CHAPTER

7.2

RANDOM PROCESS

(.

Statement for Question 1 - 4 :

A random process X(t) has periodic sample functions as shown in figure where A, T and $4t_0 \le T$ are constant but \in is random variable uniformly distributed on the interval (0, T).

2. The value of E[X(t)] is

(A)
$$\frac{t_0 A}{2T}$$
 (B) $\frac{t_0 A}{T}$

(C)
$$\frac{t_0 A}{4T}$$
 (D) 0

3. The value of $E[X^2(t)]$ is

(A)
$$\frac{t_0 A^2}{T}$$
 (B) $\frac{t_0 A^2}{3T}$

(C)
$$\frac{2t_0 A^2}{3T}$$
 (D) 0

4. The value of σ_X^2 is

(A) $\frac{t_0 A}{T} \left[\frac{2}{3} - \frac{t_0}{T} \right]$	$(\mathbf{B}) \ \frac{t_0 A^2}{T} - \frac{t_0}{T}$
(C) $\frac{t_0 A}{T} \left[\frac{2}{3} + \frac{t_0}{T} \right]$	(D) $\frac{t_0 A^2}{T} \left[\frac{2}{3} + \frac{t_0}{T} \right]$

5. An ergodic random power x(t) has an auto-correlation function

$$\begin{aligned} R_{XX}(\tau) &= 18 + \frac{2}{6 + \tau^2} 1 + 4\cos(12\tau) \\ \text{The} \left| \bar{X} \right| \text{ is } \\ \text{A) } \pm \sqrt{18} & \text{(B) } \pm \sqrt{13} \\ \text{C) } \pm \sqrt{17} & \text{(D) } \pm \sqrt{18} \pm \sqrt{17} \end{aligned}$$

6. For random process $\overline{X} = 6$ and

 $R_{XX}(t, t + \tau) = 36 + 25e^{-|\tau|}.$

Consider following statements :

- 1. X(t) is first order stationary.
- 2. X(t) has total average power of 36 W.
- 3. X(t) is a wide sense stationary.
- 4. X(t) has a periodic component.

The true statement is/are

- (A) 1, 2, and 4 (B) 2, 3, and 4
- (C) 2 and 3 (D) only 3

7. A random process is defined by X(t) + A where A is continuous random variable uniformly distributed on (0,1). The auto correlation function and mean of the process is

(A) 1/2 & 1/3	(B) 1/3 & 1/2
(C) 1 & 1/2	(D) 1/2 & 1

Statement for Question 8 - 9 :

Α random process is defined by $Y(t) = X(t)\cos(\omega_0 t + \theta)$ where X(t) is a wide sense stationary random process that amplitude modulates a carrier of constant angular frequency ω_0 with a random phase θ independent of X(t) and uniformly distributed on $(-\pi / \pi)$.

8. The $E[Y(t)]$ is	
(A) $E[X(t)]$	(B) $-E[X(t)]$
(C) 1	(D) 0

9. The autocorrelation function of Y(t) is

(A) $R_{XX}(\tau)\cos(\omega_0\tau)$	(B) $\frac{1}{2} R_{XX}(\tau) \cos(\omega_0 \tau)$
(C) $2R_{XX}(\tau)\cos(\omega_0\tau)$	(D) None of the above

Statement for Question 10 - 11 :

Consider a low-pass random process with a white-noise power spectral density $S_X(\omega) = N/2$ as shown in fig.P7.2.10-11.

10.	The	auto	correlation	function	$R_{X}(\tau)$ is	
-----	-----	------	-------------	----------	------------------	--

(A) $2\mathcal{A}B$ sinc $(2\pi\beta\tau)$ (B)) π <i>M</i> B	sinc	$(2\pi\beta\tau)$
--	----------------	------	-------------------

(D) None of the above (C) $\mathcal{M}B$ sinc $(2\pi\beta\tau)$

11. The power P_X is

- (A) 2*NB* (B) π*NB*
- D) D $\frac{NB}{2\pi}$ (C) *NB*

12. If X(t) is a stationary process having a mean value E[X(t)] = 3and autocorrelation function $R_{XX}(\tau) = 9 + 2e^{-|\tau|}.$

Th	e variance of random variable $Y = \int_{0}^{2} X(t) dt$ will	ll be
(A) 1	(B) 2.31 ^o	
(C) 4.54	(D) 0	

13. A random process is defined by $X(t) = A\cos(\pi t)$ where A is a gaussian random variable with zero mean and variance σ_{π}^2 . The density function of X(0)

(A)
$$\frac{1}{\sqrt{2\pi\sigma_{A}}}e^{-\frac{x^{2}}{2\sigma_{A}^{2}}}$$
 (B) $\sqrt{2\pi\sigma_{A}}e^{-\frac{x^{2}}{2\sigma_{A}^{2}}}$
(C) 0 (D) 1

(C)
$$0$$
 (D) 1

Statement for Question 14-15 :

The two-level semi-random binary process is defined by

$$X(t) = A$$
 or $-A$

where (n-1)T < t < nt and the levels A and -Aoccur with equal probability. T is a positive constant and $n = 0, \pm 1, \pm 2$

14.	The	mean	value	E[X(t)]	is	
(A)	1/2				(B)	1/4
(C)	1				(D)	0

15.	The auto correlation	$R_{XX}(t_1 = 0.5T),$	$t_2 = 0.7 T$) will be
(A)	1	(B) 0	
(C)	A^2	(D) $A^2/2$	2

16. A random process consists of three samples function $X(t, s_1) = 2, X(t, s_2) = 2\cos t_1 \text{ and } X(t, s_3) = 3\sin t \text{- each}$ occurring with equal probability. The process is

- (A) First order stationary
- (B) Second order stationary
- (C) Wide-sense stationary
- (D) Not stationary in any sense

Statement for Question 17 - 19 :

The auto correlation function of a stationary ergodic random process is shown in fig.P.7.2.17-19

Fig. P7.2.17-19

17. The mean value $E[X(t)]$	is
(A) 50	$(B) \ \sqrt{50}$
(C) 20	(D) $\sqrt{20}$
18. The $E[X^2(t)]$ is	
(A) 10	$(B) \ \sqrt{10}$
(C) 50	(D) $\sqrt{50}$
19. The variance σ_X^2 is	
(A) 20	(B) 50
(C) 70	(D) 30

20. Two zero mean jointly wide sense stationary random process X(t) and Y(t) have no periodic components. It is know that $\sigma_X^2 = 5$ and $\sigma_Y^2 = 10$. The function, that can apply to the process is

(A)
$$R_{XX}(\tau) = 6u(\tau)e^{-3\tau}$$
 (B) $R_{YY}(\tau) = 5\left[\frac{\sin(3\tau)}{3\tau}\right]^2$
(C) $R_{XY}(\tau) = 9(1+2e^2)^{-1}$ (D) None of the above

21. A stationary zero mean random process X(t) is ergodic has average power of 24 W and has no periodic component. The valid auto correlation function is

(A) $16 + 18\cos(3\tau)$ (B) $24\delta a^2(2\pi)$ (C) $\frac{e^{(-6\tau)}}{(1+3\tau^2)}$ (D) $24\delta(t-\tau)$

22. Air craft of Jet Airways at Ahmedabad airport arrive according to a poisson process at a rate of 12 per hour. All aircraft are handled by one air traffic controller. If the controller takes a 2 - minute coffee break, what is the probability that he will miss one or more arriving aircraft ?

(A) 0.33	(B) 0.44

(C) 0.55 (D) 0.66

23. Delhi airport has two check-out lanes that develop waiting lines if more than two passengers arrives in any one minute interval. Assume that a poission process describes the number of passengers that arrive for check-out. The probability of a waiting line if the average rate of passengers is 2 per minute, is

(A) 0.16	(B) 0.29
(C) 0.32	(D) 0.49

24. A complex random process Z(t) = X(t) + jY(t) is defined by jointly stationary real process X(t) and Y(t). The $E[|Z(t)|^2]$ will be

25. Consider random process $X(t) = A_0 \cos(\omega_0 t + \theta)$ where A_0 and ω_0 are constant and θ is a random variable uniformly distributed on the interval $(0, \pi)$. The power in X(t) is

(A)
$$A^2$$
 (B) $\frac{1}{2}A^2$

(C) $\frac{1}{4}A^2$ (D) 1

26. The non valid power spectral density function of a real random process is

(A)
$$\delta(\omega + \omega_0) - \delta(\omega - \omega_0)$$
 (B) $\frac{\omega^2}{\omega^2 + 25}$
(C) $\delta(\omega) + \frac{\omega^2}{\omega^2 + 16}$ (D) $\frac{\omega^2}{\omega^2 + 16}$

27. The valid power density spectrum is

(A)
$$\frac{\omega^2}{1+\omega^2+j\omega^2}$$

(B) $\frac{\omega^2}{\omega^4+1}-\delta(\omega)$
(C) $e^{-(\omega-1)^2}$
(D) $\frac{\omega^2}{\omega^6+3\omega^2+3}$

28. A power spectrum is given as

$$\rho_{XX}(\omega) = \begin{vmatrix} \frac{P}{1 + (\omega/W)^2} & |\omega| < KW\\ 0 & |\omega| > KW \end{vmatrix}$$

where P, W, and K are real positive constants. The sums bandwidth of power spectrum is

(A)
$$W_{\sqrt{\frac{\tan + k}{k} - 1}}$$
 (B) $W_{\sqrt{\frac{\tan^{-1} k}{k} - 1}}$
(C) $W_{\sqrt{\frac{\tan^{-1} k}{k} + 1}}$ (D) ∞

29. Consider the power spectrum given by

$$\rho_{XX}(\omega) = \begin{cases} P & |\omega| < W \\ 0 & |\omega| > W \end{cases}$$

where P and W are real positive constants. The rms bandwidth of the power spectrum is

(A)
$$\frac{W}{\sqrt{2}}$$
 (B) $\frac{W^2}{3}$

(C)
$$\frac{W}{\sqrt{3}}$$
 (D) $\frac{W}{2}$

30. For a random process $R_{XX}(\tau) = P \cos^4(\omega_0 \tau)$ where *P* and ω_0 are constants. The power in process is

(A) P
(B) 2P
(C) 3P
(D) 4P

31. A random process has the power density spectrum $\rho_{XX}(\omega) = \frac{6\omega^2}{[1+\omega^2]^3}$. The average power in process is

- (A) 1/4 (B) 3/8
- (C) 5/8 (D) 1/2

32. A deterministic signal $A\cos(\omega_0 t)$, where A and ω_0 are real constants is added to a noise process N(t) for which $\rho_{NN}(\omega) = \frac{W^2}{W^2 + \omega^2}$ and W > 0 is a constant. The ratio of average signal power to average noise power is

(A) 1 (B)
$$\frac{A}{W}$$

(C)
$$\frac{2A}{W}$$
 (D) $\frac{A^2}{W}$

33. The autocorrelation function of a random process X(t) is

$$R_{XX}(t, t + \tau) = 12e^{Y\tau^2}\cos^2(24t)$$

The $R_{XX}(\tau)$ is

(A) $6e^{-4\tau^2}$ (B) $12e^{-4\tau^2}$ (C) $48e^{-4\tau^2}$ (D) None of the above

34. If X(t) and Y(t) are real random process, the valid power density spectrum $f_{XX}(\omega)$ is

(A)
$$\frac{6}{6+7\omega^3}$$
 (B) $\frac{4e^{-3|\tau|}}{1+\omega^2}$
(C) $3+j\omega^2$ (D) $18\delta(\omega)$

35. The cross correlation of jointly wide sense stationary process X(t) and Y(t) is $R_{XY}(\tau) = Au(\tau)e^{-W\tau}$ where A > 0 and W > 0 are constants. The $\rho_{XX}(\omega)$ is

(A)
$$\frac{A}{W^2 - \omega^2}$$

(B) $\frac{A}{W^2 + \omega^2}$
(C) $\frac{A}{W + j\omega}$
(D) $\frac{A}{W - j\omega}$

36. A random process X(t) is applied to a linear time invariant system. A response $Y(t) = X(t) - X(t - \tau)$ occurs when τ is a real constant. The system's transfer function is

(A) $1 - e^{j\omega\tau}$	(B) $2je^{-j\omega\tau/2}\sin\frac{\omega\tau}{2}$
(C) $2je^{-j\omega\tau/2}\cos\frac{\omega\tau}{2}$	(D) $1 + e^{-j\omega\tau}$

37. A random process X(t) has an autocorrelation function $R_{XX}(\tau) = A^2 + Be^{-|\tau|}$ Where A and B are constants. A system have an input response

$$h(t) = \begin{cases} e^{-Wt} & 0 < t \\ 0 & t < 0 \end{cases}$$

where W is a real positive constant, which X(t) is its input. The mean value of the response is

(A)
$$\frac{A}{W}$$
 (B) $\frac{A}{2W}$

(C)
$$\frac{2A}{W}$$
 (D) 0

38. In previous question if impulse response of system is

$$h(t) = \begin{cases} e^{-Wt} \sin(\omega_0 t) & 0 < t \\ 0 & t < 0 \end{cases}$$

where W and ω_0 are real positive constants, the mean value of response is

(A)
$$\frac{A\omega_0}{\omega_0^2 + W^2}$$

(B) $\frac{A}{2\omega_0} \left(\frac{1}{\omega_0^2 + W^2}\right)$
(C) $\frac{2A}{\omega_0} \left(\frac{1}{\omega_0^2 + W^2}\right)$
(D) $\frac{A}{2\omega_0} \left(\frac{1}{\omega_0^2 + W^2}\right)$

39. A stationary random process X(t) is applied to the input of a system for which $h(t) = 3u(t)t^2e^{-8t}$. If E[X(t)] = 2, the mean value of the system's response Y(t) is

(A)
$$\frac{1}{128}$$
 (B) $\frac{1}{64}$
(C) $\frac{3}{128}$ (D) $\frac{1}{22}$

Statement for Question 40-41 :

A random process X(t) is applied to a network with impulse response $h(t) = u(t)te^{-at}$ where a > 0 is a constant. The cross correlation of X(t) with the output Y(t) is known to have the same form $R_{XY}(\tau) = u(\tau)\tau e^{-a\tau}$

40. The auto correlation of Y(t) is

(A)
$$\frac{4 + a\tau}{4a^3} e^{-a|\tau|}$$

(B) $\frac{1 + a\tau}{3a^2} e^{-a|\tau|}$
(C) $\frac{4 + a\tau}{8a^2} e^{-a|\tau|}$
(D) $\frac{1 + a\tau}{4a^3} e^{-a|\tau|}$

41. The average power in Y(t) is

(A)
$$\frac{1}{4a^3}$$
 (B) $\frac{1}{a^3}$

(C)
$$\frac{1}{3a^2}$$
 (D) None of the above

Statement for Question 42 - 43 :

A random noise X(t) having a power spectrum $\rho_{\textit{XX}}(\omega) = \frac{3}{49+\,\omega^2}$ is applied to a differentiator that has a transfer function $H(\omega) = j\omega$. The output is applied to a network for which $h(t) = u(t)t^2e^{-7t}$

- **42.** The average power in X(t) is
- (A) 5/21 (B) 5/24
- (C) 5/42 (D) 3/14

43. The power spectrum of Y(t) is $(A) \ \frac{4\omega^2}{\left(49 + \omega^2\right)^3}$ $(B)\;\frac{12\omega^{2}}{(49+\omega^{2})^{4}}\;$ (C) $\frac{42\omega^{3}}{(49+\omega^{2})^{2}}$ (D) None of the above

44. White noise with power density $\mathcal{N}_0/2$ is applied to a lowpass network for which |H(0)| = 2. It has a noise bandwidth of 2 MHz. If the average output noise power is 0.1 W in a $1-\Omega$ resistor, the value of \mathcal{N}_0 is (A) 12.5 nW/Hz (B) 12.5 µW/Hz (C) 25 nW/Hz (D) 25 μ W/Hz

45. An ideal filter with a mid-band power gain of 8 and bandwidth of 4 rad/s has noise X(t) at its input with power spectrum $\rho_{XX}(\omega) = \frac{50}{\sqrt{8\pi}} e^{-\omega^2/8}$. The noise power at the network's output is (F(2) = 0.9773)

(A) 60.8	(B) 90.3
(C) 20.2	(D) 100.4

46. White noise with power density $\mathcal{N}_0/2 = 6 \,\mu\text{W/Hz}$ is applied to an ideal filter of gain 1 and bandwidth W rad/s. If the output's average noise power is 15 watts, the bandwidth W is

 $(A)~2.5\times10^{-6}$ (B) $2.5\pi \times 10^{-6}$ $(C) \ 5\times 10^{-6}$ (D) $\pi 5 \times 10^{-6}$

47. A system have the transfer function $|H(\omega)|^2 = \frac{1}{1+(\omega/W)^4}$ where W is a real positive constant. The noise bandwidth of the system is

(A) $\frac{1}{3}\pi W\sqrt{2}$ (B) $\frac{1}{4} \pi W \sqrt{2}$ (C) $\frac{1}{c} \pi W \sqrt{2}$ (D) None of the above

SOLUTION

(A) Let Now 1. \in have value е. $P\{X \le x | \in = e\} = F_x(X | \in = e) \text{ and for any } \in \text{ must be zero}$ for x < 0 because x(t) is never negative. The event $\{X \leq 0\}$ is satisfied whenever x(t) is zero. This happens during the fraction of time $(T-2t_0)/T$. Hence $F_{x}(x) \in = e = [(T - 2T_{0}) / T]u(x).$ For $0 \le x < A$ the additional time interval or fraction of time where $X \leq x$ becomes 2 to $2t_0x / AT$.

Thus
$$F_x(x|\epsilon=e) = \left(\frac{T-2t_0}{T}\right)u(x) + \frac{2t_0x}{AT}, 0 \le x < A$$

= 1,A $\le x$
= 0,x < 0

By differentiation

$$\begin{split} f_{X}(x \middle| \in = e) = & \left(\frac{T - 2t_{0}}{T}\right) \delta(x) + \frac{2t_{0}}{AT}, \ 0 \leq x < A \\ = & 0 \ \text{else where} \end{split}$$

$$\begin{aligned} f_{X,e}(x,e) &= f_X(x|e=e)f_e(e) \\ &= \left(\frac{T-2t_0}{T^2}\right)\delta(x) + \frac{2T_0}{AT^2}, 0 \le x < A \text{ and } 0 < e < T \\ f_X(x) &= \int_{-\infty}^{\infty} f_{X,e}(x,e)de \\ &= \left(\frac{T-2t_0}{T}\right)\delta(x) + \frac{2t_0}{AT} \cdot 0 \le x < A \\ &= 0 \text{ elsewhere.} \end{aligned}$$

2. (B)
$$E[X(t)] = \int_{-\infty}^{\infty} x f_X(x) dx$$

 $= \int_{-\infty}^{\infty} x \left(\frac{T-2t_0}{T}\right) \delta(x) dx + \int_{0}^{A} \frac{2t_0 x}{AT} dx = \frac{t_0 A}{T}$
3. (C) $E[X^2(t)] = \int_{-\infty}^{\infty} x^2 f_X(x) dx = \int_{0}^{A} \frac{2t_0 x^2}{AT} = \frac{2t_0 A^2}{3T}$
4. (D) $\sigma_X^2 = E[X^2(t)] - \{E[X(t)]\}^2$
 $= \frac{2t_0 A^2}{3T} - \frac{t_0^2 A^2}{T^2} = \frac{t_0 A^2}{T} \left[\frac{2}{3} - \frac{t_0}{T}\right]$

5. (A) We know that (*i*) if X(t) has a periodic component then $R_{XX}(\tau)$ will have a periodic component with the same period. (ii) if $E[X(t)] = X \mp 0$ and X(t) is ergodic with no periodic components then $\lim_{XX} R_{XX}(\tau) = \overline{X}^2$

Thus we get $\left|\overline{X}\right|^2 = 18$ or $\overline{X} = \pm \sqrt{18}$

6. (C) \overline{X} = Constant and $R_{XX}(\tau)$ is not a function of *t*, so X(t) is a wide sense stationary. So 1 is false & 3 is true. $P_{XX} = R_{XX}(0) = 36 + 25 = 61.$

Thus 2 is false if X(t) has a periodic component, then $R_{XX}(\tau)$ will have a periodic component with the same period. Thus 4 is false.

7. (B)
$$R_{XX}(t, t + \tau) = E[X(t)X(t + \tau)] = E[A^2] = \int_0^1 a^2 da = \frac{1}{3}$$

 $\overline{X} = E[X(t)] = E[A] = \int_0^1 a \, da = \frac{1}{2}$

8. (D)
$$E[Y(t)] = E[X(t)\cos(\omega_0 t + \theta)]$$

= $E_X[X(t)] \int_{-X}^{X} \cos(\omega_0 t + \theta) \frac{1}{2\pi} d\theta = 0$

where $E_{X}[\cdot]$ represent expectation with respect to X only

$$\begin{aligned} \mathbf{9.} & (\mathrm{B}) \ R_{YY}(t, \ t+\tau) \\ &= E[X(t)\cos(\omega_0\tau+\theta)X(t+\tau)\cos(\omega_0t+\theta+\omega_0\tau)] \\ &= R_{XX}(\tau)\frac{1}{2}[\cos(\omega_0\tau)+\cos(2\omega_0t+2\theta+\omega_0\tau)] \\ &= \frac{1}{2} R_{XX}(\tau)\cos(\omega_0\tau) \end{aligned}$$

10. (C)
$$S_X(\omega) = \frac{N}{2} \operatorname{rect}\left(\frac{\omega}{4\pi b}\right)$$

We know that $R_X(\tau) \longleftrightarrow S_X(\omega)$
 $\frac{W}{\pi} \sin(Wt) \longleftrightarrow \operatorname{rect}\left(\frac{\omega}{2W}\right)$

Here $W = 2\pi B$

Hence $R_X(\tau) = \frac{2\pi B}{\pi} \frac{N}{2} \sin (2\pi B\tau) = MB \operatorname{sinc} (2\pi B\tau)$

11. (C) $P_X = \overline{X^2} = R_X(0) = NB$ since sinc (0) = 1

$$12. (C) E[Y] = E[\int_{0}^{2} X(t)dt = \int_{0}^{2} E[X(t)]dt = 3\int_{0}^{2} dt = 6$$

$$E[Y^{2}] = E[\int_{0}^{2} X(t)dt\int_{0}^{2} X(u)du] = \int_{0}^{2} \int_{0}^{2} E[X(t)X(u)du dt]$$

$$= \int_{0}^{2} \int_{0}^{2} R_{XX}(t-u)dt du = \int_{0}^{2} \int_{0}^{2} [9+2e^{-|t-u|}]dt du$$

$$= 36 + 2\int_{0}^{2} \int_{0}^{2} e^{-|t-u|}dt du = 4(10 + e^{-2})$$

$$\sigma_{Y}^{2} = E[Y^{2}] - (E[Y])^{2} = 4(1 + e^{-2}) = 4.541$$

13. (A) For
$$t = 0, X(0) = A$$
, So $f_X(x) = \frac{1}{\sqrt{2\pi\sigma_A}} e^{-\frac{x^2}{2\sigma_A^2}}$

14. (D)
$$E[X(t)] = AP(A) + (-A)P(-A) = \frac{A}{2} - \frac{A}{2} = 0$$

15. (C) Here $R_{XX}(t_1, t_2) = A^2$ If both t_1 and t_2 are in the same interval $(n-1)T < t, t_2 < nT, n = 0, \pm, \pm 2...$ and $R_{XX}(t_1, t_2) = 0$ otherwise Hence $R_{XX}(0.5T, 0.7T) = A^2$

16. (D) Let
$$x_1 = 2$$
, $x_2 = 2\cos t$ and $x_3 = 3\sin(t)$
Then $f_X(x) = \frac{1}{2}\delta(x - x_1) + \frac{1}{3}\delta(x - x_2) + \frac{1}{3}\delta(x - x_3)$
and $E[X(t)] = \int_{-\infty}^{\infty} x f_X(x) dx$
 $= \int_{-\infty}^{\infty} x \left[\frac{1}{3} \delta(x - x_1) + \frac{1}{3} \delta(x - x_2) + \frac{1}{3} \delta(x - x_2) \right]$
 $= \frac{1}{3} [2 + 2\cos t + 3\sin t]$

.

The mean value is time dependent so X(t) is not stationary in any sense.

17. (D) We know that for ergodic with no periodic component

$$\lim_{|\tau| \to \infty} R_{XX}(\tau) = \overline{X}^2, \quad \text{Thus } \overline{X}^2 = 20 \quad \text{or} \quad \overline{X} = \sqrt{20}$$

18. (C)
$$R_{XX}(0) = E[X^2(t)] = R_{XX}(0) = 50 = \overline{X^2}$$

19. (D) $\sigma_X^2 = \overline{X^2} - \overline{X}^2 = 50 - 20 = 30$

20. Here $\overline{X} = 0$, $\overline{Y} = 0$, $R_{XX}(0) = 5$, $\sigma_Y^2 = R_{YY}(0) = 10$ For (A) : Function does not have even symmetry For (B) : Function does not satisfy $R_{YY}(0) = 10$ For (C) : Function does not satisfy $|R_{XY}(\tau)| \le \sqrt{R_{XX}(0)R_{YY}(0)} = \sqrt{50}$

21. (D) For (A) : It has a periodic component. For (B); It is not even in τ , total power is also incorrect. For (C) It depends on *t* not even in τ and average power is ∞ .

22. (A) *P* (miss/or more aircraft)= 1 - P(miss 0)= 1 - P (0 arrive) = $1 - \frac{(\lambda t)^0 e^{-\lambda t}}{0!}$

$$E[Y(t)] = A \int_{-\infty}^{\infty} h(\xi) d\xi = A \int_{0}^{\infty} e^{-Wt} dt = \frac{A}{W}$$

38. (A)
$$\overline{X} = A$$

$$E[Y(t)] = \overline{Y} = \overline{X} \int_{-\infty}^{\infty} h(t) dt = A \int_{0}^{\infty} e^{-Wt} \sin(\omega_0 t) dt = \frac{A\omega_0}{\omega_0^2 + W^2}$$

39. (C)
$$\overline{Y} = \overline{X} \int_{-\infty}^{\infty} h(t) dt = 2 \int_{0}^{\infty} 3t^2 e^{-8t} dt = \frac{3}{128}$$

40. (D)
$$R_{YY}(\tau) = \int_{-\infty}^{\infty} R_{XY}(\tau + \xi)h(\xi)d\xi$$

= $e^{-a\tau} \int_{-\infty}^{\infty} u(\xi)u(\xi + \tau)(\tau\xi + \xi^2)e^{-2a\xi}d\xi$

There are two cases of interest $\tau \ge 0$ and $\tau < 0$ Since $R_{\gamma\gamma}(\tau)$ is an even function we solve only the ease $\tau \ge 0$

$$R_{YY}(\tau) = e^{-a\tau} \int_{0}^{\infty} (\tau\xi + \xi^2) e^{-2a\xi} d\xi = \frac{1 + a\tau}{4a^3} e^{-a\xi}$$

41. (B) Power in
$$y(t) = R_{YY}(0) = \frac{1}{4a^3}$$

42. (D)
$$P_{XX} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \rho_{XX}(\omega) d\omega = \frac{3}{2\pi} \int_{-\infty}^{\infty} \frac{d\omega}{49 + \omega^2} = \frac{3}{14}$$

43. (B)
$$h_2 = 49t$$
) $t^2 e^{-7t} \leftarrow \xrightarrow{F} \frac{2}{(7+j\omega)^3} = H_2(\omega)$
 $s_{YY}(\omega) = s_{XX}(\omega) = |H_1(\omega)H_2(\omega)|^2 = \frac{12\omega^2}{(49+\omega^2)^4}$

44. (A)
$$P_{YY} = \frac{N_0 |H(0)|^2 W_n}{2\pi} = 0.1$$

So $N_0 = \frac{2\pi (0.1)}{|H(0)|^2 W_n} = \frac{2\pi (0.1)}{(2)^2 2\pi \times 2 \times 10^6}$
= 1.25×10^{-8} W/Hz = 12.5 nW/Hz

45. (A)
$$P_{YY} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \rho_{XX}(\omega) |H(\omega)|^2 d\omega$$

 $= \frac{1}{2\pi} \int_{4}^{4} \frac{50}{\sqrt{8\pi}} e^{-\frac{\omega^2}{8}(8)d\omega} = \frac{200}{\pi} \int_{4}^{4} \frac{e^{-\frac{\omega^2}{2(u)}}}{\sqrt{2\pi(4)}}$
 $= \frac{200}{\pi} [F(2) - F(-2)] = \frac{200}{\pi} [2F(2) - 1] = 60.8$

46. (B)
$$P_{YY} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \rho_{XX}(\omega) |H(\omega)|^2 d\omega$$

= $\frac{1}{2\pi} \int_{-W}^{W} 6 \times 10^{-6} d\omega = \frac{6 \times 10^{-6} W}{\pi} = \frac{6 \times 10^{-6} W}{\pi} = 15$

 $\int_{0}^{\infty} \left| H(\omega) \right|^{2} d\omega$

So $W = 2.5 \pi \times 10^6$

47. (B) Noise bandwidth
$$W_n = \frac{\int_0^1 |\nabla w|^2}{|H(0)|^2}$$

 $W_n = \int_0^\infty |H(\omega)|^2 d\omega \text{since } H(0) = 1 = \int_0^\infty \frac{d\omega}{1 + (\omega/W)^4} = \frac{\pi W}{2\sqrt{2}}$
