Sample Question Paper - 5 Class- X Session- 2021-22 TERM 1 Subject- Mathematics (Basic)

Maximum Marks: 40

Time Allowed: 1 hour and 30 minutes

General Instructions:

with 6 - 5 = 1.]

- 1. The question paper contains three parts A, B and C.
- 2. Section A consists of 20 questions of 1 mark each. Attempt any 16 questions.
- 3. Section B consists of 20 questions of 1 mark each. Attempt any 16 questions.
- 4. Section C consists of 10 questions based on two Case Studies. Attempt any 8 questions.
- 5. There is no negative marking.

Section A

Attempt any 16 questions

Which of the following numbers has non-terminating repeating decimal expansion? 1. [1] b) $\frac{35}{50}$ a) $\frac{17}{6}$ d) $\frac{23}{2}$ c) $\frac{15}{1600}$ 2. The value of 'k' for which the system of equations 3x + 5y = 0 and kx + 10y = 0 has a non zero [1] solution is a) 0 b) 8 d) 6 c) 2 3. In isosceles triangle ABC, if AB = AC = 25 cm and BC = 14 cm, then the measure of the altitude [1] from A on BC is a) 20 cm b) 18 cm c) 22 cm d) 24 cm If 4x + 6y = 3xy and 8x + 9y = 5xy then 4. [1] a) x = 3, y = 4 b) x = 2, y = 3 d) x = 1, y = -1 c) x = 1, y = 2 If θ is an acute angle such that $\cos \theta = \frac{3}{5}$, then $\frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =$ 5. [1] b) $\frac{16}{625}$ a) $\frac{1}{36}$ d) $\frac{3}{160}$ c) $\frac{160}{2}$ [1] If n is any natural number, then $6^n - 5^n$ always ends with 6. [Hint: For any $n \in N$, 6ⁿ and 5ⁿ end with 6 and 5 respectively. Therefore, 6ⁿ - 5ⁿ always ends

	a) 1	b) 5	
	c) 3	d) 7	
7.	The zeros of the quadratic polynomial ${\rm x}^2$	+ 88x + 125 are	[1]
	a) both negative	b) both positive	
	c) both equal	d) one positive and one negative	
8.	The length of the minute hand of a clock i minutes is	is 21 cm. The area swept by the minute hand in 10	[1]
	a) 252 cm ²	b) 126 cm ²	
	c) 231 cm ²	d) 210 cm ²	
9.	Which of the following expressions is not	a polynomial?	[1]
	a) $5x^3 - 3x^2 - \sqrt{x} + 2$	b) $5x^3 - 3x^2 - x + \sqrt{2}$	
	c) $5x^2 - \frac{2}{3}x + 2\sqrt{5}$	d) $\sqrt{5}x^3 - \frac{3}{5}x + \frac{1}{7}$	
10.	In \triangle ABC and \triangle DEF, we have $\frac{AB}{DE} = \frac{BC}{EF}$	$=rac{AC}{DF}=rac{5}{7}$, then $\mathrm{ar}(\Delta ABC):\mathrm{ar}(\Delta DEF)$ = ?	[1]
	a) 49 : 25	b) 125 : 343	
	c) 5 : 7	d) 25 : 49	
11.	The probability of getting a sum of 13 in a	a single throw of two dice is	[1]
	a) $\frac{5}{6}$	b) $\frac{1}{6}$	
	c) 0	d) 1	
12.	The LCM and HCF of two rational number	rs are equal, then the numbers must be	[1]
	a) equal	b) prime	
	c) co-prime	d) composite	
13.	If the area of a circle is equal to the sum of cm, then diameter of the larger circle (in	of the areas of two circles of diameters 10 cm and 24 cm) is	[1]
	a) 34	b) 26	
	c) 17	d) 14	
14.	If a chord of a circle of radius 28 cm make major segment is	es an angle of 90 ⁰ at the centre, then the area of the	[1]
	a) 1456 cm ²	b) 1848 cm ²	
	c) 392 cm ²	d) 2240 cm ²	
15	If D is a point on side BC of ΛABC such	that $BD = CD = AD$ and the AD is perpendicular to BC	[1]

15. If D is a point on side BC of $\triangle ABC$ such that BD = CD = AD, and the AD is perpendicular to BC, [1] then

	a) $AB^2 + AC^2 = BC^2$	b) $BD^2 + AC^2 = AB^2$	
	c) $CD^2 + BC^2 = AC^2$	d) AB.AC = AD^2	
16.	$\sqrt{(1-\cos^2 heta)\sec^2 heta}$ =		[1]
	a) tan $ heta$	b) $\cot heta$	
	c) $\sin heta$	d) $\cos\theta$	
17.	The value of k for which the system of equa	tions	[1]
	2x + 3y = 5 and		
	4x + ky = 10		
	has infinite number of solutions, is		
	a) 1	b) 6	
	c) 0	d) 3	
18.	Two dice are thrown simultaneously. The pr	robability that the product of the numbers	[1]
	appearing on the dice is 7 is		
	a) 7	b) 2	
	c) 0	d) 1	
19.	7 imes 11 $ imes$ 13 + 13 is a/an:		[1]
	a) odd number but not composite	b) square number	
	c) prime number	d) composite number	

20. In the given figure, a square OABC has been inscribed in the quadrant OPBQ. If OA = 20 cm [1] then the area of the shaded region is

Attempt any 16 questions

21.	The area of the triangle formed by $x + 3y = 6$, $2x - 3y = 12$ and the y-axis is		[1]
	a) 15 sq. units	b) 18 sq. units	
	c) 16 sq. units	d) 12 sq. units	
22.	In $ riangle ABC$ it is given that $rac{AB}{AC} = -$	$rac{BD}{DC}.$ If $igstarrow B=70^\circ$ and $igstarrow$ C = 50° then $igstarrow$ BAD = ?	[1]

	B D C		
	a) 30°	b) 50°	
	c) 45°	d) 40°	
23.	The sum of the exponents of the prime fac	ctors in the prime factorisation of 196, is	[1]
	a) 2	b) 1	
	c) 4	d) 6	
24.	If tan A = n tan B and sin A = m sin B, ther	$n\cos^2 A =$	[1]
	a) $rac{m^2-1}{n^2-1}$	b) $\frac{m^2+1}{m^2-1}$	
	c) $\frac{m^2+1}{m^2+1}$	d) $\frac{m^2-1}{m^2+1}$	
25.	If $6x + 3y = c - 3$ and $12x + cy = c$ has infini	itely many solutions, then $c =$	[1]
	a) 6	b) 5	
	c) 4	d) 3	
26.	A ladder 25 m long just reaches the top of distance of the foot of the ladder from the	a building 24 m high from the ground. What is the building?	[1]
	a) 14 m	b) 7 m	
	c) 21 m	d) 24.5 m	
27.	The areas of two similar triangles are 121 first triangle is 12.1 cm, then the correspo	$1\ cm^2$ and $64\ cm^2$ respectively. If the median of the ording median of the other triangle is equal to	[1]
	a) 11 cm.	b) 11.1 cm.	
	c) 8.1 cm.	d) 8.8 cm.	
28.	The ratio in which the line segment joinin	ng P(x_1 , y_1) and Q(x_2 , y_2) is divided by x-axis is	[1]
	a) y ₁ : y ₂	b) -y ₁ : y ₂	
	c) -x ₁ : x ₂	d) x ₁ : x ₂	
29.	If $tan^2 45^\circ - cos^2 30^\circ = x sin 45^\circ cos 45^\circ$, the	n x =	[1]
	a) $\frac{1}{2}$	b) $-\frac{1}{2}$	
	c) 2	d) -2	
30.	I am three times as old as my son. Five ye son. My present age is	ars later, I shall be two and a half times as old as my	[1]
	a) 20 years	b) 45 years	
	c) 15 years	d) 50 years	
31.	All non-terminating and non-recurring de	ecimal numbers are	[1]

	a) rational numbers	b) irrational numbers	
	c) integers	d) natural numbers	
32.	A rational number can be expressed as a non- denominator has the factors	-terminating repeating decimal if the	[1]
	a) none of these	b) other than 2 or 5 only	
	c) 2 or 5 only	d) 2 or 3 only	
33.	$(\ cosec heta-\cot heta)^2=?$		[1]
	a) $\frac{1+\sin\theta}{1-\sin\theta}$	b) $\frac{1-\cos\theta}{1+\cos\theta}$	
	c) None of these	d) $\frac{1+\cos\theta}{1-\cos\theta}$	
34.	The area of a circle inscribed in a square of si	de 'a' units is	[1]
	a) $rac{1}{3}\pi a^2 \; squares squares$	b) $\frac{1}{4}\pi a^2 \ squares t$	
	c) $\pi a^2 \; squares$	d) $\frac{1}{2}\pi a^2 \ squares d$	
35.	A bag contains 4 red and 6 black balls. A ball probability of getting a black ball?	is taken out of the bag at random. What is the	[1]
	a) $\frac{2}{5}$	b) $\frac{3}{5}$	
	c) $\frac{1}{10}$	d) None of these	
36.	Aruna has only Re 1 and Rs 2 coins with her. I the amount of money with her is Rs 75, then t respectively	If the total number of coins that she has is 50 and he number of Rs 1 and Rs 2 coins are,	[1]
	a) 35 and 15	b) 35 and 20	
	c) 15 and 35	d) 25 and 25	
37.	The decimal expansion of π :		[1]
	a) is non-terminating and non- recurring	b) is terminating	
	c) does not exist	d) is non-terminating and recurring	
38.	$rac{1 + an^2 heta}{ ext{sec}^2 heta} =$		[1]
	a) ${ m sec}^2 heta$	b) 1	
	c) $\frac{1}{\sin^2\theta - \cos^2\theta}$	d) $\frac{1}{3}$	
39.	A number is selected at random from the num	nbers 3, 5, 5, 7, 7, 7, 9, 9, 9, 9. The probability that	[1]
	the selected number is their average is		
	a) $\frac{7}{10}$	b) $\frac{3}{10}$	
	c) $\frac{9}{10}$	d) $\frac{1}{10}$	
40.	The distance between the points $(\cos\theta, \sin\theta)$ a	and $(\sin\theta, -\cos\theta)$ is	[1]

a)
$$\sqrt{3}$$
 b) $\sqrt{2}$

c) 2 d) 1

Section C

Attempt any 8 questions

Question No. 41 to 45 are based on the given text. Read the text carefully and answer the questions:

While playing badminton Ronit seeing the barrier chains hung between two posts at the edge of the walk way of a street. It is hung in the shape of the parabola. Parabola is the graphical representation of a particular type of polynomial.

41.	Which of the following polynomial is graphically represented by a parabola? [0		[0.71]
	a) Cubic polynomial	b) Linear polynomial	
	c) None of these	d) Quadratic polynomial	
42.	If a polynomial, represented by a parabola, in	ntersects the x-axis at -3, 4 and y-axis at -2,	[0.71]
	then its zero(es) is/are		
	a) -3 and 3	b) -1, 2 and -2	
	c) 2 and -2	d) -1	
43.	If the barrier chains between two posts is rep	presented by the polynomial $x^2 - x - 12$, then its	[0.71]
	zeroes are		
	a) 4, -5	b) 4, -3	
	c) -2, 5	d) 4, 3	
44.	The sum of zeroes of the polynomial $4x^2$ - $9x$	+ 2 is	[0.71]
	a) $\frac{1}{4}$	b) $\frac{-9}{4}$	
	c) $\frac{2}{4}$	d) $\frac{9}{4}$	
45.	The reciprocal of the product of zeroes of the	polynomial x ² - 9x + 20 is	[0.71]
	a) 20	b) $\frac{1}{8}$	
	c) 5	d) $\frac{1}{20}$	
Que	Question No. 46 to 50 are based on the given text. Read the text carefully and answer the		

questions:

In an examination hall, students are seated at a distance of 2 due to the CORONA virus pandemic. Let three students sit at (7, 3) and (8, 5) respectively.

46.	The distance between A and C is		[1]
	i. $\sqrt{5}$ units		
	ii. $4\sqrt{5}$ units		
	iii. $3\sqrt{5}$ units		
	iv. none of the above		
	a) Option (iv)	b) Option (i)	
	c) Option (iii)	d) Option (ii)	
47.	If an invigilator at point 7, lying on the	e straight line joining B and C such that it divides the	[1]
	distance between them in the ratio of	1 : 2. Then coordinates of I are	
	a) $\left(\frac{22}{3}, \frac{11}{3}\right)$	b) (6, 1)	
	c) $\left(\frac{23}{3}, \frac{13}{3}\right)$	d) (9, 1)	
48.	The mid-point of the line segment join	ing A and C is	[1]
	a) $\left(\frac{11}{2}, 0\right)$	b) none of the above	
	c) (6, 1)	d) (1, 6)	
49.	The ratio in which B divides the line s	egment joining A and C is	[1]
	a) 3 : 1	b) none of these	
	c) 2 : 1	d) 1 : 2	
50.	The points A, B and C lie on		[1]
	a) a straight line	b) a scalene triangle	
	c) an equilateral triangle	d) an isosceles triangle	

Solution

Section A

1. (a) $\frac{17}{6}$

Explanation: $\frac{17}{6}$ has a non-terminal repeating decimal expansion. $\frac{17}{6} = 2.6333...$

2. **(d)** 6

Explanation: For non-zero solution $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \Rightarrow \frac{3}{k} = \frac{5}{10} = \frac{0}{0}$ Taking, $\frac{3}{k} = \frac{5}{10} \Rightarrow k = \frac{3 \times 10}{5} = 6$

3. **(d)** 24 cm

Explanation: Since in isosceles triangle ABC, the altitudes bisect the opposite side. (The altitude and median coincide)

: BD =
$$\frac{BC}{2} = \frac{14}{2}$$
 = 7 cm Now, in $\triangle ABD$,
AD = $\sqrt{AB^2 - BD^2}$
= $\sqrt{(25)^2 - (7)^2}$
= $\sqrt{625 - 49}$
= $\sqrt{576}$ = 24 cm

4. **(a)** x = 3, y = 4

Explanation: Divide throughout by xy and put $\frac{1}{x} = u$ and $\frac{1}{y} = v$ to get 4v + 6u = 3(i) and 8v + 9u = 5(ii)

This gives
$$u = \frac{1}{3}$$
 and $v = \frac{1}{4}$. Hence, $x = 3$ and $y = 4$.

5. (d) $\frac{3}{160}$

Explanation: $\cos \theta = \frac{3}{5} = \frac{\text{Base}}{\text{Hypotenuse}}$ By Pythagoras Theorem, (Hypotenuse)² = (Base)²+ (Alt.)² $\Rightarrow (5)^2 = (3)^2 + (alt.)^2$ $\Rightarrow 25 = 9 + (alt)^2 \Rightarrow (alt)^2 = 25 - 9 = 16 = (4)^2$ Alt. = 4 Now, $\sin \theta = \frac{\text{Alt.}}{\text{Hypotenuse}} = \frac{4}{5}$ and $\tan \theta = \frac{\text{Alt.}}{\text{Base}} = \frac{4}{3}$ $\therefore \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} = \frac{\frac{4}{5} \times \frac{4}{3} - 1}{2 \times (\frac{4}{3})^2} = \frac{\frac{16}{15} - 1}{2 \times \frac{16}{9}}$ $= \frac{\frac{1}{15}}{\frac{32}{9}} = \frac{1}{15} \times \frac{9}{32} = \frac{3}{160}$

6. **(a)** 1

Explanation: We know that 6^n will end in 6 And 5^n will end in 5 Now, $6^n - 5^n$ always end with 6 - 5 = 1

7. (a) both negative Explanation: Given; $x^2 + 88x + 125 = 0$ $D = (88)^2 - 4(1)(125)$ D = 7244Now,

$$x = rac{-(88)\pm\sqrt{7244}}{2(1)}$$

 $\Rightarrow x = rac{-88+2\sqrt{1811}}{2}$
There roots are $x = -44 + \sqrt{1811}, -44 - \sqrt{1811}$

8. **(c)** 231 cm^2

Which are both negative.

Explanation: Area swept by minute hand in 60 minutes = πR^2 Area swept by it in 10 minutes = $\left(\frac{\pi R^2}{60} \times 10\right) \operatorname{cm}^2 = \left(\frac{22}{7} \times 21 \times 21 \times \frac{1}{6}\right) \operatorname{cm}^2$ = 231 cm²

9. (a) $5x^3 - 3x^2 - \sqrt{x} + 2$

Explanation: $5x^3 - 3x^2 - \sqrt{x} + 2$ is not a polynomial because each term of a polynomial should be a product of a constant and one or more variable raised to a positive, zero or integral power. Here \sqrt{x} does not satisfy the condition of being a polynomial.

10. **(d)** 25 : 49

Explanation: In $\triangle ABC$ and $\triangle DEF$, $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF} = \frac{5}{7}$ Then, area ($\triangle ABC$): area ($\triangle DEF$) $= \frac{AB^2}{DE^2} = (\frac{5}{7})^2 = 25:49$

11. **(c)** 0

Explanation: Elementary events are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6) (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6) (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6) (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6) (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6) (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6) \therefore Number of Total outcomes = 36 And Number of possible outcomes (sum of numbers appearing on die is 13) = 0 \therefore Required Probability = $\frac{0}{36} = 0$

12. **(a)** equal

Explanation: If we assume that a and b are equal and consider a = b = k Then, HCF (a, b)= k LCM (a, b) = k

13. **(b)** 26

Explanation: Area of first circle of radius = $\frac{10}{2}$ = 5 cm = $\pi r^2 = \pi \times (5)^2 \text{ cm}^2 = 25\pi \text{ cm}^2$ and area of second circle of radius = $\frac{24}{2}$ = 12 cm = $\pi (12)^2 \text{ cm}^2$ = 144 π cm² \therefore Total area = $(25\pi + 144\pi) \text{ cm}^2 = 169\pi \text{ cm}^2$

 \therefore Area of larger circle = 169π cm²

$$\therefore$$
 Radius = $\sqrt{\frac{\text{Area}}{\pi}} = \sqrt{\frac{169\pi}{\pi}} = \sqrt{169}$
= 13 cm

: Diameter = 2
$$\times$$
 radius = 2 \times 13 = 26 cm²

14. **(d)** 2240 cm²

Explanation: A chord AB makes an angle of 90^o at the centre Radius of the circle = 28 cm

Area of minor segment ACB

$$= \pi r^{2} \times \frac{\theta}{360^{\circ}} - \operatorname{area} \text{ of } \triangle AOB$$

$$= \pi r^{2} \times \frac{\theta^{\circ}}{360^{\circ}} - \frac{1}{2} \text{ OA} \times \text{ OB}$$

$$= \frac{1}{4} \pi r^{2} - \frac{1}{2} \times r^{2}$$

$$= \frac{1}{4} \times \frac{22}{7} \times 28 \times 28 - \frac{1}{2} \times 28 \times 28$$

$$= 616 - 392$$

$$= 224 \text{ cm}^{2}$$

$$\therefore \text{ Area of the major segment ADB}$$

$$= \text{ Area of circle - area of minor segment}$$

$$= \pi r^{2} - 224 = \frac{22}{7} \times 28 \times 28 - 224$$

$$= 2464 - 224$$

$$= 2240 \text{ sq. cm}$$
(a) AB² + AC² = BC²
Explanation: In triangle ADC, AC² = AD² + CD²
In triangle ABD, AB² = AD² + BD²
Adding both equations,
AC² + AB² = 2AD² + CD² + BD²

$$\Rightarrow AC^{2} + AB^{2} = 2CD.BD + CD^{2} + BD^{2}$$
[Since BD = CD = AD]

$$\Rightarrow AB^{2} + AC^{2} = (BD + CD)^{2}$$

 $\Rightarrow AB^2 + AC^2 = BC^2$ 16. (a) $\tan \theta$

15.

(a) $\tan\theta$ Explanation: Here $\sqrt{(1 - \cos^2\theta) \sec^2\theta}$ $= \sqrt{\sin^2\theta \times \frac{1}{\cos^2\theta}}$ [:: $1 - \cos^2\theta = \sin^2\theta$ and $\sec^2\theta = \frac{1}{\cos^2\theta}$ $= \sqrt{\frac{\sin^2\theta}{\cos^2\theta}}$ $= \sqrt{\tan^2\theta}$ $= \tan\theta$

17. **(b)** 6

Explanation: The given system of equations are 2x + 3y = 54x + ky = 10

For the equations to have infinite number of solutions, $rac{a_1}{a_2}=rac{b_1}{b_2}=rac{c_1}{c_2}$

Here, we must have

Therefore
$$\frac{2}{4} = \frac{3}{k} = \frac{5}{10}$$

 $\Rightarrow \frac{2}{4} = \frac{3}{k}$
 $\Rightarrow 2k = 12$
 $\Rightarrow k = \frac{12}{2}$
 $\Rightarrow k = 6$

18. **(c)** 0

Explanation: Elementary events are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)

(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6) (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6) (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6) (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6) (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6) \therefore Number of Total outcomes = 36 And Number of possible outcomes (product of numbers appearing on die is 7) = 0 \therefore Required Probability = $\frac{0}{36} = 0$ (d) composite number **Explanation:** We have $7 \times 11 \times 13 + 13 = 13 (77 + 1) = 13 \times 78$. Since the given number has 2 more factors other than 1 and itself, therefore it is a composite number.

20. **(c)** 228 cm²

19.

Explanation: Correct option: (b) Side of a square = 20cm Area of the square = (20×20) cm² = 400cm² Diagonal of square = $\sqrt{(20)^2 + (20)^2} = \sqrt{800} = 20\sqrt{2}$ cm = Radius of the quadrant = $20\sqrt{2}$ cm Area of a quadrant = $\frac{1}{4} \times 3.14 \times (20\sqrt{2})^2 = 628$ cm² Thus, area of the shaded region = Area of a quadrant - Area of the square =(628 - 400)cm² = 228cm²

Section **B**

21. **(b)** 18 sq. units

Explanation: Here are the two solutions of each of the given equations. x + 3y = 6

22. **(a)** 30°

Explanation:

23. **(c)** 4

Explanation:

Using the factor tree for prime factorisation, we have:

7

Therefore,

 $egin{aligned} 196 &= 2 imes 2 imes 7 imes 7 \ 196 &= 2^2 imes 7^2 \end{aligned}$

 $190 = 2 \times 7$

 $rac{m^2-1}{n^2-1}$

The exponents of 2 and 7 are 2 and 2 respectively. Thus the sum of the exponents is 4.

Explanation: Given: tanA = n tanB

$$\Rightarrow \frac{1}{\tan B} = \frac{n}{\tan A}$$

$$\Rightarrow \cot B = \frac{n}{\tan A}$$
And sin A = m sin B
$$\Rightarrow \frac{1}{\sin B} = \frac{m}{\sin A}$$

$$\Rightarrow \operatorname{cosec} B = \frac{n}{\sin A}$$
Now, cosec²B - cot²B = 1
$$\Rightarrow \frac{m^{2}}{\sin^{2}A} - \frac{n^{2}}{\tan^{2}A} = 1$$

$$\Rightarrow \frac{m^{2}}{\sin^{2}A} - \frac{n^{2}\cos^{2}A}{\sin^{2}A} = 1$$

$$\Rightarrow m^{2} - n^{2}\cos^{2}A = \sin^{2}A$$

$$\Rightarrow m^{2} - n^{2}\cos^{2}A = 1 - \cos^{2}A$$

$$\Rightarrow m^{2} - 1 = (n^{2} - 1)\cos^{2}A$$

$$\Rightarrow \cos^{2}A = \frac{m^{2} - 1}{n^{2} - 1}$$

25. **(a)** 6

Explanation: Given: $a_1 = 6$, $a_2 = 12$, $b_1 = 3$, $b_2 = c$, $c_1 = c - 3$, $c_2 = c$ Since the pair of given linear equations has infinitely many solutions,

Let the ladder BC reaches the building at C. Let the height of building where the ladder reaches be AC.

According to the question:

BC = 25 m

AC = 24 m

In right-angled triangle CAB, we apply Pythagoras theorem to find the value of AB.

 $BC^{2} = AC^{2} + AB^{2}$ $\Rightarrow AB^{2} = BC^{2} - AC^{2} = 25^{2} - 24^{2}$ $\Rightarrow AB^{2} = 625 - 576 = 49$ $\Rightarrow AB = \sqrt{49} = 7m$

27. (d) 8.8 cm.

Explanation: Let the two similar triangles be ΔABC and ΔPQR such that ar (ΔABC) = 121 cm² and ar (ΔPQR) = 64 cm². Let AM and PN be the respective medians of ΔABC and ΔPQR . Since the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding medians

28. **(b)** -y₁ : y₂

Explanation: Let a point A on x-axis divides the line segment joining the points $P(x_1, y_1) Q(x_2, y_2)$ in the ratio $m_1 : m_2$ and

let co-ordinates of A be (x, 0)

$$\therefore 0 = rac{m_1 y_2 + m_2 y_1}{m_1 + m_2} \Rightarrow 0 = m_1 y_2 + m_2 y_1$$

 $\Rightarrow m_1 y_2 = -m_2 y_1 \Rightarrow rac{m_1}{m_2} = rac{-y_1}{y_2}$
 \therefore Ratio is $-y_1 : y_2$

29. (a) $\frac{1}{2}$

Explanation: $\tan^2 45^\circ - \cos^2 30^\circ = x \sin 45^\circ \cos 45^\circ$

$$\Rightarrow (1)^2 - \left(\frac{\sqrt{3}}{2}\right)^2 = x \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \Rightarrow 1 - \frac{3}{4} = x \times \frac{1}{2}$$
$$\Rightarrow \frac{1}{4} = \frac{1}{2}x \Rightarrow x = \frac{1}{4} \times \frac{2}{1} = \frac{1}{2}$$

30. **(b)** 45 years

Explanation: Let my age and son's age be x and y years.

Given, x = 3y x + 5 = $\frac{5(y+5)}{2}$ $\Rightarrow 3y + 5 = \frac{5(y+5)}{2}$ $\Rightarrow 6y + 10 = 5y + 25$ $\Rightarrow y = 15$ x = 3 × 15 = 45

Hence, my age and son's age are 45 years and 15 years.

31. **(b)** irrational numbers

Explanation: All non-terminating and non-recurring decimal numbers are irrational numbers. A number is rational if and only if its decimal representation is repeating or terminating.

32. **(b)** other than 2 or 5 only

Explanation: A rational number can be expressed as a **non-terminating** repeating decimal if the denominator has the factors other than 2 or 5 only.

33. **(b)**
$$\frac{1-\cos\theta}{1+\cos\theta}$$

Explanation: $(\cos ec\theta - \cot \theta)^2 = \left(\frac{1}{\sin \theta} - \frac{\cos \theta}{\sin \theta}\right)^2 = \frac{(1 - \cos \theta)^2}{\sin^2 \theta} = \frac{(1 - \cos \theta)^2}{(1 - \cos^2 \theta)} = \frac{(1 - \cos \theta)}{(1 + \cos \theta)}$

34. **(b)** $\frac{1}{4}\pi a^2$ squares

According to the question, Diameter of circle = side of a square $\Rightarrow d = a$ $\Rightarrow r = \frac{a}{2}$

Now, Area of the circle = $\pi r^2 = \pi \left(\frac{a}{2}\right)^2$ \Rightarrow Area of the circle = $\frac{1}{4}\pi a^2$ sq. units

35. **(b)** $\frac{3}{5}$

Explanation: Total number of balls in the bag = 4 + 6 = 10. Number of black balls = 6. \therefore P (getting a black ball) = $\frac{6}{10} = \frac{3}{5}$.

36. **(d)** 25 and 25

Explanation: Let number of Rs 1 coins = x and number of Rs 2 coins = y Now, by given conditions: Total number of coins = x + y = 50 ...(i) Also, Amount of money with her = (Number of Rs 1 × 1) + (Number of Rs 2 × coin 2) = x(1) + y(2) = 75= x + 2y = 75 ...(ii) On subtracting Eq. (i) from Eq. (ii), we get (x + 2y) - (x + y) = (75 - 50) So, y = 25 Putting y = 25 we get x = 25. Hence he has 25 one-rupee coins and 25 2-rupee coins.

- 37. (a) is non-terminating and non-recurring **Explanation:** The value of π = 3.141592653589... Therefore the value of π is not-repeating decimal, non-terminating and non-recurring numbers.
- 38. **(b)** 1

Explanation: Given: $\frac{1+\tan^2\theta}{\sec^2\theta}$ = $\frac{\sec^2\theta}{\sec^2\theta} = 1$ [$\therefore \sec^2\theta = 1 + \tan^2\theta$]

39. **(b)** $\frac{3}{10}$

Explanation: Total numbers are $\Sigma x_i = 10$

X	f
3	1
5	2
7	3
9	4

Average =
$$\frac{3 \times 1 + 5 \times 2 + 7 \times 3 + 9 \times 4}{10}$$

= $\frac{3 + 10 + 21 + 36}{10} = \frac{70}{10} = 7$
 \therefore m = 3

 \therefore Probability of average number = $\frac{3}{10}$

40. **(b)** $\sqrt{2}$

Explanation: Distance between $(\cos \theta, \sin \theta)$ and $(\sin \theta, -\cos \theta)$

$$egin{aligned} &= \sqrt{\left(x_2 - x_1
ight)^2 + \left(y_2 - y_1
ight)^2} \ &= \sqrt{(-\cos heta - \sin heta)^2 + (\sin heta - \cos heta)^2} \ &= \sqrt{1 + 1} = \sqrt{2} \left\{ \because \sin^2 heta + \cos^2 heta = 1
ight\} \end{aligned}$$

Section C

41. **(d)** Quadratic polynomial **Explanation:** Quadratic polynomial

42. (a) -3 and 3

Explanation: Since, the parabola intersects the x-axis at = -3 and 4. So, zeroes of the polynomial are -3 and 4.

43. **(b)** 4, -3

Explanation: Let $f(x) = x^2 - x - 12$

 $= x^{2} - 4x + 3x - 12 = (x + 3)(x - 4)$

Consider f(x) = 0
$$\Rightarrow$$
 (x + 3)(x - 4) = 0 \Rightarrow x = 4, -3

44. (d) $\frac{9}{4}$

Explanation: Sum of zeroes = $-\frac{\text{Coefficient of } x}{\text{Coefficient of } x^2}$ = $-\frac{(-9)}{4} = \frac{9}{4}$

45. (d) $\frac{1}{20}$

Explanation: Product of zeroes = $\frac{20}{1} = 20$ \therefore Reciprocal of product of zeroes = $\frac{1}{20}$

46. **(d)** Option (ii) **Explanation:** The distance between A and C

=
$$\sqrt{(8-4)^2 + (5+3)^2} = \sqrt{4^2 + 8^2}$$

= $\sqrt{16+64} = \sqrt{80} = 4\sqrt{5}$ units

47.

(a) $\left(\frac{22}{3}, \frac{11}{3}\right)$ Explanation: Let the coordinates of I be (x, y)

$$\frac{1:2}{B(7,3) \quad I(x,y) \quad C(8,5)}$$

Then, by section formula,
 $x = \frac{1 \times 8 + 2 \times 7}{1+2} = \frac{8 + 14}{3} = \frac{22}{3}$
and $y = \frac{1 \times 5 + 2 \times 3}{1+2} = \frac{5+6}{3} = \frac{11}{3}$
Thus, the coordinates of I is $\left(\frac{22}{3}, \frac{11}{3}\right)$

(c) (6, 1) 48.

Explanation: The mid-point of A and C

$$=\left(\frac{8+4}{2},\frac{5-3}{2}\right)=(6,1)$$

49. (a) 3:1

> Explanation: Let B divides the line segment joining A and C in the ratio k : 1. Then, the coordinates of B will be $\left(\frac{8k+4}{5k-3}\right)$

Thus, we have
$$\left(\frac{8k+4}{k+1}, \frac{5k-3}{k+1}\right) = (7, 3)$$

 $\Rightarrow \frac{8k+4}{k+1} = 7$ and $\frac{5k-3}{k+1} = 3$
Consider, $\frac{8k+4}{k+1} = 7 \Rightarrow 8k + 4 = 7k + 7 \Rightarrow k = 3$
Hence, the required ratio is $3:1$.

50. (a) a straight line

Explanation: : B divides AC in the ratio 3 : 4. : A, B, C lie on a straight line.