Chapter 7

Bipolar Junction Transistor

One mark questions (Knowledge):

- 1. What is an unbiased transistor?
- 2. What is a biased transistor?
- 3. Write the symbol of an npn transistor.
- 4. Write the symbol of a pnp transistor.
- 5. Name the majority charge carriers in npn transistor.
- 6. Name the minority charge carriers in npn transistor.
- 7. What is the function of base region in a transistor?
- 8. What is the function of collector region in a transistor?
- 9. Mention the function of the emitter region in a transistor.
- 10. Write the physical structure of pnp transistor.
- 11. Write the expression showing relation between I_B , I_C and I_E of transistor.
- 12. Define α_{dc} of a transistor.
- 13. Define β_{dc} of a transistor.
- 14. What is an opto-coupler?
- 15. Write the symbol of phototransistor.
- 16. Write one application of phototransistor.
- 17. Write the symbol of IR transistor.
- 18. Write one important application of a transistor.
- 19. Write an expression showing the relation between α and β .
- 20. Mention any one operating region of a transistor.

One mark questions (Understanding):

- 1. Why is transistor called transfer resistor device?
- 2. Which region of the transistor is heavily doped?
- 3. Which region of the transistor is moderately doped?
- 4. Which region of the transistor is physically larger?
- 5. Which region of the transistor is physically narrow?
- 6. What does the arrow in the circuit symbol of a transistor indicate?
- 7. Why collector region is made larger?
- 8. How many pn junctions a transistor has?
- 9. Which operating region of a transistor is suitable for amplification?
- 10. Which operating region of a transistor is suitable for switching action?
- 11. In which mode of operation the transistor can be used as a switch?

One mark questions (Application):

- 1. For a transistor $I_C = 6$ mA and $I_E = 6.35$ mA, find I_B .
- 2. Find the value of β , if $\alpha = 0.99$.
- 3. A transistor has β = 100. What is the value of α ?

 $Ans:I_B = 0.35 \text{ mA}$

Ans: $\beta = 99$

Ans: $\alpha = 0.99$

4. An npn transistor has a DC current gain β of 200. Calculate the base current I_B when the collector current is 4 mA.

Ans: I_B= 0.02 mA

Two marks questions (Knowledge):

- 1. What are the biasing conditions of a transistor to operate in active region and cut off region?
- 2. Define α_{dc} of a transistor and write the expression.
- 3. Define β_{dc} of a transistor and write the expression.
- 4. State different configurations of a transistor.
- 5. What is an opto-coupler? Mention one application.
- 6. What is an IR transistor? Write its circuit symbol.
- 7. Write any two application of IR transistor.
- 8. Write the circuit symbol of IR receiver. Mention its one application.
- 9. What is a phototransistor? Write its circuit symbol.
- 10. Write any two application of phototransistor.

Two marks questions (Understanding):

- 1. Distinguish doping levels of emitter and base in a transistor.
- 2. Why is the collector of transistor made larger and moderately doped?
- 3. Distinguish between α_{dc} and β_{dc} .
- 4. Obtain the relation between α and β of a transistor.
- 5. Distinguish between cut-off region and saturation region.

Two marks questions (Application):

1. In a transistor circuit, $I_E = 5$ mA and I_B is 1 μ A. Find a value of I_C and α .

Ans.: $I_C = 4.995$ mA, $\alpha = 0.999$

2. For a transistor $I_C = 6$ mA and $I_E = 6.35$ mA, Find β .

Ans.: $I_B = 0.35 \text{ mA}$, $\beta = 17.14$

3. A transistor has α = 0.98. If I_C = 6 mA, Find I_B.

Ans.: $I_B = 0.122 \text{ mA}$

4. A transistor has $\alpha = 0.9$, if $I_E = 10$ mA, calculate the values of I_C and β .

Ans.: $I_c = 9mA$, $\beta = 9$

5. In a transistor the base current and collector current is $60\mu A$ and 1.75mA respectively. What will be the emitter current? Calculate the values of α of a transistor.

Ans.: $I_E = 1.75 \text{ mA}, \alpha = 0.967$

- 6. A transistor has β = 150. Calculate the approximate collector and base currents if the emitter current is 12 mA. Ans.: α = 0.993, I_C = 11.916 mA, I_B = 0.084 mA
- 7. A transistor amplifier connected in CE mode has β = 100 and I_B= 50 μ A, calculate the values of I_C and α . Ans.: I_C = 5 mA, α = 0.99
- 8. A transistor has α = 0.9, if I_E = 10 mA, calculate the values of I_C and β .

Ans.: $I_C = 9$ mA, $\beta = 9$

9. In a transistor the base current and collector current are 60 μ A and 1.75mA respectively. What will be the emitter current? Calculate the values of β of a transistor.

Ans.: $I_E = 1.75$ mA, $\beta = 29.17$

10. A transistor connected in CE mode has β = 100 and I_B = 50 μ A, calculate the values of I_C, I_E.

Ans.:
$$I_C = 5 \text{ mA}$$
, $I_E = 5.05 \text{ mA}$

11. A transistor has I_B = 105 μA and I_C = 2.05 mA. Find β and α of the transistor.

Ans.:
$$\beta = 19.5$$
, $\alpha = 0.95$

12. If α for a transistor is 0.99, the base current is 100 μ A, estimate the collector current.

Ans.:
$$\beta = 99$$
, $I_C = 9.9$ mA

13. A Transistor connected in CE mode has β = 80 and I_C = 5 mA. Calculate I_E.

Ans:
$$I_B = 0.0625 \text{ mA}$$
, $I_E = 5.0625 \text{ mA}$

Three marks questions (Knowledge):

- 1. Explain is the doping levels and physical sizes of emitter, base and collector layers.
- 2. List the different types of transistor configuration with necessary circuit diagram.
- 3. Define DC current gain in CB mode (α_{dc}), DC current gain in CE mode (β_{dc}) and Output resistance (R_o) in CE mode.
- 4. Describe with the diagram, the input characteristics of an npn transistor for CE configuration.
- 5. Briefly describe the different regions of output characteristics of transistor in CE mode.
- 6. What is a phototransistor? Write the circuit symbol and one application of a phototransistor.

Five marks questions (Understanding):

- 1. Explain with the diagram the construction and working of an npn transistor.
- 2. Distinguish between the different types of transistor configurations with necessary circuit diagram.
- 3. Distinguish between the active, saturation and cut-off regions of a transistor.
- 4. Explain how the input and output characteristics of an npn transistor in CE mode are drawn.
- 5. Briefly explain the working of the phototransistor. Write the circuit symbol and output characteristics of phototransistor.
