
89

Learning Objectives

Aft er studying this chapter, students will be
able to:

• Understand the concept of function and
their types.

• Know the diff erence between User
defi ned and Built in functions.

• Know how to call a function.

• Understand the function arguments.

• Know Anonymous functions.

• Know Mathematical and some String
functions.

Introduction7.1

 Functions are named blocks of code
that are designed to do specifi c job. When
you want to perform a particular task that
you have defi ned in a function, you call
the name of the function responsible for it.
If you need to perform that task multiple
times throughout your program, you don’t
need to type all the code for the same task
again and again; you just call the function
dedicated to handling that task, and the
call tells Python to run the code inside the
function. You’ll fi nd that using functions
makes your programs easier to write, read,
test, and fi x errors.

Unit II
CHAPTER 7

PYTHON FUNCTIONS

Main advantages of functions are

• It avoids repetition and makes high degree
of code reusing.

• It provides better modularity for your
application.

Functions are nothing but a group
of related statements that perform a
specifi c task.

Note

7.1.1 Types of Functions

 Basically, we can divide functions
into the following types:

1 User-defined Functions

Built-in Functions
Lambda Functions

Recursion Functions

2

3

4

Figure – 7.1 – Types of Python Functions

Functions Description

User-defined
functions

Functions defined by
the users themselves.

Built-in
functions

Functions that are
inbuilt with in Python.

Lambda
functions

Functions that are
anonymous un-named
function.

XII Std - CS EM Chapter-7.indd 89 24-01-2020 11:03:48

90 91XII Std Computer Science Python Functions

Recursion
functions

Functions that calls
itself is known as
recursive.

Table – 7.1 – Python Functions and it's
Description

Defining Functions7.2

 Functions must be defined, to create
and use certain functionality. There are
many built-in functions that comes with the
language python (for instance, the print()
function), but you can also define your own
function. When defining functions there are
multiple things that need to be noted;

• Function blocks begin with the keyword
“def ” followed by function name and
parenthesis ().

• Any input parameters or arguments
should be placed within these
parentheses when you define a function.

• The code block always comes after a
colon (:) and is indented.

• The statement “return [expression]”
exits a function, optionally passing back
an expression to the caller. A “return”
with no arguments is the same as return
None.

Python keywords should not be used
as function name.

Note

7.2.1 Syntax for User defined function

def <function_name ([parameter1, parameter2…])> :
 <Block of Statements>
 return <expression / None>

In the above Syntax, the Text
which is given in square
bracket [] is optional.

Note

 A block is one or more lines of
code, grouped together so that they
are treated as one big sequence of
statements while execution. In Python,
statements in a block are written with
indentation. Usually, a block begins
when a line is indented (by four
spaces) and all the statements of the
block should be at same indent level.

Block:
 A block within a block is called
nested block. When the first block
statement is indented by a single tab
space, the second block of statement is
indented by double tab spaces.

Nested Block:

Here is an example of defining a function;

Do_Something():
value =1 #Assignment Statement
return value #Return Statement

XII Std - CS EM Chapter-7.indd 90 24-01-2020 11:03:48

90 91XII Std Computer Science Python Functions

 Now let’s check out functions in action so you can visually see how they work within a
program. Here is an example for a simple function to display the given string.

def hello():
 print (“hello - Python”)
 return

Example:

7.2.2 Advantages of User-defined Functions

1. Functions help us to divide a program into modules. This makes the code easier to
manage.

2. It implements code reuse. Every time you need to execute a sequence of statements, all
you need to do is to call the function.

3. Functions, allows us to change functionality easily, and different programmers can work
on different functions.

Calling a Function7.3

 To call the hello() function from example 7.2-1, you use this code:

 When you call the “hello()” function, the program displays the following string as
output:

Output
 hello – Python

 Alternatively we can call the “hello()” function within the print() function as in the
example given below.

def hello():
 print (“hello - Python”)
 return
print (hello())

Example:

 If the return has no argument, “None” will be displayed as the last statement of the
output.

The above function will output the following.

Output:
 hello – Python
 None

XII Std - CS EM Chapter-7.indd 91 24-01-2020 11:03:49

92 93XII Std Computer Science Python Functions

7.4 Passing Parameters in Functions

 Parameters or arguments can be passed to functions

def function_name (parameter(s) separated by comma):

 Let us see the use of parameters while defining functions. The parameters that you
place in the parenthesis will be used by the function itself. You can pass all sorts of data to the
functions. Here is an example program that defines a function that helps to pass parameters
into the function.

assume w = 3 and h = 5
 def area(w,h):
 return w * h
 print (area (3,5))

Example:

 The above code assigns the width and height values to the parameters w and h. These
parameters are used in the creation of the function “area”. When you call the above function,
it returns the product of width and height as output.

 The value of 3 and 5 are passed to w and h respectively, the function will return 15 as
output.

 We often use the terms parameters and arguments interchangeably. However, there
is a slight difference between them. Parameters are the variables used in the function
definition whereas arguments are the values we pass to the function parameters

Function Arguments7.5

 Arguments are used to call a function and there are primarily 4 types of functions that
one can use: Required arguments, Keyword arguments, Default arguments and Variable-length
arguments.

XII Std - CS EM Chapter-7.indd 92 24-01-2020 11:03:49

92 93XII Std Computer Science Python Functions

Function Arguments

1 Required arguments

2 Keyword arguments

3 Default arguments

4 Variable-length arguments

7.5.1 Required Arguments

 “Required Arguments” are the arguments passed to a function in correct positional
order. Here, the number of arguments in the function call should match exactly with the
function defi nition. You need atleast one parameter to prevent syntax errors to get the required
output.

def printstring(str):
 print ("Example - Required arguments ")
 print (str)
 return
Now you can call printstring() function
printstring()

Example :

 When the above code is executed, it produces the following error.

Traceback (most recent call last):
File "Req-arg.py", line 10, in <module>
printstring()

TypeError: printstring() missing 1 required positional argument: 'str'

 Instead of printstring() in the above code if we use printstring (“Welcome”) then the
output is

Output:
 Example - Required arguments
 Welcome

XII Std - CS EM Chapter-7.indd 93 24-01-2020 11:03:49

94 95XII Std Computer Science Python Functions

7.5.2 Keyword Arguments

 Keyword arguments will invoke the function after the parameters are recognized by
their parameter names. The value of the keyword argument is matched with the parameter
name and so, one can also put arguments in improper order (not in order).

def printdata (name):
 print (“Example-1 Keyword arguments”)
 print (“Name :”,name)
 return
Now you can call printdata() function
printdata(name = “Gshan”)

Example:

 When the above code is executed, it produces the following output :

Output:
 Example-1 Keyword arguments
 Name :Gshan

def printdata (name):
 print (“Example-2 Keyword arguments”)
 print (“Name :”, name)
 return
Now you can call printdata() function
printdata (name1 = “Gshan”)

Example:

 When the above code is executed, it produces the following result :

TypeError: printdata() got an unexpected keyword argument 'name1'

def printdata (name, age):
 print ("Example-3 Keyword arguments")
 print ("Name :",name)
 print ("Age :",age)
 return
Now you can call printdata() function
printdata (age=25, name="Gshan")

Example:

XII Std - CS EM Chapter-7.indd 94 24-01-2020 11:03:49

94 95XII Std Computer Science Python Functions

 When the above code is executed, it produces the following result:

Output:
 Example-3 Keyword arguments
 Name : Gshan
 Age : 25

In the above program the parameters orders are changed
Note

7.5.3 Default Arguments
 In Python the default argument is an argument that takes a default value if no value
is provided in the function call. The following example uses default arguments, that prints
default salary when no argument is passed.

def printinfo(name, salary = 3500):
 print (“Name: “, name)
 print (“Salary: “, salary)
 return
printinfo(“Mani”)

Example:

 When the above code is executed, it produces the following output

Output:
 Name: Mani
 Salary: 3500

 When the above code is changed as print info(“Ram”,2000) it produces the following
output:

Output:
 Name: Ram
 Salary: 2000

 In the above code, the value 2000 is passed to the argument salary, the default value
already assigned for salary is simply ignored.

XII Std - CS EM Chapter-7.indd 95 24-01-2020 11:03:49

96 97XII Std Computer Science Python Functions

7.5.4 Variable-Length Arguments
 In some instances you might need to pass more arguments than have already been
specified. Going back to the function to redefine it can be a tedious process. Variable-Length
arguments can be used instead. These are not specified in the function’s definition and an
asterisk (*) is used to define such arguments.

 Lets see what happens when we pass more than 3 arguments in the sum() function.

def sum(x,y,z):
 print("sum of three nos :",x+y+z)
sum(5,10,15,20,25)

Example:

 When the above code is executed, it produces the following result :

TypeError: sum() takes 3 positional arguments but 5 were given

7.5.4.1 Syntax - Variable-Length Arguments

def function_name(*args):
 function_body
 return_statement

def printnos (*nos):
 for n in nos:
 print(n)
 return
now invoking the printnos() function
print ('Printing two values')
printnos (1,2)
print ('Printing three values')
printnos (10,20,30)

Example:

Output:
 Printing two values
 1
 2
 Printing three values
 10
 20
 30

Evaluate Yourself ?

 In the above program change the function name printnos as printnames in all places
wherever it is used and give the appropriate data Ex. printnos (10, 20, 30) as printnames ('mala',
'kala', 'bala') and see output.

XII Std - CS EM Chapter-7.indd 96 24-01-2020 11:03:49

96 97XII Std Computer Science Python Functions

In Variable Length arguments we can pass the arguments using two methods.

1. Non keyword variable arguments

2. Keyword variable arguments

 Non-keyword variable arguments are called tuples. You will learn more about tuples in
the later chapters. The Program given is an illustration for non keyword variable argument.

Keyword variable arguments are beyond the scope of this book.
Note

 The Python’s print() function is itself an example of such a function which
supports variable length arguments.

Anonymous Functions7.6

What is anonymous function?
 In Python, anonymous function is a function that is defined without a name. While
normal functions are defined using the def keyword, in Python anonymous functions are
defined using the lambda keyword. Hence, anonymous functions are also called as lambda
functions.

What is the use of lambda or anonymous function?
• Lambda function is mostly used for creating small and one-time anonymous function.

• Lambda functions are mainly used in combination with the functions like filter(), map()
and reduce().

filter(), map() and reduce() functions are beyond the scope of this book.
Note

 Lambda function can take any number of arguments and must return one
value in the form of an expression. Lambda function can only access global variables

and variables in its parameter list.

XII Std - CS EM Chapter-7.indd 97 24-01-2020 11:03:49

98 99XII Std Computer Science Python Functions

7.6.1 Syntax of Anonymous Functions
 The syntax for anonymous functions is as follows:

lambda [argument(s)] :expression
sum = lambda arg1, arg2: arg1 + arg2
print ('The Sum is :', sum(30,40))
print ('The Sum is :', sum(-30,40))

Output:
 The Sum is : 70
 The Sum is : 10

Example:

 The above lambda function that adds argument arg1 with argument arg2 and stores the
result in the variable sum. The result is displayed using the print().

The return Statement7.7

• The return statement causes your function to exit and returns a value to its caller. The
point of functions in general is to take inputs and return something.

• The return statement is used when a function is ready to return a value to its caller. So,
only one return statement is executed at run time even though the function contains
multiple return statements.

• Any number of 'return' statements are allowed in a function definition but only one of
them is executed at run time.

7.7.1 Syntax of return

return [expression list]

 This statement can contain expression which gets evaluated and the value is returned.
If there is no expression in the statement or the return statement itself is not present inside a
function, then the function will return the None object.

XII Std - CS EM Chapter-7.indd 98 24-01-2020 11:03:49

98 99XII Std Computer Science Python Functions

return statment
def usr_abs (n):
 if n>=0:
 return n
 else:
 return –n
Now invoking the function
x=int (input(“Enter a number :”)
print (usr_abs (x))
Output 1:
 Enter a number : 25
 25
Output 2:
 Enter a number : -25
 25

Example :

Scope of Variables7.8

 Scope of variable refers to the part of the program, where it is accessible, i.e., area where
you can refer (use) it. We can say that scope holds the current set of variables and their values.
We will study two types of scopes - local scope and global scope.

7.8.1 Local Scope

 A variable declared inside the function's body or in the local scope is known as local
variable.

Rules of local variable

• A variable with local scope can be accessed only within the function/block that it is created
in.

• When a variable is created inside the function/block, the variable becomes local to it.

• A local variable only exists while the function is executing.

• The formal arguments are also local to function.

XII Std - CS EM Chapter-7.indd 99 24-01-2020 11:03:49

100 101XII Std Computer Science Python Functions

def loc():
 y=0 # local scope
 print(y)
loc()
Output:
 0

Example : Create a Local Variable

def loc():
 y = "local"
loc()
print(y)

Example : Accessing local variable outside the scope

 When we run the above code, the output shows the following error:

 The above error occurs because we are trying to access a local variable ‘y’ in a global
scope.

NameError: name 'y' is not defined

7.8.2 Global Scope
 A variable, with global scope can be used anywhere in the program. It can be created by
defining a variable outside the scope of any function/block.

Rules of global Keyword

The basic rules for global keyword in Python are:

• When we define a variable outside a function, it’s global by default. You don’t have to use
global keyword.

• We use global keyword to read and write a global variable inside a function.

• Use of global keyword outside a function has no effect
Use of global Keyword

c = 1 # global variable
def add():
 print(c)
add()
Output:
 1

Example : Accessing global Variable From Inside a Function

XII Std - CS EM Chapter-7.indd 100 24-01-2020 11:03:49

100 101XII Std Computer Science Python Functions

c = 1 # global variable
def add():
 print(c)
 add()

Output:
 1

Example : Accessing global Variable From Inside a Function

c = 1 # global variable
def add():
 c = c + 2 # increment c by 2
 print(c)
add()

Output:
 Unbound Local Error: local variable 'c' referenced before assignment

Example : Modifying Global Variable From Inside the Function

 Without using the global keyword we cannot modify the global variable inside
the function but we can only access the global variable.

Note

x = 0 # global variable
def add():
 global x
 x = x + 5 # increment by 2
 print ("Inside add() function x value is :", x)
add()
print ("In main x value is :", x)

Output:
 Inside add() function x value is : 5
 In main x value is : 5

Example : Changing Global Variable From Inside a Function using global
keyword

 In the above program, x is defined as a global variable. Inside the add() function, global
keyword is used for x and we increment the variable x by 5. Now We can see the change on the
global variable x outside the function i.e the value of x is 5.

XII Std - CS EM Chapter-7.indd 101 24-01-2020 11:03:49

102 103XII Std Computer Science Python Functions

7.8.3 Global and local variables
 Here, we will show how to use global variables and local variables in the same code.

Example : Using Global and Local variables in same code
x=8 # x is a global variable
def loc():
 global x
 y = "local"
 x = x * 2
 print(x)
 print(y)
loc()

Output:
 16
 local

 In the above program, we declare x as global and y as local variable in the function
loc().

 After calling the function loc(), the value of x becomes 16 because we used x=x * 2.
After that, we print the value of local variable y i.e. local.

Example : Global variable and Local variable with same name

x = 5
def loc():
 x = 10
 print ("local x:", x)
loc()
print ("global x:", x)

Output:
 local x: 10
 global x: 5

 In above code, we used same name ‘x’ for both global variable and local variable. We get
different result when we print same variable because the variable is declared in both scopes, i.e.
the local scope inside the function loc() and global scope outside the function loc().

The output :- local x: 10, is called local scope of variable.

The output:- global x: 5, is called global scope of variable.

XII Std - CS EM Chapter-7.indd 102 24-01-2020 11:03:49

102 103XII Std Computer Science Python Functions

Functions using libraries7.9

7.9.1 Built-in and Mathematical functions

Function Description Syntax Example
abs () Returns an

absolute value
of a number.
The argument
may be an
integer or a
floating point
n u m b e r .

abs (x)

x=20
y=-23.2
print('x = ', abs(x))
print('y = ', abs(y))

Output:
 x = 20
 y = 23.2

ord () Returns the
ASCII value
for the given
Unicode
character.
This function is
inverse of chr()
function.

ord (c)

c= 'a'
d= 'A'
print ('c = ',ord (c))
print ('A = ',ord (d))

Output:
 c = 97
 A = 65

chr () Returns the
Unicode
character for
the given ASCII
value.
This function is
inverse of ord()
function.

chr (i)

c=65
d=43
print (chr (c))
prin t(chr (d))

Output:
 A
 +

bin () Returns a
binary string
prefixed with
“0b” for the
given integer
number.
Note: format
() can also be
used instead of
this function.

bin (i)

x=15
y=101
print ('15 in binary : ',bin (x))
print ('101 in binary : ',bin (y))

Output:
 15 in binary : 0b1111
 101 in binary : 0b1100101

XII Std - CS EM Chapter-7.indd 103 24-01-2020 11:03:49

104 105XII Std Computer Science Python Functions

type () Returns the
type of object
for the given
single object.
Note: This
function
used with
single object
parameter.

type (object)

x= 15.2
y= 'a'
s= True
print (type (x))
print (type (y))
print (type (s))

Output:
 <class 'float'>
 <class 'str'>
 <class 'bool'>

id () id() Return
the “identity” of
an object. i.e.
the address of
the object in
memory.
Note: the
address of x
and y may
differ in your
system.

id (object)

x=15
y='a'
print ('address of x is :',id (x))
print ('address of y is :',id (y))

Output:
 address of x is : 1357486752
 address of y is : 13480736

min () Returns the
minimum value
in a list. min (list)

MyList = [21,76,98,23]
print ('Minimum of MyList :', min(MyList))

Output:
 Minimum of MyList : 21

max () Returns the
maximum
value in a list.

max (list)

MyList = [21,76,98,23]
print ('Maximum of MyList :', max(MyList))

Output:
 Maximum of MyList : 98

sum () Returns the
sum of values
in a list. sum (list)

MyList = [21,76,98,23]
print ('Sum of MyList :', sum(MyList))

Output:
 Sum of MyList : 218

XII Std - CS EM Chapter-7.indd 104 24-01-2020 11:03:49

104 105XII Std Computer Science Python Functions

format () Returns the
output based
on the given
format
1. Binary

format.
Outputs the
number in
base 2.

2. Octal
format.
Outputs the
number in
base 8.

3. Fixed-point
notation.
Displays the
number as a
fixed-point
number.
The default
precision
is 6.

format (value
[, format_
spec])

x= 14
y= 25
print ('x value in binary :',format(x,'b'))
print ('y value in octal :',format(y,'o'))
print('y value in Fixed-point no ',format(y,'f '))

Output:
 x value in binary : 1110
 y value in octal : 31
 y value in Fixed-point no : 25.000000

round () Returns the
nearest integer
to its input.
1. First

argument
(number)
is used to
specify the
value to be
rounded.

round
(number
[,ndigits])

x= 17.9
y= 22.2
z= -18.3
print ('x value is rounded to', round (x))
print ('y value is rounded to', round (y))
print ('z value is rounded to', round (z))

XII Std - CS EM Chapter-7.indd 105 24-01-2020 11:03:49

106 107XII Std Computer Science Python Functions

2. Second
argument
(ndigits)
is used to
specify the
number
of decimal
digits
desired after
rounding.

Output:1
 x value is rounded to 18
 y value is rounded to 22
 z value is rounded to -18
 n1=17.89
 print (round (n1,0))
 print (round (n1,1))
 print (round (n1,2))

Output:2
 18.0
 17.9
 17.89

pow () Returns the
computation of
ab i.e. (a**b)
a raised to the
power of b.

pow (a,b)

a= 5
b= 2
c= 3.0
print (pow (a,b))
print (pow (a,c))
print (pow (a+b,3))

Output:
 25
 125.0
 343

Mathematical Functions

Specify import math module before using all mathematical
functions in a program

Note

Function Description Syntax Example
floor () Returns the largest integer

less than or equal to x
math.floor (x) import math

x=26.7
y=-26.7
z=-23.2
print (math.floor (x))
print (math.floor (y))
print (math.floor (z))
Output:
 26
 -27
 -24

XII Std - CS EM Chapter-7.indd 106 24-01-2020 11:03:49

106 107XII Std Computer Science Python Functions

ceil () Returns the smallest
integer greater than or
equal to x

math.ceil (x) import math
x= 26.7
y= -26.7
z= -23.2
print (math.ceil (x))
print (math.ceil (y))
print (math.ceil (z))
Output:
 27
 -26
 -23

sqrt () Returns the square root
of x
Note: x must be greater
than 0 (zero)

sqrt (x) import math
a= 30
b= 49
c= 25.5
print (math.sqrt (a))
print (math.sqrt (b))
print (math.sqrt (c))
Output:
 5.477225575051661
 7.0
 5.049752469181039

7.9.2 Composition in functions
What is Composition in functions?
 The value returned by a function may be used as an argument for another function in
a nested manner. This is called composition. For example, if we wish to take a numeric value
or an expression as a input from the user, we take the input string from the user using the
function input() and apply eval() function to evaluate its value, for example:

This program explains composition
 >>> n1 = eval (input ("Enter a number: "))
Enter a number: 234
 >>> n1
 234
>>> n2 = eval (input ("Enter an arithmetic expression: "))
 Enter an arithmetic expression: 12.0+13.0 * 2
>>> n2
 38.0

Example :

Python recursive functions7.10
 When a function calls itself is known as recursion. Recursion works like loop but
sometimes it makes more sense to use recursion than loop. You can convert any loop to

XII Std - CS EM Chapter-7.indd 107 24-01-2020 11:03:49

108 109XII Std Computer Science Python Functions

recursion.

 A recursive function calls itself. Imagine a process would iterate indefinitely if not
stopped by some condition! Such a process is known as infinite iteration. The condition that
is applied in any recursive function is known as base condition. A base condition is must in
every recursive function otherwise it will continue to execute like an infinite loop.

Overview of how recursive function works

1. Recursive function is called by some external code.

2. If the base condition is met then the program gives meaningful output and exits.

3. Otherwise, function does some required processing and then calls itself to continue
recursion.

Here is an example of recursive function used to calculate factorial.

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact (n-1)
print (fact (0))
print (fact (5))
Output:
 1
 120

Example :

 print(fact (2000)) will give Runtime Error after maximum recursion depth exceeded
in comparison. This happens because python stops calling recursive function after

1000 calls by default. It also allows you to change the limit using sys.setrecursionlimit
(limit_value).

Example:

 import sys
 sys.setrecursionlimit(3000)
 def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)
 print(fact (2000))

XII Std - CS EM Chapter-7.indd 108 24-01-2020 11:03:49

108 109XII Std Computer Science Python Functions

• Functions are named blocks of code that are designed to do one specific job.

• Types of Functions are User defined, Built-in, lambda and recursion.

• Function blocks begin with the keyword “def ” followed by function name and
parenthesis ().

• A “return” with no arguments is the same as return None. Return statement
is optional in python.

• In Python, statements in a block should begin with indentation.

• A block within a block is called nested block.

• Arguments are used to call a function and there are primarily 4 types of
functions that one can use: Required arguments, Keyword arguments, Default
arguments and Variable-length arguments.

• Required arguments are the arguments passed to a function in correct
positional order.

• Keyword arguments will invoke the function after the parameters are
recognized by their parameter names.

• A Python function allows to give the default values for parameters in the
function definition. We call it as Default argument.

• Variable-Length arguments are not specified in the function’s definition and
an asterisk (*) is used to define such arguments.

• Anonymous Function is a function that is defined without a name.

• Scope of variable refers to the part of the program, where it is accessible, i.e.,
area where you can refer (use) it.

• The value returned by a function may be used as an argument for another
function in a nested manner. This is called composition.

• A function which calls itself is known as recursion. Recursion works like a
loop but sometimes it makes more sense to use recursion than loop.

Points to remember:

XII Std - CS EM Chapter-7.indd 109 24-01-2020 11:03:49

110 111XII Std Computer Science Python Functions

Hands on Experience
1. Try the following code in the above program

Slno code Result
1 printinfo(“3500”)
2 printinfo(“3500”,”Sri”)
3 printinfo(name=”balu”)
4 printinfo(“Jose”,1234)
5 printinfo(“ ”,salary=1234)

2. Evaluate the following functions and write the output

Slno Function Output

1 eval(‘25*2-5*4')

2 math.sqrt(abs(-81))

3 math.ceil(3.5+4.6)

4 math.floor(3.5+4.6)

3. Evaluate the following functions and write the output

Slno function Output
1 1) abs(-25+12.0))

2) abs(-3.2)
2 1) ord('2')

2) ord('$')
3 type('s')
4 bin(16)
5 1) chr(13)

2) print(chr(13))
6 1) round(18.2,1)

2) round(18.2,0)
3) round(0.5100,3)
4) round(0.5120,3)

XII Std - CS EM Chapter-7.indd 110 24-01-2020 11:03:49

110 111XII Std Computer Science Python Functions

7 1) format(66, 'c')
2) format(10, 'x')
3) format(10, 'X')
4) format(0b110, 'd')
5) format(0xa, 'd')

8 1) pow(2,-3)
2) pow(2,3.0)
3) pow(2,0)
4) pow((1+2),2)
5) pow(-3,2)
6) pow(2*2,2)

Evaluation

Part - I

Choose the best answer: (1 Mark)

1. A named blocks of code that are designed to do one specific job is called as

(a) Loop (b) Branching

(c) Function (d) Block

2. A Function which calls itself is called as

(a) Built-in (b) Recursion

(c) Lambda (d) return

3. Which function is called anonymous un-named function

(a) Lambda (b) Recursion

(c) Function (d) define

4. Which of the following keyword is used to begin the function block?

(a) define (b) for

(c) finally (d) def

5. Which of the following keyword is used to exit a function block?

(a) define (b) return

(c) finally (d) def

6. While defining a function which of the following symbol is used.

(a) ; (semicolon) (b) . (dot)

(c) : (colon) (d) $ (dollar)

XII Std - CS EM Chapter-7.indd 111 24-01-2020 11:03:49

112 113XII Std Computer Science Python Functions

7. In which arguments the correct positional order is passed to a function?

(a) Required (b) Keyword

(c) Default (d) Variable-length

8. Read the following statement and choose the correct statement(s).

(I) In Python, you don’t have to mention the specific data types while defining
function.

(II) Python keywords can be used as function name.

 (a) I is correct and II is wrong

 (b) Both are correct

 (c) I is wrong and II is correct

 (d) Both are wrong

9. Pick the correct one to execute the given statement successfully.

 if ____ : print(x, " is a leap year")

(a) x%2=0 (b) x%4==0

(c) x/4=0 (d) x%4=0

10. Which of the following keyword is used to define the function testpython(): ?

(a) define (b) pass

(c) def (d) while

Part - II

Answer the following questions: (2 Marks)

1. What is function?

2. Write the different types of function.

3. What are the main advantages of function?

4. What is meant by scope of variable? Mention its types.

5. Define global scope.

6. What is base condition in recursive function

7. How to set the limit for recursive function? Give an example.

XII Std - CS EM Chapter-7.indd 112 24-01-2020 11:03:50

112 113XII Std Computer Science Python Functions

Part - III

Answer the following questions: (3 Marks)

1. Write the rules of local variable.

2. Write the basic rules for global keyword in python.

3. What happens when we modify global variable inside the function?

4. Differentiate ceil() and floor() function?

5. Write a Python code to check whether a given year is leap year or not.

6. What is composition in functions?

7. How recursive function works?

8. What are the points to be noted while defining a function?

Part - IV

Answer the following questions: (5 Marks)

1. Explain the different types of function with an example.

2. Explain the scope of variables with an example.

3. Explain the following built-in functions.

 (a) id()

 (b) chr()

 (c) round()

 (d) type()

 (e) pow()

4. Write a Python code to find the L.C.M. of two numbers.

5. Explain recursive function with an example.

Reference Books

1. Python Tutorial book from tutorialspoint.com

2. Python Programming: A modular approach by Pearson – Sheetal, Taneja

3. Fundamentals of Python –First Programs by Kenneth A. Lambert

XII Std - CS EM Chapter-7.indd 113 24-01-2020 11:03:50

	XII Std - CS EM Introduction Pages
	XII Std - CS EM Chapter-1
	XII Std - CS EM Chapter-2
	XII Std - CS EM Chapter-3
	XII Std - CS EM Chapter-4
	XII Std - CS EM Python Interleaf Page
	XII Std - CS EM Chapter-5
	XII Std - CS EM Chapter-6
	XII Std - CS EM Chapter-7

