question 44			
Consider the system of equations $x - 2y + 3z = -1$; $-x + y - 2z = k$; $x - 3z + 3z = -1$; $-x + y - 3z = k$; $x - 3z = k$; x			
STATEMENT -2: The determinant	1 3 -1 -1 -2 k 1 4 1	≠ 0, for k ≠ 3.	
Then			
Options:			
A. Statement-1 is True, Statement-2 is True; St	atement-2 is a	correct explanation for Statement	
B. Statement-1 is True, Statement-2 is True; Statement-1	atement-2 is N	OT a correct explanation for	
C. Statement-1 is True and Statement-2 is Fals	e		
D. Statement-1 is False and Statement-2 is Tru	e		
Answer: A			
Solution:			
Solution:			
Question 45			
Seven people seat themselves indisc probability that two distinguished p	•		
Options:			
A. 1 / 3			
B. 1/2			
C. 1 / 4			

D. 1/8
Answer: A
Solution:
Solution:
Question 46
For a normal curve, the greatest ordinate is
Options:
Α. 2 . πσ
B. $\sigma\sqrt{2\pi}$
C. $\frac{1}{\sqrt{2\pi\sigma}}$
D. $\frac{1}{\sigma\sqrt{2\tau}}$
Answer: D
Solution:
Solution:
Question 47
If lines $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$ and $\frac{x-1}{3k} = \frac{y-5}{1} = \frac{z-6}{-5}$ are mutually perpendicular, then k is equal to
Options:
A10 / 7
B7 / 10
C10
D7
Answer: A
Solution:
Solution:

Question 48

If A is an 3×3 non-singular matrix such that $AA^t =$	A^tA and $B = A^{-1}A^t$,
then BB ^t equals	

_	- •	
O i	ptio	ns:

A. I + B

B. I

C. B^{-1}

D. $(B^{-1})^{t}$

Answer: B

Solution:

Solution:

Question 49

If the median of 21 observations is 40 and if the observations greater than the median are increased by $\bf 5$, then the median of the new data will be

Options:

A. 45

B. 40

C. $40 + \frac{50}{21}$

D. $40 - \frac{50}{21}$

Answer: B

Solution:

Solution:

Question 50

The area (in sq. units) of the quadrilateral formed by the tangents at the end points of the latus rectum to the ellipse $\frac{x^2}{9} + \frac{y^2}{5} = 1$, is

Options:

A. 18
B. 27
C. 27 / 2
D. 27 / 4
Answer: B
Solution:
Solution:
Question 51
Let A and B be two events such that $P(\overline{A \cup B}) = \frac{1}{6}$, $P(A \cap B) = \frac{1}{4}$ and $P(\overline{A}) = \frac{1}{4}$, where \overline{A} stands for the complement of the event A. Then the events A and B are
Options:
A. mutually exclusive and independent
B. equally likely but not independent
C. independent but not equally likely
D. independent and equally likely
Answer: C
Solution:
Solution:
Question 52
Solution of the equation $\sin x - \cos x = \sqrt{2}$ is
Options:
A. $2n\pi + \frac{3\pi}{4}$, $n \in \mathbb{Z}$

B. $2n\tau$, $n \in \mathbb{Z}$

C. 2 . п, n $\in \mathbb{Z}$

Answer: A

D. (2n + 1), T , n $\in \mathbb{Z}$

Solution:

Solution:

Question 53

Which of the following functions is not one to one?

Options:

A. f:
$$\mathbb{R} \to \mathbb{R}$$
, f(x) = 2x + 5

B. f:
$$[0, \tau] \rightarrow [-1, 1]$$
, f(x) = $\cos x$

C. f:
$$-\pi/2$$
, $\pi/2 \rightarrow [1, 7]$, $f(x) = 3\sin x + 4$

D. f :
$$\mathbb{R} \to [-1, 1]$$
, f(x) = sin x

Answer: D

Solution:

Solution:

Question 54

If
$$\mathbf{u} = \mathbf{e}^{\left|\frac{\mathbf{x}^2}{\mathbf{y}^2}\right|} + \mathbf{e}^{\left|\frac{\mathbf{y}^2}{\mathbf{x}^2}\right|}$$
, then $\mathbf{x} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \mathbf{y} \frac{\partial \mathbf{u}}{\partial \mathbf{y}} =$

Options:

B.
$$\frac{\partial^2 u}{\partial x \partial y}$$

C.
$$\frac{1}{x} + \frac{1}{y}$$

D. 0

Answer: D

Solution:

Solution:

The value of the sum $\sum_{n=1}^{13} (i^n + i^{n+1})$ where $i = \sqrt{-1}$ is equal to
Options:
A. i
B. i – 1
C. –i
D. 0
Answer: B
Solution:
Solution:
Question 56
Let A and B be two 2×2 matrices. Consider the statements (i) $AB = 0 \Rightarrow A = 0$ or $B = 0$ (ii) $AB = I \Rightarrow A = B^{-1}$ (iii) $(A + B)^2 = A^2 + 2AB + B^2$. Then
Options:
A. (i) is false, (ii) and (iii) are true
B. (i) and (iii) are false, (ii) is true
C. (i) and (ii) are false, (iii) is true
D. (ii) and (iii) are false, (i) is true
Answer: B
Solution:
Solution:
Question 57
The remainder when $x = 1! + 2! + 3! + + 100!$ is divided by 240, is
Options:
A. 187
B. 33
C. 73

D. 153
Answer: D
Solution:
Solution:
Question 58
A black and a red dice are rolled. The conditional probability of obtaining a sum greater than 9 , given that the black die resulted in a 5 is
Options:
A. 1 / 6
B. 1/9
C. 3 / 4
D. 1/3
Answer: D
Solution:
Solution:
Question 59
The area bounded by the curve $ x + y = 1$ is
Options:
A. 1
B. 3
C. 2
D. 4
Answer: C
Solution:
Solution:

Question 60

If $a_n = \sqrt{7 + \sqrt{7 + \sqrt{7 + \dots}}}$ having n radical signs, then by methods of mathematical induction which of the following is true?

Options:

A. $a_n < 4$, for every $n \ge 1$

B. $a_n < 3$, for every $n \ge 1$

C. $a_n < 7$, for every $n \ge 1$

D. $a_n > 3$, for every $n \ge 1$

Answer: A

Solution:

Solution:

Question 61

The period of $\sin^2\theta$ is

Options:

A. π²

В. п

C. π^3

D. π / 2

Answer: B

Solution:

Solution:

Question 62

Consider the function $f(x) = (x - 1)^{\frac{1}{7}}$. The value of f(2) so that f is continuous at x = 2 is

Options:

A. 1

Options:
A. $\cos^{-1}(1/2)$
B. $\cos^{-1}(1/\sqrt{2})$
C. $\cos^{-1}(1/\sqrt{3})$
D. $\cos^{-1}(\sqrt{3}/2)$
Answer: C
Solution:
Solution:
Question 68
If N = m! (where m is a fixed positive integer > 2), then $\frac{1}{\log_2 N} + \frac{1}{\log_1 N} + \frac{1}{\log_4 N} + \dots + \frac{1}{\log_m N} =$
Options:
A2
B1
C. 0
D. 1
Answer: D
Solution:
Solution:
Question 69
The monthly sales for the first 11 months of the year of a certain salesman were Rs.12,000. But due to his illness during the last month the average sales for the whole year came down to Rs. 11,375. The value of the sale during the last month was

Options:

A. Rs 4,500

If a line is equally inclined with the coordinate axes, then the angle of inclination is

B. Rs 6,000
C. Rs 10,000
D. Rs 8, 000
Answer: A
Solution:
Solution:
Question 70
If $\sin^{-1}x + \sin^{-1}y + \sin^{-1}z = 3\pi/2$, then the value of $x^{100} + y^{100} + z^{100} - \frac{9}{x^{101} + y^{101} + z^{101}}$
is
Options:
A1
B. 0
C. 1
D. 3
Answer: B
Solution:
Solution:
Question 71
The sum of the series $\frac{1}{1!} + \frac{1+2}{2!} + \frac{1+2+3}{3!} + \dots$ is
Options:
A. e
B. $\frac{c}{2}$
C. $\frac{3e}{2}$
D. 1 + $\frac{e}{2}$

Answer: C
Solution:
Solution:
Question 72
Using the fact that $\sum_{1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, the value of $\sum_{1}^{\infty} \frac{1}{(2n+1)^2}$ is
Options:
A. $\frac{\pi^2}{12}$
B. $\frac{\pi^2}{12} - 1$
C. $\frac{\pi^2}{8}$
D. $\frac{\pi^2}{8} - 1$
Answer: D
Solution:
Solution:
Question 73
If x_1 , x_2 , x_3 and y_1 , y_2 , y_3 are both in G.P. with the same common ratio, then the points (x_1, y_1) , (x_2, y_2) and (x_3, y_3)
Options:
A. lie on a straight line
B. lie on an ellipse
C. lie on a circle
D. are vertices of a triangle
Answer: A
Solution:
Solution:

A peacock perched on the top of a 12m high tree spots a snake moving towards its hole at the base of the tree from a distance equal to thrice the height of the tree. The peacock flies towards the snake in a straight line and they both move at the same speed. At what distance from the base of the tree will the peacock catch the snake?
Options:
A. 16m
B. 18m
C. 14m
D. 12m
Answer: A
Solution:
Solution:
Question 75
Let M = $(a_1, a_2, a_3) \mid a_i \in \{1, 2, 3, 4\}, a_1 + a_2 + a_3 = 6$. Then number of elements in M is
Options:
A. 8
B. 9
C. 10
D. 12
Answer: C
Solution:
Solution:
Question 76

A solution curve of the differential equation $\vec{x} = 2y$ passing through (1, 2) also passes through

Question 74

Options:
A. (2, 1)
B. (0, 0)
C. (4, 24)
D. (24, 4)
Answer: B
Solution:
Solution:
Question 77
If the line $x + 3y + 2 = 0$ and its perpendicular line are conjugate with respect to $3x^2 - 5y^2 = 15$, then the equation to conjugate line is
Options:
A. $3x - y = 15$
B. $3x - y + 10 = 0$
C. 3x - y = 4
D. $3x - y + 12 = 0$
Answer: D
Solution:
Solution:
Question 78
An event A is independent of itself if and only if $P(A)$ is(A)
Options:
A. 0 or 1
B. 1 / 2
C. 0

Answer: A Solution:

D. 0, 1/2

50	luti	^ n
301		

Question 79

The order and degree of the differential equation $\left(1+3\frac{dy}{dx}\right)^{-1/3}=4\frac{d^2y}{dx^2}$ are respectively

Options:

- A. 1, 2/3
- B. 3,1
- C. 3,3
- D. 1,2

Answer: C

Solution:

Solution:

Question 80

The differential equation whose linearly independent solutions are $\cos 2x \cdot \sin 2x \cdot c^{-x}$ is

Options:

A.
$$(D^3 + D^2 + 4D + 4)y = 0$$

B.
$$(D^3 - D^2 + 4D - 4)y = 0$$

C.
$$(D^3 + D^2 - 4D - 4)y = 0$$

D.
$$(D^3 - D^2 - 4D + 4)y = 0$$

Answer: A

Solution:

Solution:

Question 81

An example of a function which is continuous but not differentiable is

Options:

 $B. y = c_1 / x$

C. $x^2 + y^2 = c_1$

D. $x^2 - y^2 = c_1$

Answer: D
Solution:
Solution:
Question 84
If $a_1 \cdot a_2, \ldots a_n$ are in a group, then the inverse of $a_1 \cdot a_2 \ldots a_n$ is
Options:
A. $a_n + a_2 + + a_n$
B. identity element
C. $a_1^{-1} \dots a_n^{-1}$
D. $a_n^{-1} \cdot a_n^{-1} \dots a_1^{-1}$
Answer: D
Solution:
Solution:
Question 85
Let $\mathbb Z$ be the set of all integers and let * be a binary operation in $\mathbb Z$ defined by a * b = a + b + 10 for all a, b $\in \mathbb Z$ The identity element of this group is
Options:
A. 0
B. 10
C10
D. 1
Answer: C
Solution:
Solution:

The angle between the lines 0x = 3y = 4z and 2x = -y = z is

Options:

A. $\frac{\pi}{3}$

B. 0

C. $\frac{.7}{4}$

D. $\frac{\pi}{2}$

Answer: D

Solution:

Solution:

Question 87

The equation of the tangent at (3, -6) to the parabola $y^2 = 12x$ is

Options:

A. x - y - 3 = 0

B. x + y - 3 = 0

C. x - y + 3 = 0

D. x + y + 3 = 0

Answer: D

Solution:

Solution:

Question 88

Let $f:[0.\pi/2 \to \mathbb{R}$ be continuous and satisfy $\int_0^{\sin x} f(t) dt = \sqrt{3}x/2$ for $0 \le x \le \pi/2$. Then f(1/2) equals

Options:

A. 1/2

B. $1/\sqrt{2}$

C. 1 / $\sqrt{3}$
D. 1
Answer: D
Solution:
Solution:
Question 89
The value of $\lim_{n\to x} \left(1-\frac{1}{n}\right)^{2n}$ is
Options:
A. e^2
B. e^{-2}
C. 1
D. 0
Answer: B
Solution:
Solution:
Question 90
The shortest distance of the point (2, 10, 1) from the plane $r \cdot (3i - j + 4k) = 2\sqrt{26}$ is
Options:
A. $2\sqrt{26}$
B. √20
C. 2
D. $\frac{1}{\sqrt{26}}$
Answer: C
Solution:

Solution:

Question 91

The equation of the plane passing through the point (2, 1, -1) and the line of intersection of the planes $r \cdot (i + 3j - k) = 0$ and $r \cdot (j + 2k) = 0$ is

Options:

A.
$$x + 4y - = 0$$

B.
$$x + 9y + 11z = 0$$

C.
$$2x + y - z + 5 = 0$$

D.
$$2x - y + z = 0$$

Answer: B

Solution:

Solution:

Question 92

If $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + ... + C_n x^n$, then the value of $C_0 + 2C_1 + 3C_2 + ... + (n + 1)C_n$ is

Options:

A.
$$(n + 2)2^{n-1}$$

B.
$$(n + 2)2^n$$

C.
$$(n + 1)2^{n-1}$$

D.
$$(n + 1)(n + 2)2^n$$

Answer: A

Solution:

Solution:

Question 93

The value of x for which the matrix

is singular, is

Options: A. 8 B. 6 C. 4 D. 12 **Answer: C Solution: Solution: Question 94** The determinant of the matrix $\begin{bmatrix} 1 & 1+x & 1+x+x^2 \\ 1 & 1+y & 1+y+y^2 \\ 1 & 1+z & 1+z+z^2 \end{bmatrix}$ is equal to **Options:** A. (z - y)(z - x)(y - x)B. (x - y)(x - z)(y - z)C. $(x - y)^2(y - z)^2(z - x)^2$ D. $(x^2 - y^2)(y^2 - z^2)(z^2 - x^2)$ **Answer: A Solution: Solution:**

The probability of obtaining 'no head' in an infinite sequence of

Question 95

Options:

A. 0

B. 1

C. $\frac{1}{2}$

independent tosses of a coin is

D. $\frac{1}{3}$
Answer: A
Solution:
Solution:
Question 96
If X is a Poisson random variable such that $E(X^2) = 30$, then the variance of X is
Options:
A. 6
B. 5
C. 30
D. 25
Answer: C
Solution:
Solution:
Question 97
A problem in Mathematics is given to three students A, B, C and their respective probability of solving the problem is $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{4}$. Probability that the problem is solved is
Options:
A. $\frac{3}{4}$
B. $\frac{1}{2}$
C. $\frac{2}{3}$
D. $\frac{1}{3}$
Answer: A

Solution:

Question 98

The value of the constant c for which the function defined by

 $f(x) = \begin{cases} cx(1-x). & \text{if } 0 < x < 1 \\ 0. & \text{otherwise} \end{cases}$. is a probability density function, is

Options:

- A. 1
- B. 0
- C. 3
- D. 6

Answer: D

Solution:

Solution:

Question 99

If $(1.05)^{50} = 11.658$, then $\sum_{n=1}^{49} (1.05)^n$ equals

Options:

- A. 208.34
- B. 212.12
- C. 212.16
- D. 213.16

Answer: C

Solution:

Solution:

Question 100

The value of $(\sqrt{3} + i)^{14} + (\sqrt{3} - i)^{14}$ is

Options:

A. 2 ¹⁴	
B. (2i) ¹⁴	
C. 2 ⁷	
D. (2i) ⁷	
Answer: A	
Solution:	
Solution:	
Question 101	
If $-1 \le x \le 2$ and $1 \le y \le 3$, then least poss	sible value of 2y – 3x is
Options:	
A. 0	
B4	
C5	
D3	
Answer: B	
Solution:	
Solution:	
Question 102	
The solution set of $ x-1 \ge x-3 $ is	
Options:	
A. (−□, 2)	
B. (0, 2)	
C. [2, []]	
D. [0, 2]	
Answer: D	
Solution:	

Solution:
Question 103
If a, b, c are the position vectors of the vertices of an equilateral triangle whose orthocenter is at the origin, then
Options:
A. $a + b + c = 0$
B. $a^2 = b^2 + c^2 = 0$
C. a + b = c
D. a = b + c
Answer: A
Solution:
Solution:
Question 104
The number of ways in which 6 men and 5 women can sit at a round table if no two women are to sit together is given by
Options:
A. 6! × 5!
B. 30
C. 4! × 5!
D. 7! × 5!
Answer: A
Solution:
Solution:

If \mathbf{z}_1 and \mathbf{z}_2 are any two complex numbers, then $\text{Re}(\mathbf{z}_1\mathbf{z}_2)$ is

Options:

A.
$$Re(z_1) Re(z_2) + Im(z_1) Im(z_2)$$

B.
$$Re(z_1) Re(z_2) - Im(z_1) Im(z_2)$$

C.
$$Re(z_1) Im(z_2) + Re(z_2) Im(z_1)$$

D.
$$Re(z_1) Im(z_1) - Re(z_2) Im(z_2)$$

Answer: B

Solution:

Solution:

Question 106

If
$$x^{2/3} + y^{2/3} = a^{2/3}$$
, then dy / dx is

Options:

A.
$$\sqrt{\frac{x}{y}}$$

B.
$$-3\sqrt{\frac{y}{x}}$$

$$C. - \sqrt{\frac{y}{x}}$$

D.
$$\frac{y^2}{x}$$

Answer: B

Solution:

Solution:

Question 107

If a, b and \boldsymbol{c} are in arithmetic progression, then the value of the determinant

$$x + 2$$
 $x + 3$ $x + 2a$
 $x + 3$ $x + 4$ $x + 2b$
 $x + 4$ $x + 5$ $x + 2c$

Options:

A. 0

B. 1
C. x
D. 2x
Answer: A
Solution:
Solution:
Question 108
The solution of $tan^{-1}(2x) + tan^{-1}(3x) = \frac{\pi}{4}$ is
Options:
A1
B. 1 / 6
C. 0
D1 / 2
Answer: B
Solution:
Solution:
Question 109
Which of the following statements is false?
Options:
A. An equation of form $a * x = b$ has a unique solution for x in a group
B. An equation of form $a * x = e$ has a unique solution for x in a group
C. Given $n \neq N$, there exist a group with n elements
D. If H and K are abelian groups, then H \diamond K need not be abelian
Answer: D
Solution:

Solution:

Question 110
Define $a \otimes b = lcm(a, b) + gcd(a, b)$ and $a \oplus b = a^b + b^a$. The value of $(1 \oplus 2) \otimes (3 \oplus 4)$ is
Options:
A. 145
B. 286
C. 436
D. 572
Answer: C
Solution:
Solution:
Question 111
In a Poisson distribution, $P(X = 2) = P(X = 3)$. Given that $e^{-3} = 0.050$. Then $P(X = 5)$ is
Options:
A. 0.202
B. 0.352
C. 0.125
D. 0.101
Answer: D
Solution:
Solution:
Question 112

There are four prime numbers written in ascending order. The product of the first three is 385 and that of the last three is 1001. The last number is

Options:

. 11
. 13
. 17
. 19
nswer: B
olution:
olution:
Question 113
f the area of a triangle is 4 sq. units with vertices at (-2, 0), (0, 4) and 0, k), then the value of k is
ptions:
. 2
. 0
. 8
. 4
nswer: C
olution:
olution:
Question 114
The value of sin (15°) is
ptions:
$\cdot \ \frac{\sqrt{3}+1}{2\sqrt{2}}$
$\frac{\sqrt{3}-1}{\sqrt{2}}$

 $C. \ \frac{\sqrt{3}-1}{2\sqrt{2}}$

D. $\frac{\sqrt{3}-1}{3\sqrt{2}}$

Answer: C

Solution:
Solution:
Question 115
If $x - 3$ and $x + 3$ are the factors of $4x^3 + ax^2 + bx$, then the values of a and b are respectively
Options:
A. 3,18
3. 6,12
C. 0, -36
D. 12, -5
Answer: C
Solution:
Solution:
Question 116
The point at which the tangent to the curve $y = \sqrt{4x - 3} - 1$ has its slope 2 / 3 is
Options:
A. (2, 3)
3. (3, 2)
C. (1, 3)
O. (3, 1)
Answer: B
Solution:
Solution:
Question 117

The area enclosed by the graph of $2x \mid +3y \mid = 0$ above the x-axis is

Options:
A. 12
B. 10
C. 6
D. 24
Answer: C
Solution:
Solution:
Question 118
If α , $\beta\in C$ are the distinct roots of the equation $x^2-x+1=0,$ then $\alpha^{101}+\beta^{107}$ is equal to
Options:
A. 2
B1
C. 0
D. 1
Answer: D
Solution:
Solution:
Question 119
The solution of the differential equation $\frac{dy}{dx} = y \log y \cot x$ is
Options:
$A. y = c \cos x$
$B. y = c \sin x$

D. $y = e^{c \sin x}$

C. $y = c \log \sin x$

Answer: D

Solution:
Solution:
Question 120
A polynomial of odd degree with real coefficients must have
Options:
A. at least one real root
B. no real root
C. only real roots
D. at least one root which is not real
Answer: A
Solution:
Solution:
Question 121
The length of the latus rectum of the rectangular hyperbola $xy = 32$ is
Options:
A. $8\sqrt{2}$
B. 32
C. 8
D. 16
Answer: D
Solution:
Solution:
Question 122

The foci of the ellipse $10x^2 + 25y^2 = 400$ are

Options:

Solution:
Question 125
If $A = \begin{bmatrix} x & 1 \\ -1 & -x \end{bmatrix}$, then the value x satisfying $A^2 = 0$, is
Options:
A. 0
B. ±1
C1
D. 1
Answer: B
Solution:
Solution:
Question 126
The average translational kinetic energy of $\rm O_2$ molecules at a particular temperature is 0.048 eV. The translational kinetic energy of $\rm N_2$ molecules at the same temperature is
Options:
A. 0.0015 eV
$\mathrm{B.}\ 0.048\mathrm{eV}$
C. 0.003 eV
D. 0.768 eV
Answer: B
Solution:

Solution:

Arrange the following electromagnetic radiation per quantum in the

order of increasing energy: (i) Red light (ii) γ-ray (iii) X-ray (iv) Radiowave		
Options:		
A. i, ii, iv, iii		
3. iii, i, ii, iv		
C. ii, i, iv, iii		
D. iv, i, iii, ii		
Answer: D		
Solution:		
Solution:		
Question 128		
22 Ne nucleus decays into two $lpha$ -particles and an unknown nucleus. The unknown nucleus is		
Options:		
A. nitrogen		
3. carbon		
C. boron		
D. oxygen		
Answer: B		
Solution:		
Solution:		
Question 129		
Which of the following cannot be accelerated in a cyclotron?		
Options:		
A. Protons		
3. Deuterons		

C. Alpha particles

D. Neutrons

Answer: D
Solution:
Solution:
Question 130
For a paramagnetic material, the dependence of the magnetic susceptibility χ on the absolute temperature T is given by
Options:
A. x = CT
B. x = C / T
$C. x = CT^2$
D. $x = C / T^{-2}$
Answer: B
Solution:
Solution:
Question 131
The unit of power of a lens is
Options:
A. metre
A. metre B. watt
B. watt
B. watt C. watt /m
B. watt C. watt/m D. dioptre
B. watt C. watt /m D. dioptre Answer: A

The momentum of an X-ray photon is $3 \times 10^{-23} \text{kgms}^{-1}$. The energy of this photon is
Options:
A. 9×10^{-15} J
B. 3×10^{-15} J
C. 3×10^{-23} J
D. 12×10^{-15} J
Answer: A
Solution:
Solution:
Question 133
To convert a galvanometer into an ammeter, one should connect
Options:
A. a low resistance ∈ series with it
B. a high resistance \in series with it
C. a low resistance \in with it
D. a high resistance in parallel with it
Answer: C
Solution:
Solution:
Question 134
The wavelength of blue light (λ = 420 nm) in water (refractive index 1.33) is about
Options:
A. 420 nm
B. 390 nm
C. 315 nm

D. 560 nm

Answer: C
Solution:
Solution:
Question 135
The root mean square speed of the molecules of an enclosed gas is v. What will be the root mean square speed if the pressure is doubled, the temperature remaining the same?
Options:
A. v / 2
B. v
C. 2v
D. 4v
Answer: B
Solution:
Solution:
Question 136
Which one of the following forms a virtual and erect image for all positions of the object?
Options:
A. Convex lens
B. Concave lens
C. Plano-convex lens
D. Concave mirror
Answer: B
Solution:
Solution:

If the distance between two masses is doubled	l, the gravitational
attraction between them is	

Options:
A. reduced to half
B. reduced to a quarter
C. doubled
D. unaltered
Answer: B
Solution:
Solution:
Question 138
A piece of copper and another of germanium are cooled from room
temperature to 80K. The resistance of
Options:
Options:
Options: A. each of them increases
Options: A. each of them increases B. each of them decreases
Options: A. each of them increases B. each of them decreases C. copper increases Λ germanium decreases
Options: A. each of them increases B. each of them decreases C. copper increases Λ germanium decreases D. copper decreases and germanium increases

Question 139

When $_3{}^7{\rm Li}$ nuclei are bombarded by protons, the resultant nuclei is $_4{}^8{\rm Be}.$ The emitted particles will be

Options:

A. gamma photons

B. neutrons

C. alpha particle
D. beta particle
Answer: A
Solution:
Solution:
Question 140
Let \hat{i} A \hat{j} be the unit vectors along x and y directions. Then the magnitude of \hat{i} + \hat{j} is
Options:
A. 1
B. 2
C. 0
D. $\sqrt{2}$
Answer: D
Solution:
Solution:
Question 141
A projectile has a maximum range of 100m. Neglecting air resistance, what is the maximum height attained by it?
Options:
A. 50m
B. 100m
C. 5m
D. 25m
Answer: D
Solution:

Solution:

Question 142	
The frequency of the charged particle circulating at right angl uniform magnetic field does not depend upon the	es to a
Options:	
A. speed of the particle	
B. mass of the particle	
C. charge of the particle	
D. magnetic field	
Answer: A	
Solution:	
Solution:	
Question 143	
The following four gases are at the same temperature. In whic the molecules have the maximum root mean square speed?	h gas do
Options:	
A. Carbon dioxide	
B. Oxygen	
C. Nitrogen	
D. Hydrogen	
Answer: D	
Solution:	
Solution:	

In the following, column I lists some physical quantities and the column II gives approximate energy values associated with those. Choose appropriate values of energies as per the choices given below

Column I	Column II
(i) Energy of thermal neutrons	a 3 eV
(ii) Binding energy per nucleon	b 10 keV
(iii) Energy of X-rays	c 8 MeV
(iv) Photoelectric threshold of a metal	d 0.025 eV
	e 1 eV
	f 0.8 eV

Options:

A. $i \rightarrow d$, $ii \rightarrow c$, $iii \rightarrow b$, $i \rightarrow a$

B. $i \rightarrow f$, $ii \rightarrow c$, $iii \rightarrow e$, $iv \rightarrow a$

C. $i \rightarrow c$, $ii \rightarrow c$, $iii \rightarrow f$, $iv \rightarrow b$

D. $i \rightarrow d$, $ii \rightarrow c$, $ii \rightarrow f$, $ii \rightarrow e$

Answer: A

Solution:

Solution:

Question 145

The unit of momentum is

Options:

A. Nm

B. Ns

 $C. Nm^{-1}$

D. Ns⁻¹

Answer: B

Solution:

Solution:

Question 146

The ratio of electrostatic force and gravitational force between a proton

and an electron is
Options:
A. 2.4×10^{39}
B. 2.4×10^{-39}
$C. 2.4 \times 10^{-37}$
D. 2.4×10^{37}
Answer: A
Solution:
Solution:
Question 147
The charge carriers in an electrolyte are
Options:
A. Negative ions
B. Positive ions
C. Negative and positive ions
D. None of the above
Answer: C
Solution:
Solution:
Question 148
A spherical black body with a radius of 12cm radiates 450 watt power at 500K. If the radius were halved and the temperature doubled, the power radiated in watt would be
Options:
A. 225
B. 450
C. 1800

D. 1000

Answer: C
Solution:
Solution:
Question 149
The ratio of resolving powers of an optical microscope for two wavelengths λ_1 = 4000Å and λ_2 = 6000Å is
Options:
A. 8:27
B. 3:2
C. 9:4
D. 16:81
Answer: B
Solution:
Solution:
Question 150
The centripetal acceleration required for a particle to move on a circle of radius r with speed v is
Options:
A. v^2 / r
B. v / r
$C. v / r^2$
D. $Vr^2 / 2$
Answer: A
Solution:
Solution:

The ratio of wavelengths of the last line of Balmer series and the last line of Lyman series is		
Options:		
a. 2		
3. 4		
C. 1		
0. 0.5		
Answer: B		
Solution:		
olution:		
Question 152		
Two cars moving in opposite directions approach each other with speed of 22m / s and 16.5m / s respectively. The driver of the first car blows a norn having a frequency 400 Hz. The frequency heard by the driver of the second car is [velocity of sound 340m / s]		
Options:		
a. 350 Hz		
3. 361 Hz		
C. 411 Hz		
D. 448 Hz		
Answer: D		
Solution:		
olution:		
Question 153		
The magnetic susceptibility is negative for		
Options:		
A. diamagnetic material only		

B. paramagnetic material only

C. ferromagnetic material only

D. paramagnetic and ferromagnetic materials
Answer: A
Solution:
Solution:
Question 154
If the magnitude of sum of two vectors is equal to the magnitude of difference of the two vectors, the angle between these vectors is
Options:
A. 0°
B. 90°
C. 45°
D. 180°
Answer: B
Solution:
Solution:
Question 155
Given the value of Rydberg constant is $1 \times 10^7 m^{-1}$, the wave number of the last line of the Balmer series in hydrogen spectrum will be
Options:
A. $0.025 \times 10^4 \text{m}^{-1}$
B. $0.5 \times 10^7 \text{m}^{-1}$
C. $0.25 \times 10^7 \text{m}^{-1}$
D. $2.5 \times 10^7 \text{m}^{-1}$
Answer: C
Solution:
Solution:

The vectors 2ri + 3rj + 4rk, ari + brj + crk are normal to each other only if

Options:

A.
$$a = 2$$
, $b = 3$, $c = -4$

B.
$$a = 4$$
, $b = 4$, $c = -5$

C.
$$a = 4$$
, $b = 4$, $c = 5$

D.
$$a = -2$$
, $b = 3$, $c = 4$

Answer: B

Solution:

Solution:

Question 157

The order and degree of the differential equation $y'' - y' + y^3 = 0$ are

Options:

	10	21
Α.	(3.	2)
<i>-</i>	ιυ,	_,

B. (2, 3)

C. (2, 2)

D. (3, 3)

Answer: B

Solution:

Solution:

Question 158

A bag contains 6 green balls, 8 white balls and 10 black balls. If a ball is drawn from the bag, what is the probability of it being either white or black?

Options:

A. 1 / 18

B. 1/8

C. 3 / 4
D. 1 / 12
Answer: C
Solution:
Solution:
Question 159
The value of ħ (h bar) is erg-sec.
Options:
A. 6.6253×10^{-27}
B. 1.0545×10^{-27}
$C. 6.6253 \times 10^{-31}$
D. 1.0544×10^{-34}
Answer: B
Solution:
Solution:
Question 160
According to Bohr's postulates, which of the following quantity takes discrete values?
Options:
A. Kinetic energy
B. Angular momentum
C. Potential energy
D. Momentum
Answer: B
Solution:
Solution:

A chain reaction	is possible	when the	mass of	f the fu	uel is g	greater	than
the							

B. neutron mass
C. proton mass
D. electron mass
Answer: A
Solution:
Solution:
Question 162
In Raman effect, the spectral line with lower frequency than the incident frequency is
Options:
A. Anti-Stokes' line
B. Fraunhofer line
C. Rayleigh line
D. Stokes' line
Answer: D
Answer: D Solution:
Solution:

A. AluminiumB. Arsenic

Options:

C. Indium

D. Germanium
Answer: B
Solution:
Solution:
Question 164
The Bragg's equation $2d\sin\theta = n\lambda$ has no solution for
Options:
A. $\lambda < d$
B. $\lambda < 2d$
C. $\lambda > 2d$
D. $\lambda = 2d$
Answer: C
Solution:
Solution:
Question 165
A long solenoid has 1000 turns. When a current of 4A flows through in the magnetic flux linked with each turn of the solenoid is $4\times10^{-3}\mathrm{Wb}$. The self-inductance of the solenoid is
Options:
A. 4H
B. 2H
C. 3H
D. 1H
Answer: D
Solution:
Solution:

The acceleration due to gravity at a height 1 km above the earth is	the
same as at a depth 'd' below the surface of earth. Then	

Options:	
Sound travels fastest in	
Question 168	
Solution:	
Solution:	
Answer: C	
D. infinity	
C. 0.25m	
B. 5m	
A. 100m	
Options:	
The least distance of distinct vision for	a normal eye is
Question 167	
Solution:	
Solution:	
Answer: D	
D. 2 km	
C. 0.75 km	
B. 1 km	
A. $d = 05 \text{ km}$	
Options:	

B. liquids

A. vacuum

C. gases

D. solids
Answer: D
Solution:
Solution:
Question 169
The law that states "The induced e.m.f. is proportional to the rate of change of its number of lines of magnetic force linking the circuit" is
Options:
A. Lenz's law
B. Faraday law
C. Ohms law
D. Joule-Thomson law
Answer: A
Solution:
Solution:
Question 170
Two charges are placed a certain distance apart in air. When a dielectric sheet is placed between them, the electrostatic force between them will
Options:
A. become zero
B. increase
C. remain unchanged
D. decrease
Answer: D
Solution:

Solution:

Question 171
The resistance of a conductor carrying a current 3 A which has a potential difference of 15 V between its two ends is
Options:
A. 15 Ohm
B. 5 Ohm
C. 0.5 Ohm
D. 1/5 Ohm
Answer: B
Solution:
Solution:
Question 172
The value of $A \cdot B + \overline{A} + A$ is
Options:
A. B
B. always 0
C. always 1
D. \overline{B}
Answer: C
Solution:
Solution:
Question 173
Which of the following flip-flops does not have race problem?
Options:
A. D-flip-flop

B. T-flip-flop

C. Master-slave flip-flop
D. JK flip-flop
Answer: C
Solution:
Solution:
Question 174
A microprocessor with a 12 bit address bus will be able to accesskilobytes of memory.
Options:
A. 8
B. 4
C. 1
D. 2
Answer: B
Solution:
Solution:
Question 175
The displacement of a particle is given by x = A ² sin ² kt where t denotes time. The unit of k is
Options:
A. Hertz
B. Meter
C. Radian
D. Second
Answer: A
Solution:

Question 176 Planck's constant has the dimension of **Options:** A. Force B. Energy C. Linear momentum D. Angular momentum **Answer: D Solution: Solution: Question 177** The statement that the velocity of light in vacuum = velocity of light in the medium is **Options:** A. Dimensionally correct B. Dimensionally incorrect C. Numerically incorrect D. Both (A) and (C) **Answer: D Solution: Solution: Question 178**

Two vectors have magnitude 3 and 5. If the angle between them is 60°, then the dot product of two vectors will be

Options:

A. 6.5

B. 7.5
C. 7.9
D. 8
Answer: B
Solution:
Solution:
Question 179
If the distance covered by a particle happens to be zero, then the displacement of the particle
Options:
A. must be zero
B. may or may not be zero
C. cannot be zero
D. depends upon the particle
Answer: A
Solution:
Solution:
Question 180
Two bullets are fired horizontally with different velocities from the same height. Which one will reach the ground first?
Options:
A. The slower one
B. Faster one
C. It cannot be predicted
D. Both will reach simultaneously
Answer: D

Solution:
Question 181
The angular velocity of a particle rotating in a circular orbit 100 times per minute is
Options:
A. 60 deg/s
B. 1.66 rad/s
C. 1.66 deg/s
D. 1.66 rad/minute
Answer: B
Solution:
Solution:
Question 182
Frictional forces act in a direction
Options:
A. perpendicular to the surface in contact
B. parallel to surface in contact
C. parallel to normal reaction
D. inclined at 45° to normal reaction
Answer: B
Solution:
Solution:
Question 183

Which one of the following is true for an elastic collision between two bodies?

Options:

A. Kinetic energy of the system is conserved

B. Total momentum of the system is conserved		
C. Both kinetic energy and momentum of the system are conserved		
D. Neither kinetic energy nor momentum of the system is conserved		
Answer: B		
Solution:		
Solution:		
Question 184		
When a mass is rotating in an orbit about a fixed axis, its angular momentum is directed		
Options:		
A. along the radius of the orbit		
B. tangential to the orbit		
C. along the axis of rotation		
D. perpendicular to the plane of the orbit.		
Answer: C		
Solution:		
Solution:		
Question 185		
In practice, Poisson's ratio σ lies between		
Options:		
A. $-\infty$ to $+\infty$		
B. 0 and +∞		
C. 0 and 0.5		
D0.5 and 0		
Answer: C		
Solution:		

D. >90° Answer: D Solution: Solution: Question 188
Answer: D Solution:
Answer: D
D. >90°
C. 60°
B. 45°
A. 0°
Options:
A liquid will not wet the surface of a solid, if the angle of contact is
Question 187
Solution:
Solution:
Answer: B
D. 1:4
C. 4:1
B. 2:1
A. 1:2
Options:
Two wires of the same material and length but cross sectional area in the ratio 1:2 are used to suspend the same loads. The extension in them will be in the ratio

Options:

A. same in both the tubes
B. more in the tube of larger diameter
C. more in the tube of smaller diameter
D. less in the tube of smaller diameter
Answer: C
Solution:
Solution:
Question 189
Pyrometer is a device for measuring
Options:
A. pressure
B. temperature
C. density
D. viscosity
Answer: B
Solution:
Solution:
Question 190
The internal energy of a gas during isothermal expansion
Options:
A. increases
B. remains constant
C. decreases
D. becomes zero
Answer: B

Question 191			
Which one of the following expressions does not represent simple harmonic motion (SMH) ?			
Options:			
A. Asin ωt			
B. Asin 2ωt			
C. Asin $\omega t + A \cos \omega t$			
D. Asin $^2\omega t$			
Answer: D			
Solution:			
Solution:			
Question 192	·		
If x is the displacement of the parenergy of a particle executing sim	ticle from the mean position, the total ple harmonic motion is		
Options:			
A. proportional to x			
B. proportional to x^2			
C. independent of x			
D. proportional to \sqrt{x}			
Answer: C			
Solution:			
Solution:			
Question 193			
If the refractive index of water is be	1.33 , the speed of light in water will		
Options:			

A. $3 \times 10^8 \text{m} / \text{s}$

Answer: B

Question 196
., C and R represent the quantities inductance, capacitance and esistance respectively. The combination which has the dimensions of frequency is
ptions:
(1/RC)
. (C/L)
. (R/LC)
o. (RL/C)
nswer: A
Solution:
olution:
Question 197
Poynting vector of a plane electromagnetic wave propagating in the lirection $\hat{\mathbf{k}}$ is
ptions:
perpendicular to \hat{k}
. parallel to \hat{k}
. antiparallel to \hat{k}
). at an angle π / 4 to \hat{k}
nswer: B
Solution:
olution:
nswer: B

Two identical fuses are rated at 10 A

Options:

A. in parallel, the combination acts as a fuse of rating 10 A
B. in parallel, the combination acts as a fuse of rating 20 A
C. in series, the combination acts as a fuse of rating 20 A
D. in series, the combination acts as a fuse of rating 5 A
Answer: B
Solution:
Solution:
Question 199
A half-wave rectifier is being used to rectify an alternating voltage of frequency 50 Hz. The number of pulses of rectified current obtained in one second is
Options:
A. 50
B. 25
C. 100
D. 1
Answer: A
Solution:
Solution:
Question 200
Two coils of inductances \mathbf{L}_1 and \mathbf{L}_2 are linked such that their mutual inductance is M. Then
Options:
A. $M = L_1 - L_2$
$B.\ M=L_1+L_2$

Answer: D

C. $M = (L_1 + L_2) / 2$

D. the maximum value of M $% \left(1\right) =\left(1\right) =\left(1\right) \left(1\right) =\left(1\right) \left(1\right) \left(1\right) =\left(1\right) \left(1\right) \left($

Solution:
Solution:
Question 201
For how many orbitals, the quantum numbers $n=3$, $1=2$, $m=+2$ are possible?
Options:
A. 1
3. 2
C. 3
D. 4
Answer: A
Solution:
Solution:
Question 202
Which of the following ions has maximum magnetic moment?
Options:
$A. Mn^{2+}$
$3. \mathrm{Fe^{2+}}$
C. Ti ²⁺
D. Cr ²⁺
Answer: A
Solution:
Solution:
O

Arrange the following molecular species in increasing order of stability.

Options:
A. $N_2^+ > N_2^- > N_2^- > N_2^{2-}$
B. $N_2^{2-} > N_2^{-} > N_2 > N_2^{+}$
C. $N_2 > N_2 = N_2 > N_2^2$
D. $N_2 > N_2^2 > N_2^2$
Answer: C
Solution:
Solution:
Question 204
The compound formed by elements A and B crystallizes in the cubic structure where A atoms are at the corners of a cube and B atoms are at the face centers. The formula of the compound is
Options:
$A.\ AB_3$
B. AB
$C. A_3B$
$D.\ A_2B_2$
Answer: A
Solution:
Solution:

Schottky defect in crystals is observed when

Options:

- A. unequal number of cations and anions are missing from the lattice
- B. equal number of cations and anions are missing from the lattice
- C. an ion leaves its normal site and occupies an interstitial site
- D. density of the crystal is increased

Answer: B
Solution:
Solution:
Question 206
Which one of the following octahedral complexes does not show geometric isomerism? (A and B are monodentate ligands)
Options:
A. $[MA_2B_4]$
B. $[MA_3B_3]$
$C. [MA_4B_2]$
D. [MA ₅ B]
Answer: D
Solution:
Solution:
Question 207
Which of the following is the strongest ligand?
Options:
A. Cl ⁻
B. F ⁻
C. NO_2^-
D. CN ⁻
Answer: D
Solution:
Solution:

The product obtained after position emission from 310a is
Options:
A. $_{31}{ m Ge}^{68}$
B. $_{30}$ Zn 68
C. ₃₀ Zn ⁶⁹
D. ₃₁ Ga ⁶⁹
Answer: B
Solution:
Solution:
Question 209
Which of the following is not a mineral of aluminum?
Options:
A. Bauxite
B. Cryolite
C. China clay
D. Malachite
Answer: D
Solution:
Solution:
Question 210
When bismuth chloride is dissolved in water a white precipitate appears. The whiteprecipitate is
Options:
A. Bi(OH) ₃
B. BiOH
C. BiO(OH)
D. BiOCl

Answer: D
Solution:
Solution:
Question 211
Which of the following compound is formed when I_2 is dissolved in ammonium hydroxide (density = $0.88g / cm^3$)?
Options:
A. NH ₄ I
$3. \text{ NI}_3 \cdot 6 \text{NH}_3$
C. $NI_3 \cdot 4NH_3$
O. NI ₃ ·NH ₄ OH
Answer: B
Solution:
Solution:
Question 212
Which of the following is NOT a metal ion indicator?
Options:
A. Bromocresol blue
3. Murexide
C. Calmagite
D. Solochrome black T
Answer: A
Solution:
Solution:

In brown ring test for nitrate ions, brown ring is formed having composition
Options:
A. $[Fe(H_2O)_6]^{2+}$
B. $[Fe(H_2O)_5 NO]^{2+}$
C. [Fe(H ₂ O) ₅ NO] ³⁺
D. $[Fe(H_2O)_5 NO_2]^{2+}$
Answer: B
Solution:
Solution:
Question 214
Which is mismatched regarding the shape?
Options:
A. XeF ₄ – Square planar
B. XeOF ₄ - Square pyramidal
C. XeF ₆ - Distorted octahedral
D. XeO ₃ – Bent T shape
Answer: D
Solution:
Solution:
Question 215
Which of the following is not a product of the breakdown of organic matter in water by aerobic bacteria?
Options:
A. CO ₂
B. H _o O

C. NO

D. H ₂ S
Answer: D
Solution:
Solution:
Question 216
Addition of phosphate containing fertilizers in water bodies causes (i) enhanced growth of algae (ii) increase in amount of dissolved oxygen (iii) deposition of calcium phosphate (iv) decrease in fish population
Options:
A. (i) and (ii)
B. (i) and (iv)
C. (ii) and (iii)
D. (i) and (iii)
Answer: B
Solution:
Solution:
Question 217
The compound which is not isomeric with methoxypropane
Options:
A. diethyl ether
B. butan-1-ol
C. butanone
D. 2-methylpropan-2-ol
Answer: C
Solution:

Question 218 Which of the following will evolve CO_2 on reaction with NaHCO₃? I Salicylic acid, II Benzoic acid, III Ascorbic acid, IV Phenol **Options:** A. I, II, III and IV B. I, II and III C. I and III D. II and IV **Answer: B Solution: Solution:** **Question 219** What is the product formed in the following reaction? **Options:** A. CH Cl₃ В. C. CH₃ CHO D. **Answer: A Solution: Solution:**

Which of the following reagent does not convert propanone to propane?

Options:

A. Zn – Hg / HCl

B. $NH_2 - NH_2 / KOH$

C. $HS - CH_2 - CH_2 - SH$, Raney Ni

D. $NaBH_4$

Answer: D

Solution:

Solution:

Question 221

Arrange the following $^+\mathrm{CH}_3$, CH_4 and $^-\mathrm{CH}_3$ in order of increasing H – C – H bond angles

Options:

A. $\overline{\mathrm{C}}\mathrm{H}_3 < \mathrm{CH}_4 < {}^{\overset{\scriptscriptstyle +}{\mathrm{C}}}\mathrm{H}_3$

B. $\overline{C}H_3 < \overset{\scriptscriptstyle +}{C}H_3 < CH_4$

C. $\overset{\scriptscriptstyle{\leftarrow}}{\mathrm{C}}\mathrm{H}_3 < \mathrm{CH}_4 < \overline{\mathrm{C}}\mathrm{H}_3$

D. $\overline{C}_4 < CH_3 \approx {}^{t}H_3$

Answer: A

Solution:

Solution:

Question 222

IUPAC name of the below compound is

Options:

A. N-Phenylcyclohexanecarboxamide
B. N-Cyclohexylbenzamide
C. N-Phenylcyclohexylmethanamide
D. N-Cyclohexyl-N-phenylmethanamide
Answer: A
Solution:
Solution:
Question 223
Arrange n-pentane (I), isopentane (II) and neopentane (III) in the decreasing order of their boiling point.
Options:
A. $III > II > I$
B. I> II > III
C. $II > III > I$
D. $III > I > II$
Answer: B
Solution:
Solution:
Question 224
Which of the following reagent is not useful for direct oxidation of toluene to benzaldehyde?
Options:
A. CrO_2Cl_2 / CCl_4
B. MnO_2 / CCl_4
C. Alkaline KMnO_4
D. $\text{Cl}_2\text{/hv}$ followed by treatment with $\text{Cu(NO}_3)_2$
Answer: C
Solution:

olution:
Question 225
he material used by dentists in root canals is
ptions:
. gutta-percha
. neoprene
. ebonite
. dynel
nswer: A
olution:
plution:
Question 226
polymer sample is made up of 30% molecules of mass 20,000, 40% of 0,000 and the est mass of 60,000. Its number average molecule mass is
ptions:
. 36,000
. 46,000
. 50,000
. 3,60,000
nswer: A
olution:
plution:
Question 227

False statement about synthetic detergents is:

Options:

A. It has a non-polar organic part and a polar group

B. It is a surface active reagent
C. It is not easily biodegradable
D. It is a sodium salt of fatty acid
Answer: D
Solution:
Solution:
Question 228
The transition metal ion present in vitamin \mathbf{B}_{12} is
Options:
A. Mg ²⁺
B. Fe ²⁺
C. Zn ²⁺
D. Co ²⁺
Answer: D
Solution:
Solution:
Question 229
Which of the following reactions would give the best yield of t-butylmethyl ether?
Options:
A. $(CH_3)_3C - OH + CH_3OH - \frac{H_2SO_4}{140^{\circ}C} >$
B. $(CH_3)_3C - Br + CH_3\overline{O}N^{\dagger}a \xrightarrow{\Delta} >$
C. $(CH_3)_3C - Br + CH_3OH \xrightarrow{\Delta} >$

Answer: D

Solution:

D. $(CH_3)_3C - \frac{1}{7} + CH_3Br^{-\Delta} >$

Solution:
Question 230
The Cannizzaro's reaction is not given by
Options:
A. CCl ₃ CHO
B. $(CH_3)_3C$ – CHO
C. H – CHO
D. CD ₃ CHO
Answer: D
Solution:
Solution:
Question 231
When p-nitrobenzenesulphonic acid and picric acid are treated with $NaHCO_3$, the gases released respectively are
Options:
A. SO_2 , NO_2
B. NO ₂ , NO
C. NO ₂ , H ₂
D. CO ₂ , CO ₂
Answer: D
Solution:
Solution:

The following reaction is known as $R-CH_2Br+AgF \xrightarrow[\Delta]{{}^{ethylene\ glycol}} R-CH_2F+AgBr$

Options:
A. Finkelstein reaction
B. Swarts reaction
C. Darzen reaction
D. Hunsdiecker reaction
Answer: B
Solution:
Solution:
Question 233
Benzene diazonium chloride on treatment with $\mathbf{H_3PO_2}$ in the presence of cuprous ions gives
Options:
A. Phenol
B. Aniline
C. Benzene
D. Chlorobenzene
Answer: C
Solution:
Solution:
Question 234
A compound is formed by two elements M and N. The element N forms ccp and M atom occupies 1 / 3 of the tetrahedral voids. The formula of the compound is $\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + $
Options:
A. M ₃ N
B. M_2N_2

C. M_2N_3

D. MN

Solution: Solution: Question 235 An element with molar mass $2.7 \times 10^{-2} \mathrm{kg mol}^{-1}$ forms a cubic unit cell with edge length 407 pm. If the density is $2.7 \times 10^{-3} \mathrm{kg m}^{-3}$, the nature of the cubic unit cell is Options: A. fcc
Question 235 An element with molar mass $2.7 \times 10^{-2} \text{kg mol}^{-1}$ forms a cubic unit cell with edge length 407 pm. If the density is $2.7 \times 10^{-3} \text{kg m}^{-3}$, the nature of the cubic unit cell is Options:
An element with molar mass $2.7 \times 10^{-2} \text{kg mol}^{-1}$ forms a cubic unit cell with edge length 407 pm. If the density is $2.7 \times 10^{-3} \text{kg m}^{-3}$, the nature of the cubic unit cell is Options:
with edge length 407 pm. If the density is 2.7×10^{-3} kg m ⁻³ , the nature of the cubic unit cell is Options:
A. fcc
В. сср
C. simple cubic
D. bcc
Answer: B
Solution:
Solution:
Question 236
In a solid lattice, the cation has left a lattice site and is located at an interstitial position. The lattice defect is
Options:
A. n-type
B. p-type
C. Schottky defect
D. Frenkel defect
Answer: D
Solution:
Solution:

The resistance of a conductivity cell containing 0.001M KCl solution at 298K is 1500Ω . What is the cell constant if the conductivity of 0.001M KCl solution at 298K is $0.146 \times 10 - 3$ Scm - 1

- A. 0.119cm^{-1}
- B. 0.169cm^{-1}
- $C. 0.129 cm^{-1}$
- $D. 0.159 cm^{-1}$

Answer: C

Solution:

Solution:

Question 238

An iron wire is immersed in a solution containing ${\rm ZnSO}_4$ and ${\rm NiSO}_4$. When the concentration of each salt is 1M, predict which of the following reaction is likely to proceed.

Given $E0(Zn^{+2} / Zn) = -0.76V$ $E0(Fe^{+2} / Fe) = -0.44V$ and

 $E0(Ni^{+2}Ni) = -0.25V$

Options:

- A. Iron reduces Zn⁺² ions
- B. Zn⁺² reduces Iron ions
- C. Iron reduces Ni⁺² ions
- D. Ni⁺² reduces Iron ions

Answer: C

Solution:

Solution:

Question 239

The amount of silver (At mass 108) deposited from a solution of silver

nitrate when a current of 965 coulombs was passed is,	
Options:	
A. 10.8g	
B. 1.08g	
C. 0.108g	
D. 1.08×10^3 g	
Answer: B	
Solution:	
Solution:	
Question 240	
Which of the following statements are not correct regarding rate of catalyst in a chemical reaction? i. Changes the ΔH of the reaction ii. Decrease the activation energy for the forward and backward reaction equally iii. Provides a new path of higher activation energy iv. Increases the average kinetic energy of reacting molecules	
Options:	
A. (i) and (ii)	
B. (i) and (iii)	
C. (i) and (iv)	
D. (ii) and (iii)	
Answer: B	
Solution:	
Solution:	
Question 241	
Which of the following curve is in accordance with Freundlich adsorption isotherm?	
Options:	

В.

C.

D.

Answer: C

Solution:

Solution:

Question 242

Freshly prepared precipitate sometimes gets converted to colloidal solution by

Options:

- A. coagulation
- B. diffusion
- C. electrolysis
- D. peptisation

Answer: D

Ammonia and oxygen react at high temperature as; $4NH_{3(g)} + 5O_{2(g)} 4NO_{(g)} + 6H_2O_{(g)}$

In an experiment rate of formation of NO is $3 \times 10^{-3} \, \text{mol} \, \text{L}^{-1} \, \text{s}^{-1}$. Calculate rate of disappearance of ammonia.

Options:

- A. $3.6 \times 10^{-3} \,\text{mol}\,\text{L}^{-1}\,\,\text{s}^{-1}$
- B. $3.6 \times 10^{-6} \,\mathrm{mol}\,\mathrm{L}^{-1}\,\mathrm{s}^{-1}$
- $C. 0.36 \, \text{mol} \, L^{-1} \, s^{-1}$
- D. $7.2 \times 10^3 \,\mathrm{mol}\,\mathrm{L}^{-1}\,\mathrm{s}^{-1}$

Answer: A

Solution:

Solution:

Question 244

The average energy per molecule of a gas at a given temperature, T is Options:

- A. $\frac{3}{2}$ RT
- B. $\sqrt{\frac{3RT}{M}}$
- C. $\sqrt{\frac{3\left(\frac{R}{N_A}\right)T}{\pi M}}$
- D. $\frac{3}{2}$ kT

Answer: D

Solution:

Solution:

The exothermic formation of ${\rm ClF}_3$ is represented by the reaction $2ClF_3(g) \Delta H = -329 kJ$ $Cl_2(g) + 3F_2(g)$ Which of the following will increase the quantity of CIF3 in an equilibrium mixture of Cl_2 , F_2 and ClF_3 ? **Options:** A. Increasing temperature B. Removing Cl₂ C. Increasing volume of the container D. Adding F₂ **Answer: D Solution: Solution: Question 246** Which of the following options will be correct for the stage of half completion of the reaction A B? **Options:** A. $\Delta G^{\circ} = 0$ B. $\Delta G^{\circ} < 0$ $C. \Delta G^{\circ} > 0$ D. $\Delta G^{\circ} = -RT \ln 2$ **Answer: A Solution:**

Question 247

A system gives out 30J of heat and does 75J of work. What is the internal energy change?

Options:

A. +105J	
B105J	
C. +45J	
D45J	
Answer: B	
Solution:	
Solution:	
Question 248	
For the reaction at 298K 2A + B C	
$\Delta H = 40 \text{kJmol}^{-1}$ and $\Delta S = 0.02 \text{kJmol}^{-1}$ reaction becomes spontaneous considerature range,	<u>-</u>
Options:	
A. 20K	
B. 200°C	
C. 2000K	
D. 2000°C	
Answer: C	
Solution:	
Solution:	
Question 249	
Equilibrium constructs K_1 and K_2 for t NO(g) + 1_2O_2] Nt NO ₂ (g) and 2NO ₂ (g)	
Options:	
A. $K_2 = 1 / K_1$	
B. $K_2 = K_1^2$	

C. $K_2 = 1 / K_1^2$

D. $K_2 = K_1 / 2$	
Answer: C	
Solution:	
Solution:	
Question 250	
The pH of a solution increase from 1 to 2	2. The concentration of H+ ion
Options:	
A. decreases	
B. increases	
C. remains the same	
D. becomes zero	
Answer: A	
Solution:	
Solution:	