

| _  |                                      |                                                 |                                       | System of Co-           | ordinates |
|----|--------------------------------------|-------------------------------------------------|---------------------------------------|-------------------------|-----------|
|    |                                      |                                                 | Basic Level                           |                         |           |
|    |                                      |                                                 |                                       |                         |           |
|    |                                      |                                                 |                                       |                         |           |
| 1. | The distance betweer                 | the points (17,105 $^{o}$ ) and (5 $\sqrt{2}$ , | 60°) is                               |                         |           |
|    | (a) 13                               | (b) 12                                          | (c) 11                                | (d) 10                  |           |
| 2. | In a plane, the co-ord               | linates ( $r, 	heta$ )of a point are equivale   | ent                                   |                         |           |
|    | (a) $(r, -\theta)$                   | (b) $(-r,\theta)$                               | (c) $(-r, \pi + \theta)$              | (d) $(r, \pi + \theta)$ |           |
| 3. | The system of coordir                | nates known as the cartesian syste              | m of coordinates was first introduced | by                      |           |
|    | (a) Euclid                           | (b) Euler                                       | (c) Descarte                          | (d) Bhasker             |           |
| 4. | Which of the following               | g polar coordinates are associated              | d to the same point                   |                         |           |
|    | 1 : (2,30°)                          | II: (3,150°)                                    |                                       |                         |           |
|    | III : (-2,45°)                       | IV : (−3,330 °)                                 |                                       |                         |           |
|    | V: (3,-210°)                         | VI: (-3,30°)                                    |                                       |                         |           |
|    | (a) I, III and IV                    | (b) II, IV and VI                               | (c) II, IV, V and VI                  | (d) IV and VI           |           |
| (  |                                      |                                                 |                                       |                         | (         |
|    |                                      |                                                 |                                       | Distance                | e Formula |
|    |                                      | $\langle$                                       | Basic Level                           |                         |           |
|    |                                      |                                                 |                                       |                         |           |
|    |                                      |                                                 |                                       |                         |           |
| 5. | If the distance betwee               | en the points ( <i>a</i> , 2) and (3, 4) be 8,  | then a =                              |                         | [MNR 1978 |
|    | (a) $2 + 3\sqrt{15}$                 | (b) $2 - 3\sqrt{15}$                            | (c) $2 \pm 3\sqrt{15}$                | (d) $3 \pm 2\sqrt{15}$  |           |
| 6. | The distance betweer                 | the points $(am_1^2, 2am_1)$ and $(am_2^2)$     | $(2,2am_2)$ is                        |                         |           |
|    | (a) $a(m_1 - m_2)\sqrt{(m_1 + m_2)}$ | $(m_2)^2 + 4$                                   | (b) $(m_1 - m_2)\sqrt{(m_1 + m_2)^2}$ | + 4                     |           |
|    | (c) $a(m_1 - m_2)\sqrt{(m_1)^2}$     | $(1 - 1)^2 - 4$                                 | (d) $(m_1 - m_2)\sqrt{(m_1 + m_2)^2}$ |                         |           |

| 7.  | The distance of the point (b                                                                                              | $p\cos\theta, b\sin\theta$ from origin is                           |                                                |                                    | [MP PET 1984] |  |
|-----|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|------------------------------------|---------------|--|
|     | (a) $b \cot \theta$                                                                                                       | (b) <i>b</i>                                                        | (c) $b \tan \theta$                            | (d) $b\sqrt{2}$                    |               |  |
| 8.  | The distance between the p                                                                                                | points $(a\cos\alpha, a\sin\alpha)$ and $(a\cos\beta, a\sin\alpha)$ | $\sin \beta$ ) is                              |                                    |               |  |
|     | (a) $a\cos\frac{\alpha-\beta}{2}$                                                                                         | (b) $2a\cos\frac{\alpha-\beta}{2}$                                  | (c) $a\sin\frac{\alpha-\beta}{2}$              | (d) $2a\sin\frac{\alpha-\beta}{2}$ |               |  |
| 9.  | The point on <i>y</i> -axis equidist                                                                                      | ant from the points (3, 2) and (–1, 3) i                            | is                                             |                                    |               |  |
|     | (a) (0, -3)                                                                                                               | (b) $(0, -3/2)$                                                     | (c) (0,3/2)                                    | (d) (0, 3)                         |               |  |
| 10. | The point <i>P</i> is equidistant fr                                                                                      | rom <i>A</i> (1, 3), <i>B</i> (– 3, 5) and <i>C</i> (5, –1). Ther   | n <i>PA</i> =                                  |                                    | [EAMCET 2003] |  |
|     | (a) 5                                                                                                                     | (b) $5\sqrt{5}$                                                     | (c) 25                                         | (d) $5\sqrt{10}$                   |               |  |
| 11. | The point whose abscissa is                                                                                               | equal to its ordinate and which is equ                              | uidistant from the points (1, 0) a             | nd (0, 3) is                       |               |  |
|     | (a) (1, 1)                                                                                                                | (b) (2, 2)                                                          | (c) (3, 3)                                     | (d) (4, 4)                         |               |  |
| 12. | Mid-point of the sides AB a                                                                                               | nd $AC$ of a $\triangle ABC$ are (3, 5) and (-3,                    | -3) respectively, then the length              | n of the side <i>BC</i> is         |               |  |
|     | (a) 10                                                                                                                    | (b) 20                                                              | (c) 15                                         | (d) 30                             |               |  |
| 13. | The distance of the middle                                                                                                | point of the line joining the points (a                             | $\sin\theta,0)$ and $(0,a\cos\theta)$ from the | e origin                           |               |  |
|     | (a) $\frac{a}{2}$                                                                                                         | (b) $\frac{1}{2}a(\sin\theta + \cos\theta)$                         | (c) $a(\sin\theta + \cos\theta)$               | (d) <i>a</i>                       |               |  |
| 14. | A point on the line $y = x$ at                                                                                            | a distance of 2 units from the origin                               | is                                             |                                    | [MP PET 1984] |  |
|     | (a) $(0,\sqrt{2})$                                                                                                        | (b) $(\sqrt{2}, 0)$                                                 | (C) (2,2)                                      | (d) $(\sqrt{2}, \sqrt{2})$         |               |  |
| 15. | If the points (1, 1), (-1, -1) and ( $-\sqrt{3}$ , k) are vertices of an equilateral triangle then the value of k will be |                                                                     |                                                |                                    |               |  |
|     | (a) 1                                                                                                                     | (b) –1                                                              | (c) $\sqrt{3}$                                 | (d) $-\sqrt{3}$                    |               |  |
|     |                                                                                                                           | Advance                                                             | Level                                          |                                    |               |  |
|     |                                                                                                                           |                                                                     |                                                |                                    |               |  |
| 16. | If $\mathcal{O}$ be the origin and if the                                                                                 | coordinates of any two points $\mathcal{Q}_1$ and                   | nd $Q_2$ be $(x_1,y_1)$ and $(x_2,y_2)$ re     | spectively, then                   |               |  |

16. If *O* be the origin and if the coordinates of any two points  $Q_1$  and  $Q_2$  be  $(x_1, y_1)$  and  $(x_2, y_2)$  respectively, then  $OQ_1 OQ_2 \cos Q_1 OQ_2 =$ 

- (a)  $x_1x_2 y_1y_2$  (b)  $x_1y_1 x_2y_2$  (c)  $x_1x_2 + y_1y_2$  (d)  $x_1y_1 + x_2y_2$
- 17. If the line segment joining the points A(a,b) and B(c, d) subtends an angle  $\theta$  at the origin, then  $\cos \theta$  is equal to [IIT 1961]

(a) 
$$\frac{ab+cd}{\sqrt{(a^2+b^2)(c^2+d^2)}}$$
 (b)  $\frac{ac+bd}{\sqrt{(a^2+b^2)(c^2+d^2)}}$  (c)  $\frac{ac-bd}{\sqrt{(a^2+b^2)(c^2+d^2)}}$  (d) None of these

**18.** The vertices of a triangle ABC are (0, 0), (2, -1) and (9, 2) respectively, then  $\cos B =$ 

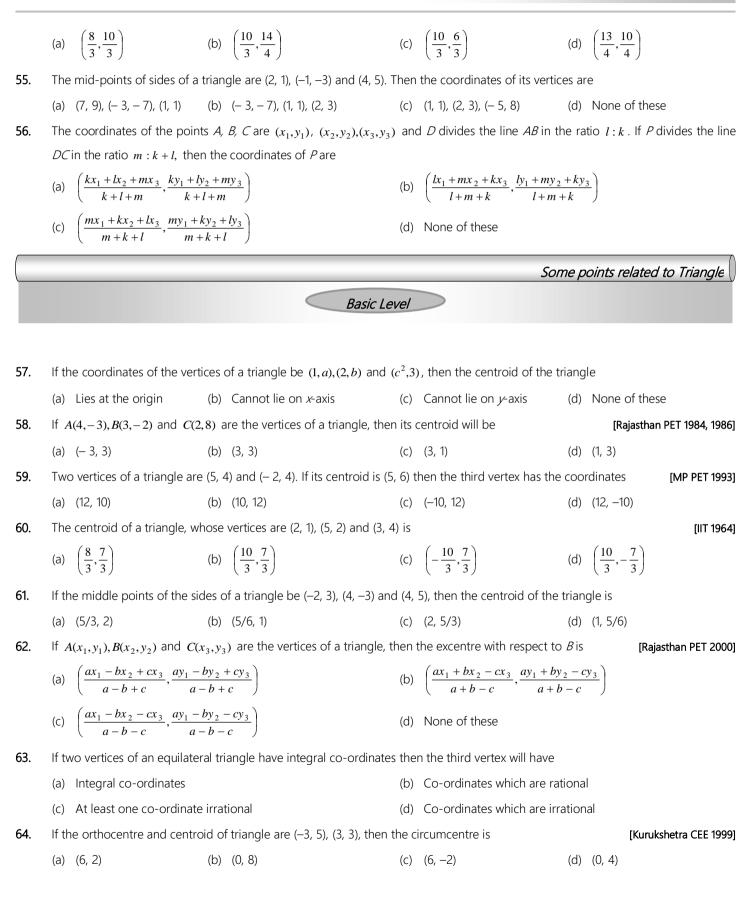
(a) 
$$\frac{11}{290}$$
 (b)  $\frac{\sqrt{11}}{290}$  (c)  $-\frac{11}{\sqrt{290}}$  (d)  $-\sqrt{\frac{11}{290}}$ 

19. If A(2,2), B(-4,-4), C(5,-8) are vertices of any triangle, then the length of median passes through C will be [Rajasthan PET 1988]

(a)  $\sqrt{65}$  (b)  $\sqrt{117}$  (c)  $\sqrt{85}$  (d)  $\sqrt{113}$ 

[AMU 1977]

[IIT 1961]


| 20. | If a vertex of an equilater             | al triangle is on origin and second                                             | vertex is (4, 0), then its third vertex          | is                                                            |
|-----|-----------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|
|     | (a) $(2, \pm \sqrt{3})$                 | (b) $(3, \pm \sqrt{2})$                                                         | (c) $(2,\pm 2\sqrt{3})$                          | (d) $(3,\pm 2\sqrt{2})$                                       |
| 21. | The locus of the point $Pe$             | equidistant from the points $(x_1, y_1)$                                        | and $(x_2, y_2)$ is $(x_1 - x_2)x + (y_1 - y_2)$ | )y + $c = 0$ , then the value of $c$ is                       |
|     | (a) $(x_1^2 - x_2^2) + (y_1^2 - y_2^2)$ | (b) $\frac{1}{2}(x_1^2 + x_2^2 + y_1^2 + y_2^2)$                                | (c) $\frac{1}{2}(x_2^2 - x_1^2 + y_2^2 - y_1^2)$ | (d) $\sqrt{x_1^2 - x_2^2 + y_1^2 - y_2^2}$                    |
| 22. |                                         | such that for each $n \ge 1$ , the lengt<br>hen for which of the following valu |                                                  | h of a diagonal of $S_{n+1}$ . If the length 1 sq. <i>cm.</i> |
|     | (a) 7                                   | (b) 8                                                                           | (c) 9                                            | (d) 10                                                        |
|     |                                         |                                                                                 | Problems concer                                  | rning to geometrical conditions                               |
|     |                                         | Bas                                                                             | sic Level                                        |                                                               |
|     |                                         |                                                                                 |                                                  |                                                               |
| 22  |                                         |                                                                                 | (                                                |                                                               |
| 23. |                                         | (8, -2) and $(-4, -3)$ are the vertice                                          |                                                  | [Rajasthan PET 1987]                                          |
| 24  | (a) An isosceles triangle               | (b) An equilateral triangle $(b) = C(4, 0)$ and $D(2, 2)$ are the               | (c) A right angled triangle                      | (d) None of these                                             |
| 24. |                                         | (2,-4); $C(4,0)$ and $D(2,3)$ are the v                                         |                                                  |                                                               |
| 25  | (a) Parallelogram                       | (b) Rectangle                                                                   | (c) Rhombus                                      | (d) None of these                                             |
| 25. | I wo opposite vertices of $\lambda =$   | a rectangle are (1,3) and (5,1). If th                                          | e other two vertices of the rectang              | gle lie on the line $y - x + \lambda = 0$ , then              |
|     | (a) 1                                   | (b) – 1                                                                         | (c) 2                                            | (d) None of these                                             |
| 26. | Three vertices of a paralle             | elogram are (1, 3) (2, 0) and (5, 1). Tl                                        | hen its fourth vertex is                         | [Rajasthan PET 1988, 2001]                                    |
|     | (a) (3, 3)                              | (b) (4, 4)                                                                      | (c) (4, 0)                                       | (d) (0, – 4)                                                  |
| 27. | The quadrilateral formed                | by the vertices (- 1, 1), (0, - 3), (5, 2                                       | ) and (4, 6) will be                             | [Rajasthan PET 1986]                                          |
|     | (a) Square                              | (b) Parallelogram                                                               | (c) Rectangle                                    | (d) Rhombus                                                   |
| 28. | The triangle formed by the              | lines $x + y = 0$ , $3x + y - 4 = 0$ and                                        | x + 3y = 4 is <b>[IIT 1983; MNR 1992; R</b> a    | ajasthan PET 1995; UPSEAT 2001]                               |
|     | (a) Equilateral                         | (b) Isosceles                                                                   | (c) Right angled                                 | (d) None of these                                             |
| 29. | The following points $A(2)$             | $(a, 4a), B(2a, 6a)$ and $C(2a + \sqrt{3}a, 5a)$                                | ), $(a > 0)$ are the vertices of                 |                                                               |
|     | (a) An acute angled tria                | ngle (b)                                                                        | An right angled triangle                         | (c) An isosceles triangle (d)                                 |
| 30. | The triangle joining the p              | oints P(2,7),Q(4,-1),R(-2,6) is                                                 |                                                  | [MP PET 1997]                                                 |
|     | (a) Equilateral triangle                | (b) Right-angled triangle                                                       | (c) Isosceles triangle                           | (d) Scalene triangle                                          |
| 31. | The points (1, 3) and (5, 1             | ) are the opposite vertices of a rect                                           | angle. The other two vertices lie o              | In the line $y = 2x + c$ , then the value                     |
|     | of <i>c</i> will be                     |                                                                                 |                                                  | [IIT 1981]                                                    |
|     | (a) 4                                   | (b) – 4                                                                         | (c) 2                                            | (d) – 2                                                       |
| 32. | If the three vertices of a r            | ectangle taken in order are the poi                                             | nts (2, −2), (8, 4) and (5, 7). The co           | ordinates of fourth vertex are                                |

|     |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                        | [Kurukshetra CEE 1993]                |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------|---------------------------------------|
|     | (a) (1, 1)                                                                                                                                                                       | (b) (1, -1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (c) (-1, 1)                                                                | (d)                    | None of these                         |
| 33. | If vertices of a quadrilateral                                                                                                                                                   | are A(0,0), B(3,4), C(7,7) and D(4,3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) then quadrilateral ABCD is a                                             |                        | [Rajasthan PET 1986]                  |
|     | (a) Parallelogram                                                                                                                                                                | (b) Rectangle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (c) Square                                                                 | (d)                    | Rhombus                               |
| 34. | The coordinates of the third                                                                                                                                                     | d vertex of an equilateral triangle who                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ose two vertices are at (3, 4) and                                         | (-2, 3                 | ) are                                 |
|     | (a) (1, 1) or (1, -1)                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (b) $\left(\frac{1+\sqrt{3}}{2}, \frac{7-5\sqrt{3}}{2}\right)$ or $\left($ | $\frac{1-\sqrt{3}}{2}$ | $\left(,\frac{7+5\sqrt{3}}{2}\right)$ |
|     | (c) $(-\sqrt{3},\sqrt{3})$ or $(\sqrt{3},-\sqrt{3})$                                                                                                                             | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (d) None of these                                                          |                        |                                       |
| 35. | The quadrilateral joining th                                                                                                                                                     | e points (1, –2); (3, 0); (1, 2) and (–1, 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | is                                                                         |                        | [Rajasthan PET 1999]                  |
|     | (a) Parallelogram                                                                                                                                                                | (b) Rectangle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (c) Square                                                                 | (d)                    | Rhombus                               |
| 36. | $\left  \begin{array}{cccc} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{array} \right  = \begin{vmatrix} a_1 & b_1 & 1 \\ a_2 & b_2 & 1 \\ a_3 & b_3 & 1 \end{vmatrix}$ | , then the two triangle with vertices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(x_1, y_1); (x_2, y_2); (x_3, y_3)$ and $(a_1)$                           | ,b <sub>1</sub> ); (a  | $(a_2, b_2); (a_3, b_3)$ must be      |
|     |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                        | [IIT 1985]                            |
|     | (a) Similar                                                                                                                                                                      | (b) Congruent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (c) Never congruent                                                        | (d)                    | None of these                         |
| 37. | All points lying inside the tr                                                                                                                                                   | iangle formed by the points (1, 3), (5,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                          | [IIT 19                | 986; Kurukshetra CEE 1998]            |
|     | (a) $3x + 2y \ge 0$                                                                                                                                                              | (b) $2x + y - 13 \le 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (c) $2x - 3y - 12 \le 0$                                                   | (d)                    | All of these                          |
| 38. | The common property of p                                                                                                                                                         | ooints lying on <i>x</i> -axis, is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                            |                        | [MP PET 1988]                         |
|     | (a) $x = 0$                                                                                                                                                                      | (b) $y = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (c) $a = 0, y = 0$                                                         | (d)                    | y = 0, b = 0                          |
| 39. | -                                                                                                                                                                                | , 2); (– 2, – 1); (3, –1); (3, 2), it is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                            |                        | [Karnataka CET 1998]                  |
|     | (a) Square                                                                                                                                                                       | (b) Rhombus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (c) Rectangle                                                              |                        | Parallelogram                         |
| 40. |                                                                                                                                                                                  | if the mid point of consecutive side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | es <i>AB, BC, CD</i> and <i>DA</i> are co                                  | mbine                  |                                       |
|     | quadrilateral <i>PQRS</i> is alway                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                        | [Orissa JEE 2002]                     |
| 44  | (a) Square                                                                                                                                                                       | (b) Parallelogram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (c) Rectangle                                                              |                        | Rhombus                               |
| 41. |                                                                                                                                                                                  | bgram taken in order are $(-1, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2$ |                                                                            |                        |                                       |
| 42  | (a) (1, 4)                                                                                                                                                                       | (b) (4, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (c) (1, 1)                                                                 | (a)                    | (4, 4)                                |
| 42. |                                                                                                                                                                                  | S(a,b) are the vertices of a parallelog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            | ( )                    | [IIT 1998]                            |
| _   | (a) $a = 2, b = 4$                                                                                                                                                               | (b) $a = 3, b = 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (c) $a = 2, b = 3$                                                         | (d)                    | a = 3, b = 5                          |
|     |                                                                                                                                                                                  | Advance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Level                                                                      |                        |                                       |
|     |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                        |                                       |
| 43. | The sides of a triangle are                                                                                                                                                      | 3x + 4y, 4x + 3y and $5x + 5y$ where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x, y > 0, then the triangle is                                             |                        | [AIEEE 2002]                          |
|     | (a) Right angled                                                                                                                                                                 | (b) Obtuse angled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (c) Equilateral                                                            | (d)                    | None of these                         |
| 44. | 0 0                                                                                                                                                                              | ave integral coordinates then the trian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            | ()                     | [IIT 1975; MP PET 1983]               |
|     | 5                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                          |                        |                                       |

|     | (a) Equilateral                                                                       | (b) Never equilateral                                                               | (c) Isosceles                                                                                   | (d) None of these                                              |
|-----|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 45. |                                                                                       | ·                                                                                   | -1). Then the coordinates of other two                                                          | o vertices are [Roorkee 1985]                                  |
|     | (a) $D\left(\frac{1}{2}, \frac{9}{2}\right); B\left(-\frac{1}{2}, \frac{5}{2}\right)$ | (b) $D\left(-\frac{1}{2},\frac{9}{2}\right); B\left(\frac{1}{2},\frac{5}{2}\right)$ | (c) $D\left(\frac{9}{2},\frac{1}{2}\right); B\left(-\frac{1}{2},\frac{5}{2}\right)$             | (d) None of these                                              |
| 46. | The quadrilateral formed by                                                           | y the lines $ax \pm by \pm c = 0$ is                                                |                                                                                                 | [Rajasthan PET 1998]                                           |
|     | (a) Square                                                                            | (b) Rectangle                                                                       | (c) Rhombus                                                                                     | (d) Parallelogram                                              |
|     |                                                                                       |                                                                                     |                                                                                                 | Section Formulae                                               |
|     |                                                                                       | В                                                                                   | Basic Level                                                                                     |                                                                |
| 47. | Point $\left(\frac{1}{2}, \frac{-13}{4}\right)$ divides the                           | e line joining the points (3, – 5)                                                  | and (– 7, 2) in the ratio of                                                                    |                                                                |
|     | (a) 1:3 internally                                                                    | (b) 3:1 internally                                                                  | (c) 1:3 externally                                                                              | (d) 3 : 1 externally                                           |
| 48. | In what ratio does the <i>y</i> -axi                                                  | is divide the join of (–3, –4) and                                                  | d (1, –2)                                                                                       | [Rajasthan PET 1995]                                           |
|     | (a) 1:3                                                                               | (b) 2:3                                                                             | (c) 3:1                                                                                         | (d) None of these                                              |
| 49. | The points which trisect the                                                          | e line segment joining the point                                                    | ts (0, 0) and (9, 12) are                                                                       | [Rajasthan PET 1986]                                           |
|     | (a) (3, 4), (6, 8)                                                                    | (b) (4, 3), (6, 8)                                                                  | (c) (4, 3), (8, 6)                                                                              | (d) (3, 4), (8, 6)                                             |
| 50. | If the point dividing interna                                                         | Ily the line segment joining the                                                    | e points $(a,b)$ and $(5,7)$ in the ratio 2                                                     | 2 : 1 be (4, 6) then                                           |
|     | (a) $a = 1, b = 2$                                                                    | (b) $a = 2, b = -4$                                                                 | (c) $a = 2, b = 4$                                                                              | (d) $a = -2, b = 4$                                            |
| 51. | If $A$ and $B$ are the points (–                                                      | 3,4) and (2, 1). Then the co-or                                                     | dinates of point <i>C</i> on <i>AB</i> produced s                                               | uch that $AC = 2BC$ are                                        |
|     | (a) (2, 4)                                                                            | (b) (3, 7)                                                                          | (c) (7, -2)                                                                                     | (d) $\left(-\frac{1}{2},\frac{5}{2}\right)$                    |
| 52. | The line segment joining th                                                           | e points (1, 2) and (– 2, 1) is div                                                 | vided by the line $3x + 4y = 7$ in the r                                                        | atio                                                           |
|     | (a) 3:4                                                                               | (b) 4:3                                                                             | (c) 9:4                                                                                         | (d) 4:9                                                        |
|     |                                                                                       | Ad                                                                                  | vance Level                                                                                     |                                                                |
|     |                                                                                       |                                                                                     |                                                                                                 |                                                                |
| 53. | If the points $P_1, P_2, P_3, \dots$                                                  | are the middle points of                                                            | line segments <i>AB</i> , <i>P</i> <sub>1</sub> <i>B</i> , <i>P</i> <sub>2</sub> <i>B</i> , res | spectively and particles of masses                             |
|     | $m; \frac{m}{2}, \frac{m}{2^2}, \dots$ are placed re                                  | espectively on these points. If C                                                   | G is the mass-centre of so placed infir                                                         | ite particles and $\overline{BG} = p \overline{BA}$ , then $p$ |

is [MP PET 1998] (a) 0 (b)  $\frac{1}{2}$  (c)  $\frac{1}{3}$  (d)  $\frac{1}{4}$ 

54. If coordinates of the points *A* and *B* are (2, 4) and (4, 2) respectively and point *M* is such that *A*-*M*-*B* also *AB* = 3*AM*, then the coordinates of *M* are



65. The centroid and a vertex of an equilateral triangle are (1, 1) and (1, 2) respectively. Another vertex of the triangle can be (a)  $\left(\frac{2-\sqrt{3}}{2},\frac{1}{2}\right)$ (b)  $\left(\frac{2+3\sqrt{3}}{2}, \frac{1}{2}\right)$ (c)  $\left(\frac{2+\sqrt{3}}{2}, \frac{1}{2}\right)$ (d) None of these 66. The incentre of triangle formed by lines x = 0, y = 0 and 3x + 4y = 12 is [Rajasthan PET 1990] (d)  $\left(\frac{11}{2}, 1\right)$ (a)  $\left(\frac{1}{2}, \frac{1}{2}\right)$ (c)  $\left(1, \frac{1}{2}\right)$ (b) (1, 1) 67. Orthocentre of triangle with vertices (0, 0), (3, 4), (4, 0) is [IIT Screening 2003] (c)  $\left(3,\frac{3}{4}\right)$ (a)  $\left(3,\frac{5}{4}\right)$ (b) (3, 12) (d) (3, 9) 68. Orthocentre of the triangle whose vertices are (0, 0), (2, -1) and (1, 3) is [ISM Dhanbad 1970; IIT 1967, 1974] (a)  $\left(\frac{4}{7}, \frac{1}{7}\right)$ (c) (- 4, - 1) (b)  $\left(-\frac{4}{7},-\frac{1}{7}\right)$ (d) (4, 1) The orthocentre of the triangle formed by the lines 4x - 7y + 10 = 0, x + y = 5 and 7x + 4y = 15 is 69. [IIT 1969, 1976] (c) (-1, -2) (a) (1, 2) (b) (1, −2) (d) (-1, 2) 70. Coordinates of the orthocentre of the triangle whose sides are x = 3, y = 4 and 3x + 4y = 6, will be [MNR 1989] (c) (0, 4) (a) (0, 0) (b) (3, 0) (d) (3, 4) 71. The orthocentre of the triangle formed by (0, 0), (8, 0), (4, 6) is [EAMCET 1991] (a)  $\left(4, \frac{8}{3}\right)$ (b) (3, 4) (c) (4, 3) (d) (-3, 4) 72. If the line 3x + 4y - 24 = 0 cuts the x-axis in A and y-axis in B, then incentre of  $\triangle OAB$  (where O is the origin) is (a) (1, 2) (b) (2, 2) (c) (12, 12) (d) (2, 12) 73. The distance between the orthocentre and circumcentre of the triangle with vertices (0, 0), (0, a) and (b, 0) is (a)  $\frac{\sqrt{a^2 - b^2}}{2}$ (d)  $\frac{\sqrt{a^2 + b^2}}{2}$ (b) a+b(c) a-b74. The incentre of the triangle formed by (0, 0); (5, 12); (16, 12) is [EAMCET 1984] (b) (7, 9) (c) (-9, 7) (d) (-7, 9) (a) (9,7) 75. If two vertices of a triangles are (6, 4); (2, 6) and its centroid is (4, 6), then the third vertex is [Rajasthan PET 1996] (d) None of these (a) (4, 8) (b) (8, 4) (c) (6, 4) 76. If the vertices of a triangle be (a, 1); (b, 3) and (4, c), then the centroid of the triangle will lie on x-axis if (d) b + c = -4(b) a+b = -4(a) a + c = -4(c) c = -4The vertices of a triangle are (0, 0), (3, 0) and (0, 4). Its orthocentre is at 77. [MNR 1982; Rajasthan PET 1997; DCE 1994] (b)  $\left(1, \frac{4}{3}\right)$ (c)  $\left(\frac{3}{2}, 2\right)$ (a) (0, 0) (d) None of these Advance Level

| 78. | The equations of the sides                                                     | of a triangle are $x+y-5=0$ ; $x-y+$                                                              | 1 = 0 and $y - 1 = 0$ , then the co                             | pordinates of the circumcentre are           |
|-----|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------|
|     |                                                                                |                                                                                                   |                                                                 | [MP PET 1996]                                |
|     | (a) (2, 1)                                                                     | (b) (1, 2)                                                                                        | (c) (2, −2)                                                     | (d) (1, – 2)                                 |
| 79. | The mid points of the sides                                                    | of a triangle are (5, 0); (5, 12) and (0,                                                         | 12). The orthocentre of this tria                               |                                              |
|     | (a) (0, 0)                                                                     | (b) (10, 0)                                                                                       | (c) (0, 24)                                                     | (d) $\left(\frac{13}{3}, 8\right)$           |
| 80. | The orthocentre of the triar                                                   | ngle with vertices $\left(2, \frac{\sqrt{3}-1}{2}\right); \left(\frac{1}{2}, -\frac{1}{2}\right)$ | $\left(\frac{1}{2}\right)$ and $\left(2,-\frac{1}{2}\right)$ is | [IIT 1993]                                   |
|     | (a) $\left(\frac{3}{2}, \frac{\sqrt{3}-3}{6}\right)$                           | (b) $\left(2, -\frac{1}{2}\right)$                                                                | (c) $\left(\frac{5}{4}, \frac{\sqrt{3}-2}{5}\right)$            | (d) $\left(\frac{1}{2}, -\frac{1}{2}\right)$ |
| 81. | If the coordinates of the ve                                                   | ertices of a triangle are rational num                                                            | bers then which of the followin                                 | ng points of the triangle will always        |
|     | have rational coordinates                                                      |                                                                                                   |                                                                 |                                              |
|     | (a) Centroid                                                                   | (b) Incentre                                                                                      | (c) Circumcentre                                                | (d) Orthocentre                              |
| 82. | In the $\Delta\!ABC$ , the coordin                                             | nates of <i>B</i> are (0, 0), $AB = 2, \angle ABC$                                                | $=\frac{\pi}{3}$ and the middle point of                        | BC has the coordinates (2, 0). The           |
|     | centroid of the triangle is                                                    |                                                                                                   |                                                                 |                                              |
|     | (a) $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$                             | (b) $\left(\frac{5}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$                                         | (c) $\left(\frac{4+\sqrt{3}}{3},\frac{1}{3}\right)$             | (d) None of these                            |
| 83. | The vertices of triangle are                                                   | (6, 0), (0, 6) and (6, 6). The distance b                                                         | between its circumcentre and ce                                 | ntroid is                                    |
|     | (a) $2\sqrt{2}$                                                                | (b) 2                                                                                             | (c) $\sqrt{2}$                                                  | (d) 1                                        |
| 84. | Two vertices of a triangle a                                                   | re (5, $-1$ ) and ( $-2$ , 3). If orthocentre is                                                  | the origin then co-ordinates of                                 | the third vertex are                         |
|     | (a) (7, 4)                                                                     | (b) (-4, 7)                                                                                       | (c) (4, -7)                                                     | (d) (- 4, - 7)                               |
| 85. | The orthocentre of the triar                                                   | ngle formed by the lines $x + y = 1$ , 2                                                          | x + 3y = 6 and $4x - y + 4 = 0$                                 | lies in quadrant [IIT 1985]                  |
|     | (a) First                                                                      | (b) Second                                                                                        | (c) Third                                                       | (d) Fourth                                   |
| 86. | Two vertices of a triangle a                                                   | re $(4, -3)$ and $(-2, 5)$ . If the orthocent                                                     | re of the triangle is at (1, 2) , the                           | n the third vertex is [Roorkee 1987]         |
|     | (a) (- 33, -26)                                                                | (b) (33, 26)                                                                                      | (c) (26, 33)                                                    | (d) None of these                            |
| 87. | The equations to the sides                                                     | of a triangle are $x - 3y = 0$ , $4x + 3y$                                                        | = 5 and $3x + y = 0$ . The line 3.                              |                                              |
|     |                                                                                |                                                                                                   |                                                                 | [EAMCET 1994]                                |
| 00  | (a) The incentre                                                               | (b) The centroid                                                                                  | (c) The circumcentre                                            | (d) The orthocentre of the triangle          |
| 88. | The vertices of a triangle ar                                                  | $e   at_1t_2; a(t_1 + t_2) ,   at_2t_3, a(t_2 + t_3)$                                             | $ ,  at_3t_1, a(t_3 + t_1) $ , then the co                      |                                              |
|     | (a) $  a, a(t_1 + t_2 + t_3 + t_1t_2)$                                         | <i>t</i> )                                                                                        | (b) $[-a, a(t_1 + t_2 + t_3 + t_1t_2t_3)]$                      | [IIT 1983]                                   |
|     | (c) $[-a, (t_1 + t_2 + t_3 + t_1t_2)$<br>(c) $[-a, (t_1 + t_2 + t_3 + t_1t_2)$ |                                                                                                   | (d) None of these                                               | 3 )]                                         |
| 90  |                                                                                |                                                                                                   |                                                                 | or of the circumcentre of the triangle       |
| 89. | are                                                                            | sides of a triangle are $x = 2, y + 1 = 0$                                                        | and $x + 2y = 4$ . The coordinate                               |                                              |
|     | (a) (4, 0)                                                                     | (b) (2, -1)                                                                                       | (c) (0, 4)                                                      | (d) None of these                            |
|     |                                                                                | (∼/ (⊏/ ')                                                                                        |                                                                 |                                              |

|     |                                                                          |                                                                 | ,                                                | Area of Some geometrical figures                   |
|-----|--------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|
|     |                                                                          |                                                                 | Basic Level                                      |                                                    |
|     |                                                                          |                                                                 |                                                  |                                                    |
| 90. |                                                                          | gle with vertices at (-4, 1), (1, 2), (4                        | l, − 3) is                                       | [EAMCET 1980]                                      |
|     | (a) 14                                                                   | (b) 16                                                          | (c) 15                                           | (d) None of these                                  |
| 91. | If the coordinates of                                                    | the points <i>A, B, C</i> be (4, 4) (3, –2)                     | and $(3, -16)$ respectively, then the are        | ea of the triangle <i>ABC</i> is [MP PET 1982]     |
|     | (a) 27                                                                   | (b) 15                                                          | (c) 18                                           | (d) 7                                              |
| 92. |                                                                          | _                                                               | 3), then the area of the triangle is             | [Kurukshetra CEE 2002]                             |
|     | (a) $\frac{28}{6}$                                                       | (b) $\frac{5}{2}$                                               | (c) 43                                           | (d) $\frac{13}{6}$                                 |
| 93. | The area of a triangle                                                   | e whose vertices are (1, -1), (-1, 1) a                         | and (–1, –1) is given by [AMU 1981; I            | Rajasthan PET 1989; MP PET 1993]                   |
|     | (a) 2                                                                    | (b) $\frac{1}{2}$                                               | (c) 1                                            | (d) 3                                              |
| 94. | The vertices of a tria                                                   | ngle <i>ABC</i> are $(\lambda, 2-2\lambda)$ , $(-\lambda+1, 2)$ | $(-4 - \lambda, 6 - 2\lambda)$ . If its area be  | 70 units then number of integral values of         |
|     | λis                                                                      |                                                                 |                                                  |                                                    |
|     | (a) 1                                                                    | (b) 2                                                           | (c) 4                                            | (d) 0                                              |
| 95. | The area of the penta                                                    | agon whose vertices are (1, 2), (–3                             | , 2), (4, 5), (–3, 3) and (–3, 0) is             |                                                    |
|     | (a) 15/2 unit <sup>2</sup>                                               | (b) 30 unit <sup>2</sup>                                        | (c) 45 unit <sup>2</sup>                         | (d) None of these                                  |
|     |                                                                          | 6                                                               |                                                  |                                                    |
|     |                                                                          |                                                                 | Advance Level                                    |                                                    |
|     |                                                                          |                                                                 |                                                  |                                                    |
| 96. | If $A(6,3), B(-3,5), C(4)$                                               | (4, -2) and $D(x, 3x)$ are four point                           | nts. If the ratio of area of $\triangle DBC$ and | $\triangle ABC$ is 1 : 2, then the value of x will |
|     | be                                                                       |                                                                 |                                                  | [IIT 1959]                                         |
|     | (a) $\frac{11}{8}$                                                       | (b) $\frac{8}{11}$                                              | (c) 3                                            | (d) None of these                                  |
| 97. |                                                                          |                                                                 | 3, 5) in the ratio <i>k</i> : 1 and the coordina | ates of the points $B$ and $C$ are (1, 5) and      |
|     | -                                                                        | f the area of the triangle <i>ABC</i> be a                      |                                                  | [IIT 1967; Kurukshetra CEE 1998]                   |
|     | (a) 6, 7                                                                 | (b) 31/9, 9                                                     | (c) 7, 31/9                                      | (d) 7,9                                            |
| 98. | The area of a triangle                                                   | e is 5. If two of its vertices are (2,                          | 1), $(3, -2)$ and the third vertex lies on       | the line $y = x + 3$ , then the third vertex       |
|     | is                                                                       |                                                                 |                                                  |                                                    |
|     |                                                                          |                                                                 |                                                  | [IIT 1978; UPSEAT 1999]                            |
|     | (a) $\left(-\frac{7}{2},-\frac{13}{2}\right)$                            | (b) $\left(-\frac{7}{2},\frac{13}{2}\right)$                    | (c) $\left(\frac{7}{2}, -\frac{13}{2}\right)$    | (d) $\left(\frac{7}{2}, \frac{13}{2}\right)$       |
|     | $\begin{pmatrix} a \end{pmatrix}$ $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$ |                                                                 |                                                  | (2, 2)                                             |
| 99. | The area of the triang                                                   | le formed by the lines $7x - 2y + 3$                            | 10 = 0, 7x + 2y - 10 = 0 and $y + 2 = 0$         | is [IIT 1977]                                      |
|     | (a) 8 sq. units                                                          | (b) 12 sq. units                                                | (c) 14 sq. units                                 | (d) None of these                                  |
|     |                                                                          |                                                                 |                                                  |                                                    |

| 100.         | Area of the triangle with ve                                                                         | ertices (a, b), $(x_1, y_1)$ and $(x_2, y_2)$ where                             | here <i>a</i> | $x, x_1, x_2$ are in G.P. with cor        | nmo                       | n ratio ' $t'$ and $b, y_1, y_2$ are in                 |
|--------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------|-------------------------------------------|---------------------------|---------------------------------------------------------|
|              | G.P. with common ratio 's' i                                                                         |                                                                                 |               |                                           |                           |                                                         |
|              | (a) $ab(r-1)(s-1)(s-r)$                                                                              | (b) $\frac{1}{2}ab(r+1)(s+1)(s-r)$                                              | (C)           | $\frac{1}{2}ab(r-1)(s-1)(s-r)$            | (d)                       | ab(r+1)(s+1)(r-s)                                       |
| 101.         |                                                                                                      | e whose vertices are $(b, c), (c, a) = (c - a^2)$ and $(cb - a^2, ca - b^2)$ is | and (a        | $a,b)$ is $\Delta$ , then the area        | of                        | triangle whose vertices are                             |
|              | (a) $\Delta^2$                                                                                       | (b) $(a+b+c)^2\Delta$                                                           | (C)           | $a\Delta + b\Delta^2$                     | (d)                       | None of these                                           |
| 102.         | <i>P</i> (2, 1), <i>Q</i> (4, -1), <i>R</i> (3, 2) are<br>in <i>S</i> , then the area of <i>PQRS</i> | the vertices of a triangle and if thro<br>is                                    | ough <i>P</i> | and <i>R</i> lines parallel to opp        | osite                     | e sides are drawn to intersect                          |
|              | (a) 6                                                                                                | (b) 4                                                                           | (C)           | 8                                         | (d)                       | 12                                                      |
| 103.         | An equilateral triangle has                                                                          | each side equal to <i>a</i> . If the coordinat                                  | tes of i      | ts vertices are $(x_1, y_1); (x_2, y_1)$  | <sub>2</sub> );( <i>x</i> | $_{3},y_{3})$ , then the square of the                  |
|              | determinant $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ e        | equals                                                                          |               |                                           |                           |                                                         |
|              | (a) 3 <i>a</i> <sup>4</sup>                                                                          | (b) $\frac{3a^4}{4}$                                                            | (C)           | $4a^4$                                    | (d)                       | None of these                                           |
| 104.         | Area of a $\triangle ABC = 20$ units<br><i>C</i> is                                                  | s and its vertices $A$ and $B$ are (–5, 0) a                                    | and (3,       | , 0) respectively. If its vertex          | C lie                     | es on the line $x - y = 2$ , then<br>[IIT 1990]         |
|              | (a) (3, 5)                                                                                           | (b) (- 3, - 5)                                                                  | (C)           | (- 5, 7)                                  | (d)                       | None of these                                           |
| 105.         | Point <i>P</i> divides the line se                                                                   | egment joining $A(-5,1)$ and $B(3,5)$                                           | ) inte        | rnally in the ratio $ \lambda : 1  . $ lf | Q=                        | =(1,5), R = (7,2) and area of                           |
|              | $\Delta PQR = 2$ , then $\lambda$ equals                                                             |                                                                                 |               |                                           |                           | [Kurukshetra CEE 1998]                                  |
|              | (a) 23                                                                                               | (b) 31/9                                                                        | (c)           | 29/5                                      | (d)                       | None of these                                           |
|              |                                                                                                      |                                                                                 |               |                                           |                           | Collinearity                                            |
|              |                                                                                                      | Basic L                                                                         | .evel         |                                           |                           |                                                         |
|              |                                                                                                      |                                                                                 |               |                                           |                           |                                                         |
| 106.         | Three points $(p+1,1),(2p+1)$                                                                        | 1,3) and $(2p+2,2p)$ are collinear if                                           | p =           |                                           |                           | [MP PET 1986]                                           |
|              | (a) – 1                                                                                              | (b) 1                                                                           | (C)           | 2                                         | (d)                       | 0                                                       |
|              |                                                                                                      |                                                                                 |               |                                           |                           |                                                         |
| 107.         | If the points ( <i>a</i> , 0), (0, <i>b</i> ) and                                                    | d (1, 1) are collinear, then                                                    |               |                                           |                           |                                                         |
| 107.         |                                                                                                      | (1, 1) are collinear, then<br>(b) $\frac{1}{a^2} - \frac{1}{b^2} = 1$           | (C)           | $\frac{1}{a} + \frac{1}{b} = 1$           | (d)                       | $\frac{1}{a} - \frac{1}{b} = 1$                         |
| 107.<br>108. | (a) $\frac{1}{a^2} + \frac{1}{b^2} = 1$                                                              |                                                                                 | (C)           | $\frac{1}{a} + \frac{1}{b} = 1$           | (d)                       | $\frac{1}{a} - \frac{1}{b} = 1$<br>[Rajasthan PET 1999] |

| 109. | If the points $(k, 2-2k), (1-k)$                | (-k-4,6-2k) be collinear                               | r, ther        | n the possible values of <i>k</i> a | re      |                |                   |
|------|-------------------------------------------------|--------------------------------------------------------|----------------|-------------------------------------|---------|----------------|-------------------|
|      |                                                 |                                                        |                |                                     |         | [AMU 1978; Ra  | jasthan PET 1997] |
|      | (a) $\frac{1}{2}$ ,-1                           | (b) $1, -\frac{1}{2}$                                  | (C)            | 1,-2                                | (d)     | 2,-1           |                   |
| 110. | If the points (–5, 1), ( <i>p</i> , 5) an       | d (10, 7) are collinear, then the value                | of <i>p</i> v  | will be                             |         |                | [MP PET 1984]     |
|      | (a) 5                                           | (b) 3                                                  | (C)            | 4                                   | (d)     | 7              |                   |
| 111. | If the points (-2, -5), (2, -2)                 | (8,a) are collinear, then the value c                  | of <i>a</i> is |                                     |         |                | [MP PET 2002]     |
|      | (a) $-\frac{5}{2}$                              | (b) $\frac{5}{2}$                                      | (C)            | $\frac{3}{2}$                       | (d)     | $\frac{1}{2}$  |                   |
| 112. | If the points (5, 5), (10, <i>K</i> ) an        | d (–5, 1) are collinear, then $K =$                    |                | [MP PET                             | 1994, 1 | 999; Rajasthan | PET 2003]         |
|      | (a) 3                                           | (b) 5                                                  | (C)            | 7                                   | (d)     | 9              |                   |
| 113. | The points $(-a, -b), (a, b), (a^2)$            | ( <i>,ab</i> ) are                                     |                |                                     |         |                |                   |
|      | (a) Vertices of an equilater                    | al triangle                                            | (b)            | Vertices of a right angled          | l trian | gle            |                   |
|      | (c) Vertices of an isosceles                    | triangle                                               | (d)            | Collinear                           |         |                |                   |
| 114. | The points (3 <i>a</i> ,0),(0,3 <i>b</i> ) an   | d ( <i>a</i> ,2 <i>b</i> ) are                         |                |                                     |         |                | [MP PET 1982]     |
|      | (a) Vertices of an equilate                     | ral triangle                                           | (b)            | Vertices of an isosceles tr         | iangle  | 2              |                   |
|      | (c) Vertices of a right angle                   | ed isosceles triangle                                  | (d)            | Collinear                           |         |                |                   |
| 115. | The points ( <i>a, b</i> ), ( <i>c, d</i> ) and | $\left(\frac{kc+la}{k+l},\frac{kd+lb}{k+l}\right)$ are |                |                                     |         |                |                   |
|      | (a) Vertices of an equilater                    | al triangle                                            | (b)            | Vertices of an isosceles tr         | riangle | e              |                   |
|      | (c) Vertices of a right angle                   | ed triangle                                            | (d)            | Collinear                           |         |                |                   |
|      |                                                 | Advance                                                | Leve           |                                     |         |                |                   |

- **116.** *A*, *B*, *C* are the points (*a*, *p*), (*b*, *q*) and (*c*, *r*) respectively such that *a*, *b*, *c* are in A.P. and *p*, *q*, *r* in G.P. If the points are collinear, then
  - (a) p = q = r (b)  $p^2 = q$  (c)  $q^2 = r$  (d)  $r^2 = p$

**117.** *A*, *B*, *C* are three collinear points such that *AB* = 2.5 and the co-ordinates of *A* and *C* are respectively (3, 4) and (11, 10), then the co-ordinates of the point *B* are

(a)  $\left(5,\frac{11}{2}\right)$  (b)  $\left(5,\frac{5}{2}\right)$  (c)  $\left(1,\frac{11}{2}\right)$  (d)  $\left(1,\frac{5}{2}\right)$ 

**118.** The points (x, 2x), (2y, y) and (3, 3) are collinear

- (a) For all values of (x, y) (b) 2 is A.M. of x, y (c) 2 is G.M. of x, y (d) 2 is H.M. of x, y
- **119.** If  $t_1, t_2$  and  $t_3$  are distinct, the points  $(t_1, 2at_1 + at_1^3), (t_2, 2at_2 + at_2^3)$  and  $(t_3, 2at_3 + at_3^3)$  are collinear if

|          | (a) $t_1 t_2 t_3 = -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b) $t_1 + t_2 + t_3 = t_1 t_2 t_3$                        | (c) $t_1 + t_2 + t_3 = 0$                                   | (d) $t_1 + t_2 + t_3 = -1$                                 |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|
| 120.     | The points $(-a, -b), (0, -b)$ | 0), $(a,b)$ and $(a^2,ab)$ are                             | [IIT 1979; Kurukshetra CEE 1993; Jan                        | nia Millia Entrance Exam. 2001]                            |
|          | (a) Collinear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (b) Vertices of a rectangle                                | (c) Vertices of a parallelo                                 | gram (d) None of these                                     |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                             | Transformation of Axes                                     |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bas                                                        | ic Level                                                    |                                                            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                             |                                                            |
| 121.     | The new coordinates o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | f a point (4, 5), when the origin is shif                  | ted to the point (1, $-2$ ) are                             | [MNR 1988; IIT 1989; UPSEAT 2000                           |
|          | (a) (5, 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (b) (3, 5)                                                 | (c) (3, 7)                                                  | (d) None of these                                          |
| 122.     | The co-ordinate axes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | are rotated through an angle 135°.                         | If the co-ordinates of a point A                            | in the new system are known to b                           |
|          | (4, -3), then the co-o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rdinates of <i>P</i> in the original system are            | 2                                                           | [EAMCET 2003                                               |
|          | (a) $\left(\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (b) $\left(\frac{1}{\sqrt{2}}, \frac{-7}{\sqrt{2}}\right)$ | (c) $\left(\frac{-1}{\sqrt{2}}, \frac{-7}{\sqrt{2}}\right)$ | (d) $\left(\frac{-1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$ |
| 123.     | If the axes be rotated t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hrough an angle of $60^{o}$ in the clockv                  | vise direction, the point (4, 2) in t                       | he new system was formally                                 |
|          | (a) $(2-\sqrt{3}, 2\sqrt{3}+1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (b) $(2+\sqrt{3},-2\sqrt{3}+1)$                            | (c) $(2-\sqrt{3},1-2\sqrt{3})$                              | (d) None of these                                          |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Advar                                                      | nce Level                                                   |                                                            |
| 124.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | direction of coordinate axes origin                        |                                                             | the linear (one degree) terms in th                        |
|          | equation $x^2 + y^2 - 4x$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +6y-7=0 are eliminated. Then the                           | point ( <i>h, k</i> ) is                                    |                                                            |
|          | (a) (3, 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (b) (- 3, 2)                                               | (c) (2, -3)                                                 | (d) None of these                                          |
| 125.     | The point (4, 1) underg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oes the following two successive trans                     | sformations                                                 |                                                            |
|          | (i) reflection about the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | line $y = x$                                               |                                                             |                                                            |
|          | (ii) rotation through a d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | distance 2 units along the positive <i>x</i> -a            | xis                                                         |                                                            |
|          | Then the final coordina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ates of the point are                                      |                                                             |                                                            |
|          | (a) (4, 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (b) (3, 4)                                                 | (c) (1, 4)                                                  | (d) (7/2, 7/2)                                             |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                             | logu                                                       |
| <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                             | Locus                                                      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bas                                                        | ic Level                                                    |                                                            |

- **126.** Two points A and B have coordinates (1, 0) and (-1, 0) respectively and Q is a point which satisfies the relation  $AQ BQ = \pm 1$ . The<br/>locus of Q is**[MP PET 1986]** 
  - (a)  $12x^2 + 4y^2 = 3$  (b)  $12x^2 4y^2 = 3$  (c)  $12x^2 4y^2 + 3 = 0$  (d)  $12x^2 + 4y^2 + 3 = 0$
- 127. A point moves such that the sum of its distances from two fixed points (*ae*, 0) and (–*ae*, 0) is always 2*a*. Then equation of its locus is

#### [MNR 1981]

(a) 
$$\frac{x^2}{a^2} + \frac{y^2}{a^2(1-e^2)} = 1$$
 (b)  $\frac{x^2}{a^2} - \frac{y^2}{a^2(1-e^2)} = 1$  (c)  $\frac{x^2}{a^2(1-e^2)} + \frac{y^2}{a^2} = 1$  (d) None of these

- **128.** The locus of a point whose distance from the point (-g,-f) is always 'a', will be (where  $k = g^2 + f^2 a^2$ )
  - (a)  $x^2 + y^2 + 2gx + 2fy + k = 0$ (b)  $x^2 - y^2 + 2gx + 2fy + k = 0$ (c)  $x^2 + y^2 + 2xy + 2gx + 2fy + k = 0$ (d) None of these
- **129.** The coordinates of the points A and B are (a, 0) and (-a, 0) respectively. If a point *P* moves so that  $PA^2 PB^2 = 2k^2$ , when *k* is a constant, then the equation to the locus of the point *P* is
  - (a)  $2ax k^2 = 0$  (b)  $2ax + k^2 = 0$  (c)  $2ay k^2 = 0$  (d)  $2ay + k^2 = 0$
- 130. If the distance of any point P from the points A(a+b, a-b) and B(a-b, a+b) are equal, then the locus of P is

#### [Karnataka CET 2003]

|              | (a) $x - y = 0$                                                                       | (b) $ax + by = 0$                                                      | (C)                         | bx - ay = 0                                                               | (d)              | x + y = 0                           |
|--------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------|------------------|-------------------------------------|
| 131.         | The locus of a point whose of                                                         | difference of distance from points (3,                                 | 0) an                       | d (-3, 0) is 4, is                                                        |                  | [MP PET 2002]                       |
|              | (a) $\frac{x^2}{4} - \frac{y^2}{5} = 1$                                               | (b) $\frac{x^2}{5} - \frac{y^2}{4} = 1$                                | (c)                         | $\frac{x^2}{2} - \frac{y^2}{3} = 1$                                       | (d)              | $\frac{x^2}{3} - \frac{y^2}{2} = 1$ |
| 132.         | If A and B are two fixed poir                                                         | ts in a plane and $PA - PB = constant$                                 | int, th                     | en the locus of <i>P</i> is                                               |                  |                                     |
|              | (a) Hyperbola                                                                         | (b) Circle                                                             | (C)                         | Parabola                                                                  | (d)              | Ellipse                             |
| 133.         | If A and B are two points in                                                          | a plane, so that $PA + PB = constant$ ,                                | then                        | the locus of <i>P</i> is                                                  |                  | [MNR 1991]                          |
|              | (a) Hyperbola                                                                         | (b) Circle                                                             | (C)                         | Parabola                                                                  | (d)              | Ellipse                             |
| 134.         | The equation of the locus of                                                          | f all points equidistant from the point                                | (4, 2                       | ) and the <i>x</i> -axis, is                                              |                  | [Kurukshetra CEE 1993]              |
|              |                                                                                       |                                                                        |                             |                                                                           |                  |                                     |
|              | (a) $x^2 + 8x + 4y - 20 = 0$                                                          | (b) $x^2 - 8x - 4y + 20 = 0$                                           | (C)                         | $y^2 - 4y - 8x + 20 = 0$                                                  | (d)              | None of these                       |
| 135.         |                                                                                       | (b) $x^2 - 8x - 4y + 20 = 0$<br>noves so that it is always equidistant |                             |                                                                           |                  |                                     |
| 135.         |                                                                                       |                                                                        |                             |                                                                           | a, 0)            | is                                  |
| 135.         | The locus of a point which n                                                          |                                                                        | from                        | the points $A(a,0)$ and $B(\neg$                                          | a, 0)            | is                                  |
| 135.<br>136. | The locus of a point which n<br>(a) A circle<br>(c) A line parallel to <i>x</i> -axis |                                                                        | from<br>(b)<br>(d)          | the points $A(a, 0)$ and $B(-$<br>Perpendicular bisector of None of these | a, 0)<br>the lii | is<br>ne segment <i>AB</i>          |
|              | The locus of a point which n<br>(a) A circle<br>(c) A line parallel to <i>x</i> -axis | noves so that it is always equidistant                                 | from<br>(b)<br>(d)<br>is do | the points $A(a, 0)$ and $B(-$<br>Perpendicular bisector of None of these | a, 0)<br>the lin | is<br>ne segment <i>AB</i>          |

then the equation to the locus of P is

|      | (a) $4x - 3y = 0$                                                | (b) $4x + 3y = 0$                                                              | (c)  3x + 4y = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (d)  3x - 4y = 0                                              |
|------|------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| 138. | If A and B are two fixed po<br>point <i>P</i> is                 | pints in a plane and $P$ is another va                                         | ariable point such that $PA^2$ +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $PB^2$ = constant, then the locus of the                      |
|      | (a) Hyperbola                                                    | (b) Circle                                                                     | (c) Parabola                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (d) Ellipse                                                   |
| 139. | If sum of distances of a poir                                    | t from the origin and line $x = 2$ is                                          | 4, then its locus is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [Rajasthan PET 1997]                                          |
|      | (a) $x^2 - 12y = 36$                                             | (b) $y^2 + 12x = 36$                                                           | (c) $y^2 - 12x = 36$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (d) $x^2 + 12y = 36$                                          |
| 140. | The coordinates of the poir                                      | nts <i>A</i> and <i>B</i> are ( <i>ak</i> ,0) and $\left(\frac{a}{k},0\right)$ | , $(k = \pm 1)$ . If a point <i>P</i> moves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | so that $PA = k PB$ , then the equation                       |
|      | to the locus of <i>P</i> is                                      |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |
|      | (a) $k^2(x^2+y^2)-a^2=0$                                         | (b) $x^2 + y^2 - k^2 a^2 = 0$                                                  | (c) $x^2 + y^2 + a^2 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (d) $x^2 + y^2 - a^2 = 0$                                     |
| 141. |                                                                  | f a point whose distance from $(a, 0)$                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |
|      | (a) $y^2 - 2ax = a^2$                                            | (b) $y^2 - 2ax + a^2 = 0$                                                      | (c) $y^2 + 2ax + a^2 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(d)  y^2 + 2ax = a^2$                                        |
| 142. |                                                                  | tersection of lines $x \cos \alpha + y \sin \alpha =$                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |
|      | (a) $2(x^2 + y^2) = a^2 + b^2$                                   | (b) $x^2 - y^2 = a^2 - b^2$                                                    | (c) $x^2 + y^2 = a^2 + b^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (d) None of these                                             |
| 143. | Two points A and B move same. The locus of the mide              |                                                                                | ctively such that the distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | between the two points is always the                          |
|      | (a) A straight line                                              | (b) A circle                                                                   | (c) A parabola                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (d) An ellipse                                                |
|      |                                                                  | Advance                                                                        | e Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                               |
|      |                                                                  |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |
| 144. | The locus of <i>P</i> such that are                              | ea of $\Delta PAB = 12  sq.$ units, where $A(z)$                               | 2,3) and <i>B</i> (-4,5) is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [EAMCET 1989]                                                 |
|      | (a) $(x+3y-1)(x+3y-23)$                                          | (3) = 0                                                                        | (b) $(x+3y+1)(x+3y-2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3)=0                                                          |
|      | (c) $(3x+y-1)(3x+y-23)$                                          | ) = 0                                                                          | (d) $(3x+y+1)(3x+y+2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3) = 0                                                        |
| 145. | Locus of centroid of the tria                                    | angle whose vertices are $(a\cos t, a\sin t)$                                  | $(t, 0)$ , $(b \sin t, -b \cos t)$ and $(1, 0)$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | where <i>t</i> is a parameter is [AIEEE 2003]                 |
|      | (a) $(3x-1)^2 + (3y)^2 = a^2 - b^2$                              | $b^2$                                                                          | (b) $(3x-1)^2 + (3y)^2 = a^2 + a^2 $ | $+b^{2}$                                                      |
|      | (c) $(3x+1)^2 + (3y)^2 = a^2 + a^2$                              | $b^2$                                                                          | (d) $(3x+1)^2 + (3y)^2 = a^2 - a^2 $ | $-b^2$                                                        |
| 146. | If <i>A</i> is (2, 5), <i>B</i> is (4, –11) and<br>straight line | d C lies on $9x + 7y + 4 = 0$ , then the                                       | e locus of the centroid of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\Delta ABC$ is a straight line parallel to the [MP PET 1986] |
|      | (a) $7x - 9y + 4 = 0$                                            | (b) $9x - 7y - 4 = 0$                                                          | (c) $9x + 7y + 4 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (d) $7x + 9y + 4 = 0$                                         |
| 147. | Two fixed points are $A(a, 0)$                                   | ) and $B(-a,0)$ . If $\angle A - \angle B = \theta$ , then                     | n the locus of point $\mathcal C$ of triang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gle <i>ABC</i> will be [Roorkee 1982]                         |
|      |                                                                  | <sup>2</sup> (b) $r^2 - v^2 + 2rv \tan \theta = a^2$                           | (c) $x^2 + y^2 + 2xy \cot \theta =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $a^{2}$ (d) $x^{2} - y^{2} + 2xy \cot \theta = a^{2}$         |
|      | (a) $x^2 + y^2 + 2xy \tan \theta = a^2$                          | $(b) x y + 2xy \tan \theta = u$                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |
| 148. |                                                                  | two fixed points, then the locus of t                                          | he point on which the line <i>AB</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |
| 148. |                                                                  |                                                                                | he point on which the line <i>AB</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |

|      | (a) $x^2 + y^2 = 2a^2$                                       | (b) $x^2 - y^2 = a^2$                                       | (c) $x^2 + y^2 + a^2 = 0$               | (d) $x^2 + y^2 = a^2$                                       |
|------|--------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------|
| 149. | The coordinates of the poi                                   | nts <i>O</i> , <i>A</i> and <i>B</i> are (0, 0), (0, 4) and | l (6, 0) respectively. If a point       | $P$ moves such that the area of $\Delta POA$ is             |
|      | always twice the area of $\Delta$                            | POB , then the equation to both p                           | arts of the locus of <i>P</i> is        | [IIT 1964]                                                  |
|      | (a) $(x-3y)(x+3y) = 0$                                       | (b) $(x-3y)(x+y) = 0$                                       | (c) $(3x-y)(3x+y) = 0$                  | ) (d) None of these                                         |
| 150. | A stick of length / rests ag<br>point is                     | ainst the floor and a wall of a roor                        | n. If the stick begins to slide         | on the floor, then the locus of its middle                  |
|      | (a) A straight line                                          | (b) Circle                                                  | (c) Parabola                            | (d) Ellipse                                                 |
| 151. | Given the points $A(0,4)$ a                                  | nd $B(0, -4)$ . Then the equation of                        | the locus of the point $P(x, y)$        | ) such that $ AP - BP  = 6$ , is                            |
|      |                                                              |                                                             |                                         | [IIT 1983; MP PET 1994]                                     |
|      | (a) $\frac{x^2}{7} + \frac{y^2}{9} = 1$                      | (b) $\frac{x^2}{9} + \frac{y^2}{7} = 1$                     | (c) $\frac{x^2}{7} - \frac{y^2}{9} = 1$ | (d) $\frac{y^2}{9} - \frac{x^2}{7} = 1$                     |
| 152. | If $P = (1, 0), Q = (-1, 0)$ and                             | R = (2,0) are three given points,                           | then the locus of a point $S$           | satisfying the relation $SQ^2 + SR^2 = 2SP^2$               |
|      | is                                                           |                                                             |                                         |                                                             |
|      |                                                              |                                                             |                                         | [IIT 1988]                                                  |
|      | (a) A straight line paralle                                  | to <i>x</i> -axis                                           | (b) A circle through o                  | rigin                                                       |
|      | (c) A circle with centre at                                  | the origin                                                  | (d) A straight line para                | allel to <i>y</i> -axis                                     |
| 153. | The locus of a point which                                   | moves in such a way that its distar                         | nce from (0, 0) is three times          | its distance from the $x$ -axis, as given by                |
|      |                                                              |                                                             |                                         | [MP PET 1993]                                               |
|      | (a) $x^2 - 8y^2 = 0$                                         | (b) $x^2 + 8y^2 = 0$                                        | (c) $4x^2 - y^2 = 0$                    | (d) $x^2 - 4y^2 = 0$                                        |
| 154. | A(a,0) and $B(-a,0)$ are to                                  | vo fixed points of triangle ABC. T                          | he vertex <i>C</i> moves in such a      | way that $\cot A + \cot B = \lambda$ , where $\lambda$ is a |
|      | constant. Then the locus o                                   | f the point <i>C</i> is                                     |                                         | [MP PET 1981]                                               |
|      | (a) $y \lambda = 2a$                                         | (b) $ya = 2\lambda$                                         | (c) $y = \lambda a$                     | (d) None of these                                           |
| 155. | A line of fixed length (a +<br>divides this line into portio |                                                             | ways on two fixed perpendi              | cular lines. The locus of the point which                   |

divides this line into portions of lengths a and b is(a) A circle(b) An ellipse(c) A hyperbola(d) None of these

\*\*\*



Assianment (Basic and Advance Level)

| 1     | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| а     | С   | С   | С   | d   | а   | b   | d   | b   | d   | b   | b   | а   | d   | С   | С   | b   | С   | С   | С   |
| 21    | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 40  |
| С     | С   | С   | b   | а   | b   | b   | b   | а   | b   | b   | С   | d   | b   | С   | d   | d   | b   | С   | b   |
| 41    | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 50  | 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 60  |
| b     | С   | b   | b   | С   | С   | а   | С   | а   | С   | С   | d   | С   | а   | а   | а   | С   | С   | а   | b   |
| 61    | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 70  | 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  |
| С     | а   | С   | а   | a,c | b   | С   | b   | а   | d   | а   | b   | b   | b   | а   | С   | а   | а   | а   | b   |
| 81    | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 90  | 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 100 |
| a,c,d | b   | С   | d   | а   | b   | d   | b   | а   | а   | d   | d   | а   | а   | а   | а   | С   | d   | С   | С   |
| 101   | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
| b     | b   | b   | b   | а   | С   | С   | а   | а   | а   | b   | С   | d   | d   | d   | а   | а   | d   | С   | а   |
| 121   | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 |
| С     | d   | b   | С   | b   | b   | а   | а   | b   | а   | а   | а   | d   | b   | b   | b   | а   | b   | b   | d   |

# Indices and Surds 27

| 141 | 142 | 143 |   |   |   |   |   |   |   |   |   |   |   | 155 |
|-----|-----|-----|---|---|---|---|---|---|---|---|---|---|---|-----|
| b   | С   | b   | b | b | С | d | d | а | b | d | d | а | а | b   |