
PART SIX 

ATOMIC AND NUCLEAR PHYSICS 

6.1. SCATTERING OF PARTICLES. 
RUTHERFORD-BOHR ATOM 

• Angle 0 at which a charged particle is deflected by the Coulomb field 
of a stationary atomic nucleus is defined by the formula: 
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where ql  and q2  are the charges of the particle and the nucleus, b is the aiming 
parameter, T is the kinetic energy of a strik- 
ing particle. 

• Rutherford formula. The relative num-
ber of particles scattered into an elementary 
solid angle dS2 at an angle 0 to their initial pro-
pagation direction: 
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where n is the number of nuclei of the foil per 
unit area of its surface, dQ = sin 0 de dc. 

• Generalized Balmer formula (Fig. 6.1): 
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Fig. 6.1. 

where o is the transition frequency (in 	) between energy levels with quan- 
tum numbers n1  and n2, R is the Rydberg constant, Z is the serial number of a 
hydrogen-like ion. 

6.1. Employing Thomson's model, calculate the radius of a hydro-
gen atom and the wavelength of emitted light if the ionization energy 
of the atom is known to be equal to E = 13.6 eV. 

6.2. An alpha particle with kinetic energy 0.27 MeV is deflected 
through an angle of 60° by a golden foil. Find the corresponding 
value of the aiming parameter. 

6.3. To what minimum distance will an alpha particle with 
kinetic energy T = 0.40 MeV approach in the case of a head-on 
collision to 

(a) a stationary Pb nucleus; 
(b) a stationary free Liz nucleus? 
6.4. An alpha particle with kinetic energy 7' = 0.50 MeV is 

deflected through an angle of 0 = 90° by the Coulomb field of a 
stationary Hg nucleus. Find: 

* All the formulas in this Part are given in the Gaussian system of units. 
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(a) the least curvature radius of its trajectory; 
(b) the minimum approach distance between the particle and the 

nucleus. 
6.5. A proton with kinetic energy T and aiming parameter b was 

deflected by the Coulomb field of a stationary Au nucleus. Find the 
momentum imparted to the given nucleus as a result of scattering. 

6.6. A proton with kinetic energy T = 10 MeV flies past a sta-
tionary free electron at a distance b = 10 pm. Find the energy 
acquired by the electron, assuming the proton's trajectory to be 
rectilinear and the electron to be practically motionless as the proton 
flies by. 

6.7. A particle with kinetic energy T is deflected by a spherical 
potential well of radius R and depth Uo, i.e. by the field in which 
the potential energy of the particle takes the form 

0 for r > R, 
—U0  for r < R, 

where r is the distance from the centre of the well. Find the relation-
ship between the aiming parameter b of the particle and the angle 0 
through which it deflects from the initial motion direction. 

6.8. A stationary ball of radius R is irradiated by a parallel 
stream of particles whose radius is r. Assuming the collision of 
a particle and the ball to be elastic, find: 

(a) the deflection angle 0 of a particle as a function of its aiming 
parameter b; 

(b) the fraction of particles which after a collision with the ball 
are scattered into the angular interval between 0 and 0 + d0; 

(c) the probability of a particle to be deflected, after a collision 

with the ball, into the front hemisphere (0 < 

6.9. A narrow beam of alpha particles with kinetic energy 1.0 MeV 
falls normally on a platinum foil 1.0 µm thick. The scattered par-
ticles are observed at an angle of 60° to the incident beam direction 
by means of a counter with a circular inlet area 1.0 cm2  located at 
the distance 10 cm from the scattering section of the foil. What 
fraction of scattered alpha particles reaches the counter inlet? 

6.10. A narrow beam of alpha particles with kinetic energy T = 
= 0.50 MeV and intensity I = 5.0.105  particles per second falls 
normally on a golden foil. Find the thickness of the foil if at a distance 
r = 15 cm from a scattering section of that foil the flux density 
of scattered particles at the angle 0 = 60° to the incident beam is 
equal to J = 40 particles/(cm2 •s). 

6.11. A narrow beam of alpha particles falls normally on a silver 
foil behind which a counter is set to register the scattered particles. 
On substitution of platinum foil of the same mass thickness for the 
silver foil, the number of alpha particles registered per unit time 
increased = 1.52 times. Find the atomic number of platinum, 
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assuming the atomic number of silver and the atomic masses of both 
platinum and silver to be known. 

6.12. A narrow beam of alpha particles with kinetic energy T = 
= 0.50 MeV falls normally on a golden foil whose mass thickness 
is pd = 1.5 mg/cm2. The beam intensity is / 0  = 5.0.105  particles 
per second. Find the number of alpha particles scattered by the foil 
during a time interval -r = 30 min into the angular interval: 

(a) 59-61°; (b) over 00  = 60°. 
6.13. A narrow beam of protons with velocity v = 6.106  m/s 

falls normally on a silver foil of thickness d = 1.0 p,m. Find the 
probability of the protons to be scattered into the rear hemisphere 
(0 > 90°). 

6.14. A narrow beam of alpha particles with kinetic energy T = 
= 600 keV falls normally on a golden foil incorporating n 
= 1.1.1019  nuclei/cm2. Find the fraction of alpha particles scattered 
through the angles 0 < 00  = 20°. 

6.15. A narrow beam of protons with kinetic energy T = 1.4 MeV 
falls normally on a brass foil whose mass thickness pd = 1.5 mg/cm2. 
The weight ratio of copper and zinc in the foil is equal to 7 : 3 re-
spectively. Find the fraction of the protons scattered through the 
angles exceeding 00  = 30°. 

6.16. Find the effective cross section of a uranium nucleus cor-
responding to the scattering of alpha particles with kinetic energy 
T = 1.5 MeV through the angles exceeding 00  = 60°. 

6.17. The effective cross section of a gold nucleus corresponding 
to the scattering of monoenergetic alpha particles within the angular 
interval from 90° to 180° is equal to Au = 0.50 kb. Find: 

(a) the energy of alpha particles; 
(b) the differential cross section of scattering doldS2 (kb/sr) cor-

responding to the angle 0 = 60°. 
6.18. In accordance with classical electrodynamics an electron 

moving with acceleration w loses its energy due to radiation as 

dE 	2e 2  2  

dt - 3c3 W  ' 

where e is the electron charge, c is the velocity of light. Estimate the 
time during which the energy of an electron performing almost 
harmonic oscillations with frequency co = 5.1015  s-1  will decrease 

= 10 times. 
6.19. Making use of the formula of the foregoing problem, estimate 

the time during which an electron moving in a hydrogen atom along 
a circular orbit of radius r = 50 pm would have fallen onto the 
nucleus. For the sake of simplicity assume the vector w to be perma-
nently directed toward the centre of the atom. 

6.20. Demonstrate that the frequency co of a photon emerging 
when an electron jumps between neighbouring circular orbits of 
a hydrogen-like ion satisfies the inequality con  > co > con +1, where 
con  and con +1  are the frequencies of revolution of that electron around 
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the nucleus along the circular orbits. Make sure that as n 	oo the 
frequency of the photon co 	(on. 

6.21. A particle of mass m moves along a circular orbit in a centro-
symmetrical potential field U (r) = kr212. Using the Bohr quantiza-
tion condition, find the permissible orbital radii and energy levels 
of that particle. 

6.22. Calculate for a hydrogen atom and a He + ion: 
(a) the radius of the first Bohr orbit and the velocity of an electron 

moving along it; 
(b) the kinetic energy and the binding energy of an electron in 

the ground state; 
(c) the ionization potential, the first excitation potential and 

the wavelength of the resonance line (n' = 2 	n = 1). 
6.23. Calculate the angular frequency of an electron occupying 

the second Bohr orbit of He + ion. 
6.24. For hydrogen-like systems find the magnetic moment ttn  

corresponding to the motion of an electron along the n-th orbit 
and the ratio of the magnetic and mechanical moments µn /Mn. 
Calculate the magnetic moment of an electron occupying the first 
Bohr orbit. 

6.25. Calculate the magnetic field induction at the centre of 
a hydrogen atom caused by an electron moving along the first Bohr 
orbit. 

6.26. Calculate and draw on the wavelength scale the spectral 
intervals in which the Lyman, Balmer, and Paschen series for atomic 
hydrogen are confined. Show the visible portion of the spec-
trum. 

6.27. To what series does the spectral line of atomic hydrogen 
belong if its wave number is equal to the difference between the wave 
numbers of the following two lines of the Balmer series: 486.1 and 
410.2 nm? What is the wavelength of that line? 

6.28. For the case of atomic hydrogen find: 
(a) the wavelengths of the first three lines of the Balmer series; 
(b) the minimum resolving power 7‘,/82■, of a spectral instrument 

capable of resolving the first 20 lines of the Balmer series. 
6.29. Radiation of atomic hydrogen falls normally on a diffraction 

grating of width 1 = 6.6 mm. The 50th line of the Balmer series 
in the observed spectrum is close to resolution at a diffraction angle 0 
(in accordance with Rayleigh's criterion). Find that angle. 

6.30. What element has a hydrogen-like spectrum whose lines 
have wavelengths four times shorter than those of atomic hydrogen? 

6.31. How many spectral lines are emitted by atomic hydrogen 
excited to the n-th energy level? 

6.32. What lines of atomic hydrogen absorption spectrum fall 
within the wavelength range from 94.5 to 130.0 nm? 

6.33. Find the quantum number n corresponding to the excited 
state of He ion if on transition to the ground state that ion emits 
two photons in succession with wavelengths 108.5 and 30.4 nm. 
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6.34. Calculate the Rydberg constant R if He ions are known 
to have the wavelength difference between the first (of the longest 
wavelength) lines of the Balmer and Lyman series equal to AA. = 
= 133.7 nm. 

6.35. What hydrogen-like ion has the wavelength difference be-
tween the first lines of the Balmer and Lyman series equal to 59.3 nm? 

6.36. Find the wavelength of the first line of the He ion spectral 
series whose interval between the extreme lines is A co = 
= 5.18.1015  s— 1, 

6.37. Find the binding energy of an electron in the ground state 
of hydrogen-like ions in whose spectrum the third line of the Balmer 
series is equal to 108.5 nm. 

6.38. The binding energy of an electron in the ground state of He 
atom is equal to E0  = 24.6 eV. Find the energy required to remove 
both electrons from the atom. 

6.39. Find the velocity of photoelectrons liberated by electromag-
netic radiation of wavelength ? = 18.0 nm from stationary He 
ions in the ground state. 

6.40. At what minimum kinetic energy must a hydrogen atom 
move for its inelastic head-on collision with another, stationary, 
hydrogen atom to make one of them capable of emitting a photon? 
Both atoms are supposed to be in the ground state prior to the colli-
sion. 

6.41. A stationary hydrogen atom emits a photon corresponding 
to the first line of the Lyman series. What velocity does the atom 
acquire? 

6.42. From the conditions of the foregoing problem find how much 
(in per cent) the energy of the emitted photon differs from the energy 
of the corresponding transition in a hydrogen atom. 

6.43. A stationary He ion emitted a photon corresponding to the 
first line of the Lyman series. That photon liberated a photoelectron 
from a stationary hydrogen atom in the ground state. Find the 
velocity of the photoelectron. 

6.44. Find the velocity of the excited hydrogen atoms if the first 
line of the Lyman series is displaced by A? = 0.20 nm when their 
radiation is observed at an angle 0 = 45° to their motion direction. 

6.45. According to the Bohr-Sommerfeld postulate the periodic 
motion of a particle in a potential field must satisfy the following 
quantization rule: 

p dq= 

where q and p are generalized coordinate and momentum of the 
particle , n are integers. Making use of this rule, find the permitted 
values of energy for a particle of mass m moving 

(a) in a unidimensional rectangular potential well of width 1 
with infinitely high walls; 

(b) along a circle of radius r; 
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(c) in a unidimensional potential field U = ax2/2, where a is 
a positive constant; 

(d) along a round orbit in a central field, where the potential 
energy of the particle is equal to U = — alr (a is a positive con-
stant). 

6.46. Taking into account the motion of the nucleus of a hydrogen 
atom, find the expressions for the electron's binding energy in the 
ground state and for the Rydberg constant. How much (in per cent) 
do the binding energy and the Rydberg constant, obtained without 
taking into account the motion of the nucleus, differ from the more 
accurate corresponding values of these quantities? 

6.47. For atoms of light and heavy hydrogen (H and D) find the 
difference 

(a) between the binding energies of their electrons in the ground 
state; 

(b) between the wavelengths of first lines of the Lyman series. 
6.48. Calculate the separation between the particles of a system 

in the ground state, the corresponding binding energy, and the 
wavelength of the first line of the Lyman series, if such a system is 

(a) a mesonic hydrogen atom whose nucleus is a proton (in a meso-
nic atom an electron is replaced by a meson whose charge is the 
same and mass is 207 that of an electron); 

(b) a positronium consisting of an electron and a positron revolving 
around their common centre of masses. 

6.2. WAVE PROPERTIES  0 F PARTICLES. 
SCHRISHINGER EQUATION 

• The de Broglie wavelength of a particle with momentum p: 

2rch 
= 

• Uncertainty principle: 

Ax • Ap, ih. 

• Schrodinger time-dependent and time-independent equations: 
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where 	is the total wave function, II) is its coordinate part, V2  is the Laplace 
operator, E and U are the total and potential energies of the particle. In spheric-
al coordinates: 
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• Coefficient of transparency of a potential barrier V (x): 

x2  
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x, 

where x1  and x 2  are the coordinates of the points between which V > E. 

6.49. Calculate the de Broglie wavelengths of an electron, proton, 
and uranium atom, all having the same kinetic energy 100 eV. 

6.50. What amount of energy should be added to an electron to 
reduce its de Broglie wavelength from 100 to 50 pm? 

6.51. A neutron with kinetic energy 7' = 25 eV strikes a sta-
tionary deuteron (heavy hydrogen nucleus). Find the de Broglie 
wavelengths of both particles in the frame of their centre of inertia. 

6.52. Two identical non-relativistic particles move at right 
angles to each other, possessing de Broglie wavelengths k7  and X,. 
Find the de Broglie wavelength of each particle in the frame of 
their centre of inertia. 

6.53. Find the de Broglie wavelength of hydrogen molecules, 
which corresponds to their most probable velocity at room tempera-
ture. 

6.54. Calculate the most probable de Broglie wavelength of 
hydrogen molecules being in thermodynamic equilibrium at room 
temperature. 

6.55. Derive the expression for a de Broglie wavelength X of a rela-
tivistic particle moving with kinetic energy 7'. At what values of T 
does the error in determining X using the non-relativistic formula 
not exceed 1% for an electron and a proton? 

6.56. At what value of kinetic energy is the de Broglie wavelength 
of an electron equal to its Compton wavelength? 

6.57. Find the de Broglie wavelength of relativistic electrons 
reaching the anticathode of an X-ray tube if the short wavelength 
limit of the continuous X-ray spectrum is equal to 21,3h = 10.0 pm? 

6.58. A parallel stream of monoenergetic electrons falls normally 
on a diaphragm with narrow square slit of width b = 1.0 lam. 
Find the velocity of the electrons if the width of the central diffrac-
tion maximum formed on a screen located at a distance 1 = 50 cm 
from the slit is equal to Ax = 0.36 mm. 

6.59. A parallel stream of electrons accelerated by a potential 
difference V — 25 V falls normally on a diaphragm with two narrow 
slits separated by a distance d = 50 Calculate the distance 
between neighbouring maxima of the diffraction pattern on a screen 
located at a distance 1 = 100 cm from the slits. 

6.60. A narrow stream of monoenergetic electrons falls at an 
angle of incidence 0 = 30° on the natural facet of an aluminium 
single crystal. The distance between the neighbouring crystal planes 
parallel to that facet is equal to d = 0.20 nm. The maximum mirror 
reflection is observed at a certain accelerating voltage V 0. Find V, 

(6.2e) 
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if the next maximum mirror reflection is known to be observed when 
the accelerating voltage is increased ri = 2.25 times. 

6.61. A narrow beam of monoenergetic electrons falls normally 
on the surface of a Ni single crystal. The reflection maximum of 
fourth order is observed in the direction forming an angle 0 = 55° 
with the normal to the surface at the energy of the electrons equal 
to T = 180 eV. Calculate the corresponding value of the interplanar 
distance. 

6.62. A narrow stream of electrons with kinetic energy T 
= 10 keV passes through a polycrystalline aluminium foil, forming 
a system of diffraction fringes on a screen. Calculate the interplanar 
distance corresponding to the reflection of third order from a certain 
system of crystal planes if it is responsible for a diffraction ring of 
diameter D = 3.20 cm. The distance between the foil and the screen 
is 1 = 10.0 cm. 

6.63. A stream of electrons accelerated by a potential difference V 
falls on the surface of a metal whose inner potential is V 1  = 15 V. 
Find: 

(a) the refractive index of the metal for the electrons accelerated 
by a potential difference V = 150 V; 

(b) the values of the ratio 1//1/ i  at which the refractive index differs 
from unity by not more than rl  -- 1.0%. 

6.64. A particle of mass m is located in a unidimensional square 
potential well with infinitely high walls. The width of the well is 
equal to 7. Find the permitted values of energy of the particle taking 
into account that only those states of the particle's motion are 
realized for which the whole number of de Broglie half-waves are 
fitted within the given well. 

6.65. Describe the Bohr quantum conditions in terms of the wave 
theory: demonstrate that an electron in a hydrogen atom can move 
only along those round orbits which accommodate a whole number 
of de Broglie waves. 

6.66. Estimate the minimum errors in determining the velocity 
of an electron, a proton, and a ball of mass of 1 mg if the coordinates 
of the particles and of the centre of the ball are known with uncer-
tainly 1 

6.67. Employing the uncertainty principle, evaluate the indeter-
minancy of the velocity of an electron in a hydrogen atom if the 
size of the atom is assumed to be 1 = 0.10 nm. Compare the obtained 
magnitude with the velocity of an electron in the first Bohr orbit 
of the given atom. 

6.68. Show that for the particle whose coordinate uncertainty is 
=X/2n, where X is its de Broglie wavelength, the velocity uncertain-

ty is of the same order of magnitude as the particle's velocity itself. 
6.69. A free electron was initially confined within a region with 

linear dimensions 1 = 0.10 nm. Using the uncertainty principle, 
evaluate the time over which the width of the corresponding train 
of waves becomes = 10 times as large. 
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6.70. Employing the uncertainty principle, estimate the mini-
mum kinetic energy of an electron confined within a region whose 
size is 1 = 0.20 nm. 

6.71. An electron with kinetic energy T 	4 eV is confined 
within a region whose linear dimension is 1 = 1 µm. Using the 
uncertainty principle, evaluate the relative uncertainty of its velo-
city. 

6.72. An electron is located in a unidimensional square potential 
well with infinitely high walls. The width of the well is 1. From 
the uncertainty principle estimate the force with which the electron 
possessing the minimum permitted energy acts on the walls of the well. 

6.73. A particle of mass m moves in a unidimensional potential 
field U = kx2I2 (harmonic oscillator). Using the uncertainty prin-
ciple, evaluate the minimum permitted energy of the particle in 
that field. 

6.74. Making use of the uncertainty principle, evaluate the mini-
mum permitted energy of an electron in a hydrogen atom and its 
corresponding apparent distance from the nucleus. 

6.75. A parallel stream of hydrogen atoms with velocity v 
600 m/s falls normally on a diaphragm with a narrow slit behind 

which a screen is placed at a distance 1 = 1.0 m. Using the uncer-
tainty principle, evaluate the width of the slit S at which the width 
of its image on the screen is minimum. 

6.76. Find a particular solution of the time-dependent Schrodinger 
equation for a freely moving particle of mass m. 

6.77. A particle in the ground state is located in a unidimensional 
square potential well of length 1 with absolutely impenetrable walls 
(0 < x < 1). Find the probability of the particle staying within 

1 	 2 a region -3- 1 < x < -3-1. 

6.78. A particle is located in a unidimensional square potential 
well with infinitely high walls. The width of the well is 1. Find the 
normalized wave functions of the stationary states of the particle, 
taking the midpoint of the well for the origin of the x coordinate. 

6.79. Demonstrate that the wave functions of the stationary states 
of a particle confined in a unidimensional potential well with infi-
nitely high walls are orthogonal, i.e. they satisfy the condition 

1)7,11)„,• dx = 0 if n' n. Here 1 is the width of the well, n are 

integers. 
6.80. An electron is located in a unidimensional square potential 

well with infinitely high walls. The width of the well equal to 1 is 
such that the energy levels are very dense. Find the density of energy 
levels dN/dE, i.e. their number per unit energy interval, as a func-
tion of E. Calculate dNIdE for E = 1.0 eV if 1 = 1.0 cm. 

6.81. A particle of mass m is located in a two-dimensional square 
potential well with absolutely impenetrable walls. Find: 
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(a) the particle's permitted energy values if the sides of the well 
are 1, and 12; 

(b) the energy values of the particle at the first four levels if the 
well has the shape of a square with side 1. 

6.82. A particle is located in a two-dimensional square potential 
well with absolutely impenetrable walls (0 < x < a, 0 < y < b). 
Find the probability of the particle with the lowest energy to be 
located within a region 0 < x < a/3. 

6.83. A particle of mass m is located in a three-dimensional cubic 
potential well with absolutely impenetrable walls. The side of the 
cube is equal to a. Find: 

(a) the proper values of energy of the particle; 
(b) the energy difference between the third and fourth levels; 
(c) the energy of the sixth level and the number of states (the 

degree of degeneracy) corresponding to that level. 
6.84. Using the Schrodinger equation, demonstrate that at the 

point where the potential energy U (x) of a particle has a finite 
discontinuity, the wave function remains smooth, i.e. its first deriva-
tive with respect to the coordinate is continuous. 

6.85. A particle of mass m is located in a unidimensional potential 
field U (x) whose shape is shown in Fig. 6.2, where U (0) = 00. 
Find: 

Fig. 6.2. 

(a) the equation defining the possible values of energy of the 
particle in the region E < U0; reduce that equation to the form 

sin kl = ±k1 Vh2/2ml2 Uo, 

where k =1/-2mElh. Solving this equation by graphical means, 
demonstrate that the possible values of energy of the particle form 
a discontinuous spectrum; 

(b) the minimum value of the quantity 12U0  at which the first 
energy level appears in the region E < U0. At what minimum value 
of /2 U, does the nth level appear? 
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6.86. Making use of the solution of the foregoing problem, deter-
mine the probability of the particle with energy E = U012 to be 

h2  
located in the region x > 1, if 12U0 	T 

)

. 

6.87. Find the possible values of energy of a particle of mass m 
located in a spherically symmetrical potential well U (r) = 0 for 
r < 7.0  and U (r) = oo for r = r0, in the case when the motion of 
the particle is described by a wave function* (r) depending only on r. 

Instruction. When solving the Schrodinger equation, make the 
substitution 11) (r) = x (r)Ir. 

6.88. From the conditions of the foregoing problem find: 
(a) normalized eigenfunctions of the particle in the states for 

which (r) depends only on r; 
(b) the most probable value r

pr 
 for the ground state of the particle 

and the probability of the particle to be in the region r < rpr. 
6.89. A particle of mass m is located in a spherically symmetrical 

potential well U (r) = 0 for r < r0  and U (r) = U 0  for r > 
(a) By means of the substitution (r) = x (r)Ir find the equation 

defining the proper values of energy E of the particle for E < U0, 
when its motion is described by a wave function (r) depending 
only on r. Reduce that equation to the form 

sin kro =+kro Vh212mrsUo, where k.li2mElh. 

(b) Calculate the value of the quantity r°U0  at which the first 
level appears. 

6.90. The wave function of a particle of mass in in a unidimension-
al potential field U (x) = kx212 has in the ground state the form 

(x) = A e-coc2 , where A is a normalization factor and a is a positive 
constant. Making use of the Schrodinger equation, find the constant a 
and the energy E of the particle in this state. 

6.91. Find the energy of an electron of a hydrogen atom in a sta-
tionary state for which the wave function takes the form p  (r) 
= A (1 + ar) e-ar, where A, a, and a are constants. 

6.92. The wave function of an electron of a hydrogen atom in the 
ground state takes the form (r) = A e-r/ri, where A is a certain 
constant, r1  is the first Bohr radius. Find: 

(a) the most probable distance between the electron and the 
nucleus; 

(b) the mean value of modulus of the Coulomb force acting on the 
electron; 

(c) the mean value of the potential energy of the electron in the 
field of the nucleus. 

6.93. Find the mean electrostatic potential produced by an 
electron in the centre of a hydrogen atom if the electron is in the 
ground state for which the wave function is (r) = A e-r/ri, where A 
is a certain constant, r1  is the first Bohr radius. 
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6.94. Particles of mass m and energy E move from the left to the 
potential barrier shown in Fig. 6.3. Find: 

(a) the reflection coefficient R of the barrier for E > U0; 
(b) the effective penetration depth of the particles into the region 

x > 0 for E < Uo, i.e. the distance from the barrier boundary to 
the point at which the probability of finding a particle decreases 
e-fold. 

t 
up 

0 

Fig. 6.3. 

6.95. Employing Eq. (6.2e), find the probability D of an electron 
with energy E tunnelling through a potential barrier of width 1 
and height U0  provided the barrier is shaped as shown: 

(a) in Fig. 6.4; 
(b) in Fig. 6.5. 

       

     

U0  

      

      

      

-1 

Fig. 6.4. 	 Fig. 6.5. 	 Fig. 6.6. 

6.96. Using Eq. (6.2e), find the probability D of a particle of 
mass m and energy E tunnelling through the potential barrier 
shown in Fig. 6.6, where U (x) = U0  (1 — x2112). 

6.3. PROPERTIES OF ATOMS. SPECTRA 

• Spectral labelling of terms: x(L)j, where x = 2S + 1 is the multipli-
city, L, S, T are quantum numbers, 

L = 0, 1, 2, 3, 4, 5, 6, . . . 

(L): S, P, D, F, G, H, I, ... 
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Fig. 6.8. 
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• Terms of alkali metal atoms: 

T — 	 (6.3a) (n± CO2  

where R is the Rydberg constant, a is the Rydberg correction. 
Fig. 6.7 illustrates the diagram of a lithium atom terms. 
• Angular momenta of an atom: 

ML  = hjlL (L 	1), 	 (6.3b) 

with similar expressions for Ms  and M1. 
• Hund rules: 
(1) For a certain electronic configuration, the terms of the largest S value 

are the lowest in energy, and among the terms of Smax  that of the largest L 
usually lies lowest; 

Li 

Fig. 6.7. 

(2) for the basic (normal) term J = IL — SI if the subshell is less than 
half-filled, and J = L 	S in the remaining cases. 

• Boltzmann's formula: 
Ns = g2 

	

 e —(E,--E1)111T 	 (6.3c) 
N I  gi  

where g1  and g2  are the statistical weights (degeneracies) of the corresponding 
levels. 

• Probabilities of atomic transitions per unit time between level 1 and a 
higher level 2 for the cases of spontaneous radiation, induced radiation, and 
absorption: 

PsP  - 	 = pind p , pabs 
21 	 21 	 12 	BAUM,  

where A 21, B 21, B12 are Einstein coefficients, uo, is the spectral density of radia-
tion corresponding to frequency co of transition between the given levels. 

• Relation between Einstein coefficients: 
n2c3  

g1B12=g2,821, B21 	kw3A21. 

• Diagram showing formation of X-ray spectra (Fig. 6.8). 
• Moseley's law for K, lines: 

s  
K  = 3 LI (Z— o)2, 

a 4 

(6.3d) 

(6.3e) 

(6.3f) 



where a is the correction constant which is equal to unity for light elements. 
• Magnetic moment of an atom and Lande g factor: 

g J (J + 1) g —1+
J (1-1-1)+S (S+1)—L(L+1)  (6.3g) 

2J (J -{-1) 

• Zeeman splitting of spectral lines in a weak magnetic field: 
MI) = (rnigi  — m 2g2) tI BBM. 	 (6.3h) 

• With radiation directed along the magnetic field, the Zeeman compo-
nents caused by the transition m1  = m2  are absent. 

6.97. The binding energy of a valence electron in a Li atom in the 
states 2S and 2P is equal to 5.39 and 3.54 eV respectively. Find 
the Rydberg corrections for S and P terms of the atom. 

6.98. Find the Rydberg correction for the 3P term of a Na atom 
whose first excitation potential is 2.10 V and whose valence electron 
in the normal 3S state has the binding energy 5.14 eV. 

6.99. Find the binding energy of a valence electron in the ground 
state of a Li atom if the wavelength of the first line of the sharp 
series is known to be equal to X = 813 nm and the short-wave 
cutoff wavelength of that series to X2  = 350 nm. 

6.100. Determine the wavelengths of spectral lines appearing 
on transition of excited Li atoms from the state 3S down to the 
ground state 2S. The Rydberg corrections for the S and P terms 
are —0.41 and —0.04. 

6.101. The wavelengths of the yellow doublet components of the 
resonance Na line caused by the transition 3P 3S are equal to 
589.00 and 589.56 nm. Find the splitting of the 3P term in eV units. 

6.102. The first line of the sharp series of atomic cesium is a doub-
let with wavelengths 1358.8 and 1469.5 nm. Find the frequency 
intervals (in rad/s units) between the components of the sequent 
lines of that series. 

6.103. Write the spectral designations of the terms of the hydrogen 
atom whose electron is in the state with principal quantum number 
n = 3. 

6.104. How many and which values of the quantum number J 
can an atom possess in the state with quantum numbers S and L 
equal respectively to 

(a) 2 and 3; (b) 3 and 3; (c) 5/2 and 2? 
6.105. Find the possible values of total angular momenta of 

atoms in the states 4P and 6D. 
6.106. Find the greatest possible total angular momentum and 

the corresponding spectral designation of the term 
(a) of a Na atom whose valence electron possesses the principal 

quantum number n = 4; 
(b) of an atom with electronic configuration 1s22p3d. 
6.107. It is known that in F and D states the number of possible 

values of the quantum number J is the same and equal to five. Find 
the spin angular momentum in these states. 
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6.108. An atom is in the state whose multiplicity is three and the 
total angular momentum is hi/ 20. What can the corresponding 
quantum number L be equal to? 

6.109. Find the possible multiplicities x of the terms of the 
types 

(a) "D2; (b) HP3/2; (c) 'F1. 
6.110. A certain atom has three electrons (s, p, and d), in addition 

to filled shells, and is in a state with the greatest possible total 
mechanical moment for a given configuration. In the corresponding 
vector model of the atom find the angle between the spin momentum 
and the total angular momentum of the given atom. 

6.111. An atom possessing the total angular momentum I Y6 
is in the state with spin quantum number S = 1. In the correspond-
ing vector model the angle between the spin momentum and the total 
angular momentum is 0 = 73.2°. Write the spectral symbol for 
the term of that state. 

6.112. Write the spectral symbols for the terms of a two-electron 
system consisting of one p electron and one d electron. 

6.113. A system comprises an atom in 2P3/2  state and a d electron. 
Find the possible spectral terms of that system. 

6.114. Find out which of the following transitions are forbidden 
by the selection rules: 2D312 	2P112, 3P1 	2S172, 3F

3 	3p2,  
4F71  2 	4D 512.  

6.115. Determine the overall degeneracy of a 3D state of a Li 
atom. What is the physical meaning of that value? 

6.116. Find the degeneracy of the states 2P, 3D, and 4F possessing 
the greatest possible values of the total angular momentum. 

6.117. Write the spectral designation of the term whose degeneracy 
is equal to seven and the quantum numbers L and S are interrelated 
as L = 3S. 

6.118. What element has the atom whose K, L, and M shells 
and 4s subshell are filled completely and 4p subshell is half-filled? 

6.119. Using the Hund rules, find the basic term of the atom whose 
partially filled subshell contains 

(a) three p electrons; (b) four p electrons. 
6.120. Using the Hund rules, find the total angular momentum 

of the atom in the ground state whose partially filled subshell 
contains 

(a) three d electrons; (b) seven d electrons. 
6.121. Making use of the Hund rules, find the number of electrons 

in the only partially filled subshell of the atom whose basic term is 
(a) 3F2; (b) 2P312; (c) 685/2. 
6.122. Using the Hund rules, write the spectral symbol of the 

basic term of the atom whose only partially filled subshell 
(a) is filled by 1/3, and S = 1; 
(b) is filled by 70%, and S = 3/2. 
6.123. The only partially filled subshell of a certain atom contains 

three electrons, the basic term of the atom having L = 3. Using 

260 



the Hund rules, write the spectral symbol of the ground state of 
the given atom. 

6.124. Using the Hund rules, find the magnetic moment of the 
ground state of the atom whose open subshell is half-filled with five 
electrons. 

6.125. What fraction of hydrogen atoms .is in the state with the 
principal quantum number n = 2 at a temperature T = 3000 K? 

6.126. Find the ratio of the number of atoms of gaseous sodium 
in the state 3P to that in the ground state 3S at a temperature T 

2400 K. The spectral line corresponding to the transition 3P 
3S is known to have the wavelength ? = 589 nm. 

6.127. Calculate the mean lifetime of excited atoms if it is known 
that the intensity of the spectral line appearing due to transition 
to the ground state diminishes by a factor = 25 over a distance 
1= 2.5 mm along the stream of atoms whose velocity is v = 
= 600 m/s. 

6.128. Rarefied Hg gas whose atoms are practically all in the 
ground state was lighted by a mercury lamp emitting a resonance 
line of wavelength A, = 253.65 nm. As a result, the radiation power 
of Hg gas at that wavelength turned out to be P = 35 mW. Find 
the number of atoms in the state of resonance excitation whose 
mean lifetime is T = 0.15 ps. 

6.129. Atomic lithium of concentration n = 3.6.1016  cm-3  is at 
a temperature T = 1500 K. In this case the power emitted at the 
resonant line's wavelength k = 671 nm (2P 2S) per unit volume 
of gas is equal to P = 0.30 Wicm3. Find the mean lifetime of Li 
atoms in the resonance excitation state. 

6.130. Atomic hydrogen is in thermodynamic equilibrium with 
its radiation. Find: 

(a) the ratio of probabilities of induced and spontaneous radia-
tions of the atoms from the level 2P at a temperature T = 3000 K; 

(b) the temperature at which these probabilities become equal. 
6.131. A beam of light of frequency co, equal to the resonant 

frequency of transition of atoms of gas, passes through that gas 
heated to temperature T. In this case hco >> kT. Taking into account 
induced radiation, demonstrate that the absorption coefficient of 
the gas x varies as x = xo  (1. — e--4eviiT), where xo  is the absorption 
coefficient for T 0. 

6.132. The wavelength of a resonant mercury line is X, = 
= 253.65 nm. The mean lifetime of mercury atoms in the state of 
resonance excitation is T = 0.15 Rs. Evaluate the ratio of the 
Doppler line broadening to the natural linewidth at a gas tempera-
ture T = 300 K. 

6.133. Find the wavelength of the K a  line in copper (Z = 29) if 
the wavelength of the K a  line in iron (Z = 26) is known to be equal 
to 193 pm. 

6.134. Proceeding from Moseley's law find: 
(a) the wavelength of the K a  line in aluminium and cobalt: 
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(b) the difference in binding energies of K and L electrons in 
vanadium. 

6.135. How many elements are there in a row between those 
whose wavelengths of Ka  lines are equal to 250 and 179 pm? 

6.136. Find the voltage applied to an X-ray tube with nickel 
anticathode if the wavelength difference between the K c, line and 
the short-wave cut-off of the continuous X-ray spectrum is equal 
to 84 pm. 

6.137. At a certain voltage applied to an X-ray tube with alumi-
nium anticathode the short-wave cut-off wavelength of the contin-
uous X-ray spectrum is equal to 0.50 nm. Will the K series of the 
characteristic spectrum whose excitation potential is equal to 
1.56 kV be also observed in this case? 

6.138. When the voltage applied to an X-ray tube increased from 
V1  = 10 kV to V , = 20 kV, the wavelength interval between 
the Ka  line and the short-wave cut-off of the continuous X-ray 
spectrum increases by a factor n = 3.0. Find the atomic number of 
the element of which the tube's anticathode is made. 

6.139. What metal has in its absorption spectrum the difference 
between the frequencies of X-ray K and L absorption edges equal 
to Au) = 6.85.1018  s-1  ? 

6.140. Calculate the binding energy of a K electron in vanadium 
whose L absorption edge has the wavelength X, = 2.4 nm. 

6.141. Find the binding energy of an L electron in titanium if 
the wavelength difference between the first line of the K series and 
its short-wave cut-off is A? = 26 pm. 

6.142. Find the kinetic energy and the velocity of the photoelect-
rons liberated by Kc, radiation of zinc from the K shell of iron whose 
K band absorption edge wavelength is ?K = 174 pm. 

6.143. Calculate the Lande g factor for atoms 
(a) in S states; (b) in singlet states. 
6.144. Calculate the Lande g factor for the following terms: 
(a) 6F1/2; (b) 4D112; (c) 5F2; (d) 5P1; (e) 3Po. 
6.145. Calculate the magnetic moment of an atom (in Bohr 

magnetons) 
(a) in 1F state; 
(b) in 2D312  state; 
(c) in the state in which S = 1, L = 2, and Lande factor g = 4/3. 
6.146. Determine the spin angular momentum of an atom in 

the state D2 if the maximum value of the magnetic moment pro-
jection in that state is equal to four Bohr magnetons. 

6.147. An atom in the state with quantum numbers L = 2, 
S = 1. is located in a weak magnetic field. Find its magnetic moment 
if the least possible angle between the angular momentum and 
the field direction is known to be equal to 30°. 

6.148. A valence electron in a sodium atom is in the state with 
principal quantum number n = 3, with the total angular momentum 
being the greatest possible. What is its magnetic moment in that state? 
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6.149. An excited atom has the electronic configuration 1s22s22p3d 
being in the state with the greatest possible total angular momentum. 
Find the magnetic moment of the atom in that state. 

6.150. Find the total angular momentum of an atom in the state 
with S = 3/2 and L = 2 if its magnetic moment is known to be 
equal to zero. 

6.151. A certain atom is in the state in which S = 2, the total 
angular momentum M = V 2h, and the magnetic moment is equal 
to zero. Write the spectral symbol of the corresponding 
term. 

6.152. An atom in the state 2P312  is located in the external magne-
tic field of induction B = 1.0 kG. In terms of the vector model find 
the angular precession velocity of the total angular momentum of 
that atom. 

6.153. An atom in the state 2P,12  is located on the axis of a loop 
of radius r = 5 cm carrying a current I = 10 A. The distance be-
tween the atom and the centre of the loop is equal to the radius of 
the latter. How great may be the maximum force that the magnetic 
field of that current exerts on the atom? 

6.154. A hydrogen atom in the normal state is located at a distance 
r = 2 . 5 cm from a long straight conductor carrying a current 
I = 10 A. Find the force acting on the atom. 

6.155. A narrow stream of vanadium atoms in the ground state 
4F312  is passed through a transverse strongly inhomogeneous magnet-
ic field of length 1, = 5.0 cm as in the Stern-Gerlach experiment. 
The beam splitting is observed on a screen located at a distance 
/ 2  = 15 cm from the magnet. The kinetic energy of the atoms is 
T = 22 MeV. At what value of the gradient of the magnetic field 
induction B is the distance between the extreme components of 
the split beam on the screen equal to 6 = 2.0 mm? 

6.156. Into what number of sublevels are the following terms 
split in a weak magnetic field: 

(a) 3P0; (b) 2F512; (c) 4P1/2? 
6.157. An atom is located in a magnetic field of induction B 

= 2.50 kG. Find the value of the total splitting of the following 
terms (expressed in eV units): 

(a) 1D; (b) 3F4. 
6.158. What kind of Zeeman effect, normal or anomalous, is 

observed in a weak magnetic field in the case of spectral lines caused 
by the following transitions: 

(a) 113 	 (b) 2D512 -* 2P312; (c)  3D1 -* 3P0; (d) 5/5 	5H4? 
6.159. Determine the spectral symbol of an atomic singlet term 

if the total splitting of that term in a weak magnetic field of induc-
tion B = 3.0 kG amounts to AE = 104 ['RV. 

6.160. It is known that a spectral line = 612 nm of an atom 
is caused by a transition between singlet terms. Calculate the inter-
val AX, between the extreme components of that line in the magnetic 
field with induction B = 10.0 kG. 
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6.161. Find the minimum magnitude of the magnetic field induc-
tion B at which a spectral instrument with resolving power ?LIU = 
= 1.0.105  is capable of resolving the components of the spectral 
line 2,, = 536 nm caused by a transition between singlet terms. The 
observation line is at right angles to the magnetic field direction. 

6.162. A spectral line caused by the transition 3D1  3P, expe-
riences the Zeeman splitting in a weak magnetic field. When observed 
at right angles to the magnetic field direction, the interval between 
the neighbouring components of the split line is Aco = 1.32.101° s-1  
Find the magnetic field induction B at the point where the source 
is located. 

6.163. The wavelengths of the Na yellow doublet (2P 	2S) are 
equal to 589.59 and 589.00 nm. Find: 

(a) the ratio of the intervals between neighbouring sublevels of 
the Zeeman splitting of the terms 2P312  and 2P112  in a weak magnetic 
field; 

(b) the magnetic field induction B at which the interval between 
neighbouring sublevels of the Zeeman splitting of the term 2/3312  
is 11 = 50 times smaller than the natural 
splitting of the term 2P. 

6.164. Draw a diagram of permitted 	W/1P//  
transitions between the terms 2P312  and 25112 a  e 	)fri 
in a weak magnetic field. Find the displace- 	 M  
ments (in rad/s units) of Zeeman components 	/ 
of that line in a magnetic field B = 4.5 kG. 

6.165. The same spectral line undergoing 	Fig. 6.9.  
anomalous Zeeman splitting is observed in 
direction 1 and, after reflection from the mirror M (Fig. 6.9), in 
direction 2. How many Zeeman components are observed in both 
directions if the spectral line is caused by the transition 

(a) 2P312 	2,9112;  (b) 3P 2 	3,51? 
6.166. Calculate the total splitting Ae) of the spectral line 3D3  —0- 

—4.- 3P2  in a weak magnetic field with induction B = 3.4 kG. 

6.4. MOLECULES AND CRYSTALS 

• Rotational energy of a diatomic molecule: 

h2 

E J —  TT (J+1.)' 

where I is the molecule's moment of inertia. 
• Vibrational energy of a diatomic molecule: 

	

, 	1 
(v-{ 1)

2 ' 

where co is the natural frequency of oscillations of the molecule. 

(6.4a) 

(6.4b) 



• Mean energy of a quantum harmonic oscillator at a temperature T: 

40)ha) 
(E)— 	_,_ 	

(6.4c) 2 	et.olkT 	a ' 
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• Debye formula for molar vibrational energy of a crystal: 

OIT 
3dx 
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where 0 is the Debye temperature, 

0= hcontaxik. 

• Molar vibrational heat capacity of a crystal for T 	0: 

T = _12 
5 

n4R ( 
0

)3 
• 

• Distribution of free electrons in metal in the vicinity of the absolute 
zero: 

-1/-  m3/2 
dn 	nah3 	E dE, 	 (6.4g) 

where do is the concentration of electrons whose energy falls within the inter- 
val E, E 	dE. The energy E is counted off the bottom of the conduction band. 

• Fermi level at T = 0: 
hz 

EF =-2m  (33t2n)2/3 7 	 (6.4h)  

where n is the concentration of free electrons in metal .  

6.167. Determine the angular rotation velocity of an S2 molecule 
promoted to the first excited rotational level if the distance between 
its nuclei is d = 189 pm. 

6.168. For an HCl molecule find the rotational quantum numbers 
of two neighbouring levels whose energies differ by 7.86 meV. The 
nuclei of the molecule are separated by the distance of 127.5 pm. 

6.169. Find the angular momentum of an oxygen molecule whose 
rotational energy is E = 2.16 meV and the distance between the 
nuclei is d = 121 pm. 

6.170. Show that the frequency intervals between the neighbour-
ing spectral lines of a true rotational spectrum of a diatomic molecule 
are equal. Find the moment of inertia and the distance between the 
nuclei of a CH molecule if the intervals between the neighbouring 
lines of the true rotational spectrum of these molecules are equal to 
Aw = 5.47.1012  s-1. 

6.171. For an HF molecule find the number of rotational levels 
located between the zeroth and first excited vibrational levels assum-
ing rotational states to be independent of vibrational ones. The 
natural vibration frequency of this molecule is equal to 
7.79.1014  rad/s, and the distance between the nuclei is 91.7 pm. 

(6.4d) 

(6.4e) 

(6.4f) 



6.172. Evaluate how many lines there are in a true rotational 
spectrum of CO molecules whose natural vibration frequency is 
o.) = 4.09.1014  s-1  and moment of inertia I = 1.44 -10-" g•cm2. 

6.173. Find the number of rotational levels per unit energy inter-
val, dN/dE, for a diatomic molecule as a function of rotational 
energy E. Calculate that magnitude for an iodine molecule in the 
state with rotational quantum number J = 10. The distance between 
the nuclei of that molecule is equal to 267 pm. 

6.174. Find the ratio of energies required to excite a diatomic 
molecule to the first vibrational and to the first rotational level. 
Calculate that ratio for the following molecules: 

Molecule a), 1014 s-1  d, pm 

(a) H2  8.3 74 
(b) HI 4.35 160 .  

(c) 12  0 40 267 

Here 6.) is the natural vibration frequency of a molecule, d is the 
distance between nuclei. 

6.175. The natural vibration frequency of a hydrogen molecule 
is equal to 8.25.1014  s-1  , the distance between the nuclei is 74 pm, 
Find the ratio of the number of these molecules at the first excited 
vibrational level (v = 1) to the number of molecules at the first 
excited rotational level (J = 1) at a temperature T = 875 K. It 
should be remembered that the degeneracy of rotational levels is 
equal to 2J + 1. 

6.176. Derive Eq. (6.4c), making use of the Boltzmann , distribu-
tion. From Eq. (6.4c) obtain the expression for molar vibration 
heat capacity Cv v ib of diatomic gas. Calculate Cy v ib for C12  gas 
at the temperature 300 K. The natural vibration frequency of these 
molecules is equal to 1.064 • 1014  s- 1  

6.177. In the middle of the rotation- -vibration band of emission 
spectrum of HC1 molecule, where the "zeroth" line is forbidden by 
the selection rules, the interval between neighbouring lines is Aco = 
= =--- 0.79.1013  s-1. Calculate the distance between the nuclei of an 
HC1 molecule. 

6.178. Calculate the wavelengths of the red and violet satellites, 
closest to the fixed line, in the vibration spectrum of Raman scatter-
ing by F2 molecules if the incident light wavelength is equal to 

404.7 nm and the natural vibration frequency of the molecule 
is co = 2.15.10'4  s-1. 

6A79. Find the natural vibration frequency and the quasielastic 
force coefficient of an S2  molecule if the wavelengths of the red and 
violet satellites, closest to the fixed line, in the vibration spectrum 

•of Raman scattering are equal to 346.6 and 330.0 nm. 
6.180. Find the ratio of intensities of the violet and red satellites, 

closest to the fixed line, in the vibration spectrum of Raman scatter-
ing by Cl, molecules at a temperature T = 300 K if the natural 
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vibration frequency of these molecules is a) = 1.06.1014  s -1  . 
By what factor will this ratio change if the temperature is doubled? 

6.181. Consider the possible vibration modes in the following 
linear molecules: 

(a) CO, (0 —C-0); (b) C,H, (H—C —C—H). 
6.182. Find the number of natural transverse vibrations of a string 

of length 1 in the frequency interval from co to (t) do) if the propa-
gation velocity of vibrations is equal to v. All vibrations are supposed 
to occur in one plane. 

6.183. There is a square membrane of area S. Find the number of 
natural vibrations perpendicular to its plane in the frequency interval 
from (.1.) to a) -I- da) if the propagation velocity of vibrations is equal 
to v. 

6.184. Find the number of natural transverse vibrations of a right-
angled parallelepiped of volume V in the frequency interval from 
a) to a) da) if the propagation velocity of vibrations is equal to v. 

6.185. Assuming the propagation velocities of longitudinal and 
transverse vibrations to be the same and equal to v, find the Debye 
temperature 

(a) for a unidimensional crystal, i.e. a chain of identical atoms, 
incorporating no  atoms per unit length; 

(b) for a two-dimensional crystal, i.e. a plane square grid consist-
ing of identical atoms, containing no  atoms per unit area; 

(c) for a simple cubic lattice consisting of identical atoms, con-
taining no  atoms per unit volume. 

6.186. Calculate the Debye temperature for iron in which the 
propagation velocities of longitudinal and transverse vibrations are 
equal to 5.85 and 3.23 km/s respectively. 

6.187. Evaluate the propagation velocity of acoustic vibrations 
in aluminium whose Debye temperature is 8 = 396 K. 

6.188. Derive the formula expressing molar heat capacity of 
a unidimensional crystal, a chain of identical atoms, as a function 
of temperature T if the Debye temperature of the chain is equal to O. 
Simplify the obtained expression for the case T >> 8. 

6.189. In a chain of identical atoms the vibration frequency a) 
depends on wave number k as a) = comax  sin (ka/2), where comax 
is the maximum vibration frequency, lc = 2n4, is the wave number 
corresponding to frequency a), a is the distance between neighbour-
ing atoms. Making use of this dispersion relation, find the dependence 
of the number of longitudinal vibrations per unit frequency interval 
on co, i.e. dN/da), if the length of the chain is 1. Having obtained 
dNIcico, find the total number N of possible longitudinal vibrations 
of the chain. 

6.190. Calculate the zero-point energy per one gram of copper 
whose Debye temperature is 8 = 330 K. 

6.191. Fig. 6.10 shows heat capacity of a crystal vs temperature 
in terms of the Debye theory. Here C,1  is classical heat capacity, 
0 is the Debye temperature. Using this plot, find: 
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(a) the Debye temperature for silver if at a temperature T -= 65 K 
its molar heat capacity is equal to 15 J/(mol•K); 

(b) the molar heat capacity of aluminium at T = 80 K if at 
T = 250 K it is equal to 22.4 J/(mol•K); 

(c) the maximum vibration frequency for copper whose heat 
capacity at T = 125 K differs from the classical value by 25%. 

c/cci 

111111111 	11111111 
Q2 	0.11 	0.6 
	

0.8 	TAP 

Fig. 6.10. 

6.192. Demonstrate that molar heat capacity of a crystal at 
a temperature T << 0, where 0 is the Debye temperature, is defined 
by Eq. (6.4f). 

6.193. Can one consider the temperatures 20 and 30 K as low for 
a crystal whose heat capacities at these temperatures are equal 
to 0.226 and 0.760 J/(mol- K)? 

6.194. Calculate the mean zero-point energy per one oscillator 
of a crystal in terms of the Debye theory if the Debye temperature 
of the crystal is equal to 0. 

6.195. Draw the vibration energy of a crystal as a function of 
frequency (neglecting the zero-point vibrations). Consider two cases: 
T = 0/2 and T = 0/4, where 0 is the Debye temperature. 

6.196. Evaluate the maximum values of energy and momentum 
of a phonon (acoustie quantum) in copper whose Debye temperature 
is equal to 330 K. 

6.197. Employing Eq. (6.4g), find at T = 0: 
(a) the maximum kinetic energy of free electrons in a metal if 

their concentration is equal to n; 
(b) the mean kinetic energy of free electrons if their maximum 

kinetic energy Tmax  is known. 
6.198. What fraction (in per cent) of free electrons in a metal at 

T = 0 has a kinetic energy exceeding half the maximum energy? 
6.199. Find the number of free electrons per one sodium atom 

at T = 0 if the Fermi level is equal to EF = 3.07 eV and the density 
of sodium is 0.97 g/cm3. 

0.8 

as 

0.4 

az 
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6.200. Up to what temperature has one to heat classical electronic 
gas to make the mean energy of its electrons equal to that of free 
electrons in copper at T = 0? Only one free electron is supposed to 
correspond to each copper atom. 

6.201. Calculate the interval (in eV units) between neighbouring 
levels of free electrons in a metal at T = 0 near the Fermi level, 
if the concentration of free electrons is n = 2.0.1022  cm-3  and the 
volume of the metal is V = 1.0 cm3. 

6.202. Making use of Eq. (6.4g), find at 7' = 0: 
(a) the velocity distribution of free electrons; 
(b) the ratio of the mean velocity of free electrons to their maxi-

mum velocity. 
6.203. On the basis of Eq. (6.4g) find the number of free electrons 

in a metal at 7' = 0 as a function of de Broglie wavelengths. 
6.204. Calculate the electronic gas pressure in metallic sodium, 

at T = 0, in which the concentration of free electrons is n = 
= 2.5.1022  cm-3. Use the equation for the pressure of ideal gas. 

6.205. The increase in temperature of a cathode in electronic tube 
by OT = 1.0 K from the value 7' '= 2000 K results in the increase 
of saturation current by ----- 1.4%. Find the work function of 
electron for the material of the cathode. 

6.206. Find the refractive index of metallic sodium for electrons 
with kinetic energy T = 135 eV. Only one free electron is assumed 
to correspond to each sodium atom. 

6.207. Find the minimum energy of electron-hole pair formation 
in an impurity-free semiconductor whose electric conductance 
increases = 5.0 times when the temperature increases from T1  = 
= 300 K to T2 = 400 K. 

6.208. At very low temperatures the photoelectric threshold short 
wavelength in an impurity-free germanium is equal to 1th = 1.7 p,m. 
Find the temperature coefficient of resistance of this germanium 
sample at room temperature. 

6.209. Fig. 6.11 illustrates logarithmic electric conductance as 
a function of reciprocal 
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n-type semiconductor. Using this plot, find the width of the forbid-
den band of the semiconductor and the activation energy of donor 
levels. 

6.210. The resistivity of an impurity-free semiconductor at room 
temperature is p = 50 Q • cm. It becomes equal to pi  = 40 Q• cm 
when the semiconductor is illuminated with light, and t = 8 ms 
after switching off the light source the resistivity becomes equal to 
p, = 45 I2-cm. Find the mean lifetime of conduction electrons and 
holes. 

6.211. In Hall effect measurements a plate of width h = 10 mm 
and length 1 = 50 mm made of p-type semiconductor was placed 
in a magnetic field with induction B = 5.0 kG. A potential differ-
ence V = 10 V was applied across the edges of the plate. In this 
case the Hall field is VH = 50 mV and resistivity p = 2.5 52•cm. 
Find the concentration of holes and hole mobility. 

6.212. In Hall effect measurements in a magnetic field with 
induction B = 5.0 kG the transverse electric field strength in an 
impurity-free germanium turned out to be rl = 10 times less than 
the longitudinal electric field strength. Find the difference in the 
mobilities of conduction electrons and holes in the given semicon-
ductor. 

6.213. The Hall effect turned out to be not observable in a semi-
conductor whose conduction electron mobility was 7.1 = 2.0 times 
that of the hole mobility. Find the ratio of hole and conduction 
electron concentrations in that semiconductor. 

6.5. RADIOACTIVITY 

• Fundamental law of radioactive decay: 

	

N=Noe —xt. 	 (6.5a) 

• Relation between the decay constant X., the mean lifetime T, and the 
half-life T: 

1 	ln 2 
T • 

• Specific activity is the activity of a unit mass df a radioisotope. 

6.214. Knowing the decay constant X of a nucleus, find: 
(a) the probability of decay of the nucleus during the time from 0 

to t; 
(b) the mean lifetime ti of the nucleus. 
6.215. What fraction of the radioactive cobalt nuclei whose half-

life is 71.3 days decays during a month? 
6.216. How many beta-particles are emitted during one hour by 

1.0 p,g of Na24  radionuclide whose half-life is 15 hours? 
6.217. To investigate the beta-decay of Mg23  radionuclide, a coun-

ter was activated at the moment t = 0. It registered Ni  beta-parti-
cles by a moment t, = 2.0 s, and by a moment t2  = 3t1  the number 

(6.5b) 
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of registered beta-particles was 2.66 times greater. Find the mean 
lifetime of the given nuclei. 

6.218. The activity of a certain preparation decreases 2.5 times 
after 7.0 days. Find its half-life. 

6.219. At the initial moment the activity of a certain radionuclide 
totalled 650 particles per minute. What will be the activity of the 
preparation after half its half-life period? 

6.220. Find the decay constant and the mean lifetime of Co" 
radionuclide if its activity is known to decrease 4.0% per hour. 
The decay product is nonradioactive. 

6.221. A U238  preparation of mass 1.0 g emits 1.24.104  alpha-
particles per second. Find the half-life of this nuclide and the activity 
of the preparation. 

6.222. Determine the age of ancient wooden items if it is known 
that the specific activity of C" nuclide in them amounts to 3/5 of 
that in lately felled trees. The half-life of C" nuclei is 5570 years. 

6.223. In a uranium ore the ratio of U238  nuclei to P132°8  nuclei 
is = 2.8. Evaluate the age of the ore, assuming all the lead Pb2°8  
to be a final decay product of the uranium series. The half-life of 
U238  nuclei is 4.5.109  years. 

6.224. Calculate the specific activities of Na24  and U235  nuclides 
whose half-lifes are 15 hours and 7.1.108  years respectively. 

6.225. A small amount of solution containing Na24  radionuclide 
with activity A = 2.0.103  disintegrations per second was injected 
in the bloodstream of a man. The activity of 1 cm3  of blood sample 
taken t = 5.0 hours later turned out to be A' = 16 disintegrations 
per minute per cm3. The half-life of the radionuclide is T = 15 hours. 
Find the volume of the man's blood. 

6.226. The specific activity of a preparation consisting of radio-
active Co58  and nonradioactive Co" is equal to 2.2.1012  dis/(s•g). 
The half-life of Co58  is 71.3 days. Find the ratio of the mass of radio-
active cobalt in that preparation to the total mass of the preparation 
(in per cent). 

6.227. A certain preparation includes two beta-active components 
with different half-lifes. The measurements resulted in the following 
dependence of the natural logarithm of preparation activity on 
time t expressed in hours: 

t 0 1 2 3 5 7 10 14 20 
In A 4.10 3.60 3.10 2.60 2.06 1.82 1.60 1.32 0.90 

Find the half-lifes of both components and the ratio of radioactive 
nuclei of these components at the moment t = 0. 

6.228. A P32  radionuclide with half-life 7' = 14.3 days is produced 
in a reactor at a constant rate q = 2.7.10' nuclei per second. How 
soon after the beginning of production of that radionuclide will its 
activity be equal to A = 1.0.109  dis/s? 

6.229. A radionuclide A, with decay constant ki  transforms into 
a radionuclide A 2 with decay constant A,2. Assuming that at the 
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initial moment the preparation contained only the radionuclide A1, 
find: 

(a) the equation describing accumulation of the radionuclide A 2 
With time; 

(b) the time interval after which the activity of radionuclide A 2 
reaches the maximum value. 

6.230. Solve the foregoing problem if Xi  = X2 = X. 
6.231. A radionuclide Al  goes through the transformation chain 

Al  -.-A2  —.A3  (stable) with respective decay constants Xi  and X2. 
Assuming that at the initial moment the preparation contained 
only the radionuclide A1  equal in quantity to N10  nuclei, find the 
equation describing accumulation of the stable isotope A3. 

6.232. A Bi21° radionuclide decays via the chain 

Bpi° .-). P0210 	Pbao6  (stable), a., 

where the decay constants are X, = 1.60.10-8  s-1, X2 = 
= 5.80.10-8  8-1. Calculate alpha- and beta-activities of the Bi21° 
preparation of mass 1.00 mg a month after its manufacture. 

6.233. (a) What isotope is produced from the alpha-radioactive 
Ra228  as a result of five alpha-disintegrations and four (3'-disintegra-
tions? 

(b) How many alpha- and P--decays does U238  experience before 
turning finally into the stable Pb206  isotope? 

6.234. A stationary Pb2" nucleus emits an alpha-particle with 
kinetic energy 7'„ = 5.77 MeV. Find the recoil velocity of a daught-
er nucleus. What fraction of the total energy liberated in this decay 
is accounted for by the recoil energy of the daughter nucleus? 

6.235. Find the amount of heat generated by 1.00 mg of a Po21° 
preparation during the mean lifetime period of these nuclei if the 
emitted alpha-particles are known to possess the kinetic energy 
5.3 MeV and practically all daughter nuclei are formed directly in 
the ground state. 

6.236. The alpha-decay of Po21° nuclei (in the ground state) is 
accompanied by emission of two groups of alpha-particles with 
kinetic energies 5.30 and 4.50 MeV. Following the emission of these 
particles the daughter nuclei are found in the ground and excited 
states. Find the energy of gamma-quanta emitted by the excited 
nuclei. 

6.237. The mean path length of alpha-particles in air under 
standard conditions is defined by the formula R = 0.98.10-27  v3o  cm, 
where v0  (cm/s) is the initial velocity of an alpha-particle. Using 
this formula, find for an alpha-particle with initial kinetic energy 
7.0 MeV: 

(a) its mean path length; 
(b) the average number of ion pairs formed by the given alpha-

particle over the whole path R as well as over its first half, assuming 
the ion pair formation energy to be equal to 34 eV. 
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6.238. Find the energy Q liberated in (3-- and 13+-decays and in 
K-capture if the masses of the parent atom MP, the daughter atom 
M d and an electron m are known. 

6.239. Taking the values of atomic masses from the tables, find 
the maximum kinetic energy of beta-particles emitted by Be" 
nuclei and the corresponding kinetic energy of recoiling daughter 
nuclei formed directly in the ground state. 

6.240. Evaluate the amount of heat produced during a day by 
a P--active Na24  preparation of mass m = 1.0 mg. The beta-particles 
are assumed to possess an average kinetic energy equal to 1/3 of the 
highest possible energy of the given decay. The half-life of Na24  is 
T = 15 hours. 

6.241. Taking the values of atomic masses from the tables, calcu-
late the kinetic energies of a positron and a neutrino emitted by Cu 
nucleus for the case when the daughter nucleus does not 
recoil. 

6.242. Find the kinetic energy of the recoil nucleus in the positron-
ic decay of a Nn nucleus for the case when the energy of positrons 
is maximum. 

6.243. From the tables of atomic masses determine the velocity 
of a nucleus appearing as a result of K-capture in a Bel atom provided 
the daughter nucleus turns out to be in the ground state. 

6.244. Passing down to the ground state, excited Agin nuclei 
emit either gamma quanta with energy 87 keV or K conversion 
electrons whose binding energy is 26 keV. Find the velocity of these 
electrons. 

6.245. A free stationary Irm nucleus with excitation energy 
E = 129 keV passes to the ground state, emitting a gamma quan-
tum. Calculate the fractional change of gamma quanta energy due 
to recoil of the nucleus. 

6.246. What must be the relative velocity of a source and an 
absorber consisting of free Iris' nuclei to observe the maximum absorp-
tion of gamma quanta with energy g = 129 keV? 

6.247. A source of gamma quanta is placed at a height h = 20 m 
above an absorber. With what velocity should the source be displaced 
upward to counterbalance completely the gravitational variation 
of gamma quanta energy due to the Earth's gravity at the point 
where the absorber is located? 

6.248. What is the minimum height to which a gamma quanta 
source containing excited Zn°7  nuclei has to be raised for the gravi-
tational displacement of the Mossbauer line to exceed the line width 
itself, when registered on the Earth's surface? The registered gamma 
quanta are known to have an energy c = 93 keV and appear on 
transition of Zn67  nuclei to the ground state, and the mean lifetime 
of the excited state is i = 14 fiS. 

18-9451 
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6.6. NUCLEAR REACTIONS 

• Binding energy of a nucleus: 
Eb = ZmH ± (A Z) mn  — M, 	 (6.6a) 

where Z is the charge of the nucleus (in units of e), A is the mass number, mil, 
mn, and M are the masses of a hydrogen atom, a neutron, and an atom corres-
ponding to the given nucleus. 

In calculations the following formula is more convenient to use: 
Eb = ZAH -F (A — Z)A, — A, 	 (6.6b) 

where AH, An, and A are the mass surpluses of a hydrogen atom, a neutron, 
and an atom corresponding to the given nucleus. 

• Energy diagram of a nuclear reaction 

m M M* m' M' Q 	 (6.6c) 

is illustrated in Fig. 6.12, where m--+M and m'+M' are the sums of rest masses 
of particles before and after the reaction, -f• and f- are the total kinetic ener-
gies of particles before and after the reaction 
(in the frame of the centre of inertia), E* is 
the excitation energy of the transitional 	  
nucleus, Q is the energy of the reaction, E 	 A  2  
and E' are the binding energies of the par- 
ticles m and m' in the transitional nucleus, 

	T 

1, 2, 3 are the energy levels of the transi- 
tional nucleus. 	 filtM 

• Threshold (minimum) kinetic energy 
of an incoming particle at which an endoer-
gic nuclear reaction 	 /77W11  

Tth — 	
m+M 

 IQI 	(6.6d) 

becomes possible; here m and M are the 
masses of the incoming particle and the 
target nucleus. 

6.249. An alpha-particle with kinetic energy Ta  = 7.0 MeV is 
scattered elastically by an initially stationary Li6  nucleus. Find 
the kinetic energy of the recoil nucleus if the angle of divergence 
of the two particles is 0 = 60°. 

6.250. A neutron collides elastically with an initially stationary 
deuteron. Find the fraction of the kinetic energy lost by the neutron 

(a) in a head-on collision; 
(b) in scattering at right angles. 
6.251. Find the greatest possible angle through which a deuteron 

is scattered as a result of elastic collision with an initially stationary 
proton. 

6.252. Assuming the radius of a nucleus to be equal to R = 
= 0.13 VA pm, where A is its mass number, evaluate the density 
of nuclei and the number of nucleons per unit volume of the nucleus. 

6.253. Write missing symbols, denoted by x, in the following 
nuclear reactions: 

(a) 131° (x, a) Be; 

Fig. 6.12. 



(b) 017  (d, n) x; 
(c) Na23  (p, x) Ne20; 
(d) x (p, n) Ar37. 
6.254. Demonstrate that the binding energy of a nucleus with 

mass number A and charge Z can be found from Eq. (6.6b). 
6.255. Find the binding energy of a nucleus consisting of equal 

numbers of protons and neutrons and having the radius one and a half 
times smaller than that of A127  nucleus. 

6.256. Making use of the tables of atomic masses, find: 
(a) the mean binding energy per one nucleon in 016  nucleus; 
(b) the binding energy of a neutron and an alpha-particle in 

a B11  nucleus; 
(c) the energy required for separation of an 016  nucleus into four 

identical particles. 
6.257. Find the difference in binding energies of a neutron and 

a proton in a B"  nucleus. Explain why there is the difference. 
6.258. Find the energy required for separation of a Ne20  nucleus 

into two alpha-particles and a C12  nucleus if it is known that the 
binding energies per one nucleon in Ne20, He4, and C12  nuclei are 
equal to 8.03, 7.07, and 7.68 MeV respectively. 

6.259. Calculate in atomic mass units the mass of 
(a) a Lib atom whose nucleus has the binding energy 41.3 MeV; 
(b) a C1° nucleus whose binding energy per nucleon is equal to 

6.04 MeV. 
6.260. The nuclei involved in the nuclear reaction A l  + A -* 

—*A3  + A4 have the binding energies El , E,, E3, and E4. Find the 
energy of this reaction. 

6.261. Assuming that the splitting of a U236  nucleus liberates the 
energy of 200 MeV, find: 

(a) the energy liberated in the fission of one kilogram of U236  
isotope, and the mass of coal with calorific value of 30 kJ/g which 
is equivalent to that for one kg of U235; 

(b) the mass of U235  isotope split during the explosion of the atomic 
bomb with 30 kt trotyl equivalent if the calorific value of trotyl 
is 4.1 kJ/g. 

6.262. What amount of heat is liberated during the formation of 
one gram of He4  from deuterium H2? What mass of coal with calo-
rific value of 30 kJ/g is thermally equivalent to the magnitude 
obtained? 

6.263. Taking the values of atomic masses from the tables, calcu-
late the energy per nucleon which is liberated in the nuclear reaction 
Lib -I- H2  —4- 2He4. Compare the obtained magnitude with the energy 
per nucleon liberated in the fission of U235  nucleus. 

6.264. Find the energy of the reaction Li7 	p -÷2He4  if the 
binding energies per nucleon in Li7  and He4  nuclei are known to be 
equal to 5.60 and 7.06 MeV respectively. 

6.265. Find the energy of the reaction 1\114  (a, p) On if the kinetic 
energy of the incoming alpha-particle is T = 4.0 MeV and the 
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proton outgoing at an angle 0 = 60° to the motion direction of the 
alpha-particle has a kinetic energy Tp = 2.09 MeV. 

6.266. Making use of the tables of atomic masses, determine the 
energies of the following reactions: 

(a) Li7  (p, n) Be7; 
(b) Be9  (n, 	Be"; 
(c) Li7  (a, n) B"'); 
(d) 016  (d, a) 1\114. 
6.267. Making use of the tables of atomic masses, find the velocity 

with which the products of the reaction B1° (n, a) Li7  come apart; 
the reaction proceeds via interaction of very slow neutrons with 
stationary boron nuclei. 

6.268. Protons striking a stationary lithium target activate 
a reaction Li7  (p, n) Be7. At what value of the proton's kinetic 
energy can the resulting neutron be stationary? 

6.269. An alpha particle with kinetic energy T = 5.3 MeV 
initiates a nuclear reaction Be9  (a, n) C12  with energy yield Q 

+5.7 MeV. Find the kinetic energy of the neutron outgoing at 
right angles to the motion direction of the alpha-particle. 

6.270. Protons with kinetic energy T =1.0 MeV striking a lith-
ium target induce a nuclear reaction p Li7  2He4. Find the 
kinetic energy of each alpha-particle and the angle of their divergence 
provided their motion directions are symmetrical with respect to 
that of incoming protons. 

6.271. A particle of mass m strikes a stationary nucleus of mass M 
and activates an endoergic reaction. Demonstrate that the threshold 
(minimal) kinetic energy required to initiate this reaction is defined 
by Eq. (6.6d). 

6.272. What kinetic energy must a proton possess to split a deuter-
on H2  whose binding energy is Eb = 2.2 MeV? 

6.273. The irradiation of lithium and beryllium targets by a 
monoergic stream of protons reveals that the reaction Li7(p, n)Be7  -
- 1.65 MeV is initiated whereas the reaction Be9(p, n)B9  — 1.85 MeV 
does not take place. Find the possible values of kinetic energy of 
the protons. 

6.274. To activate the reaction (n, a) with stationary B11  nuclei, 
neutrons must have the threshold kinetic energy Tth = 4.0 MeV. 
Find the energy of this reaction. 

6.275. Calculate the threshold kinetic energies of protons required 
to activate the reactions (p, n) and (p, d) with Li7  nuclei. 

6.276. Using the tabular values of atomic masses, find the thresh-
old kinetic energy of an alpha particle required to activate the 
nuclear reaction Li7  (a, n) BN. What is the velocity of the B1° 
nucleus in this case? 

6.277. A neutron with kinetic energy T = 10 MeV activates 
a nuclear reaction C'2  (n, a) Be9  whose threshold is Tth = 6.17 MeV. 
Find the kinetic energy of the alpha-particles outgoing at right 
angles to the incoming neutrons' direction. 



6.278. How much, in per cent, does the threshold energy of gam-
ma quantum exceed the binding energy of a deuteron (Eb  = 2.2 MeV) 
in the reaction Y  + H2  n p? 

6.279. A proton with kinetic energy T = 1.5 MeV is captured 
by a deuteron H2. Find the excitation energy of the formed nucleus. 

6.280. The yield of the nuclear reaction C'3(d, n)N" has maximum 
magnitudes at the following values of kinetic energy T, of bombard-
ing deuterons: 0.60, 0.90, 1.55, and 1.80 MeV. Making use of the 
table of atomic masses, find the corresponding energy levels of the 
transitional nucleus through which this reaction proceeds. 

6.281. A narrow beam of thermal neutrons is attenuated 
= 360 times after passing through a cadmium plate of thickness 
d = 0.50 mm. Determine the effective cross-section of interaction 
of these neutrons with cadmium nuclei. 

6.282. Determine how many times the intensity of a narrow beam 
of thermal neutrons will decrease after passing through the heavy 
water layer of thickness d = 5.0 cm. The effective cross-sections of 
interaction of deuterium and oxygen nuclei with thermal neutrons 
are equal to al  = 7.0 b and a2  --- 4.2 b respectively. 

6.283. A narrow beam of thermal neutrons passes through a plate 
of iron whose absorption and scattering effective cross-sections are 
equal to o- c, = 2.5 b and a8  = 11 b respectively. Find the fraction 
of neutrons quitting the beam due to scattering if the thickness of 
the plate is d = 0.50 cm. 

6.284. The yield of a nuclear reaction producing radionuclides 
may be described in two ways: either by the ratio w of the number 
of nuclear reactions to the number of bombarding particles, or by 
the quantity k, the ratio of the activity of the formed radionuclide 
to the number of bombarding particles, Find: 

(a) the half-life of the formed radionuclide, assuming w and k 
to be known; 

(b) the yield w of the reaction Li7(p, n)Be7  if after irradiation of 
a lithium target by a beam of protons (over t = 2.0 hours and with 
beam current I = 10 p,A) the activity of Bel became equal to A = 
= 1.35.108  dis/s and its half-life to T = 53 days. 

6.285. Thermal neutrons fall normally on the surface of a thin 
gold foil consisting of stable Au197  nuclide. The neutron flux density 
is J = 1.0.1010  part./(s- cm2). The mass of the foil is in = 10 mg. 
The neutron capture produces beta-active Au188  nuclei with half-life 
T = 2.7 days. The effective capture cross-section is a = 98 b. 
Find: 

(a) the irradiation time after which the number of Au187  nuclei 
decreases by = 1.0%; 

(b) the maximum number of Aul" nuclei that can be formed dur-
ing protracted irradiation. 

6.286. A thin foil of certain stable isotope is irradiated by thermal 
neutrons falling normally on its surface. Due to the capture of 
neutrons a radionuclide with decay constant k appears. Find the law 



describing accumulation of that radionuclide N (t) per unit area 
of the foil's surface. The neutron flux density is J, the number of 
nuclei per unit area of the foil's surface is n, and the effective cross-
section of formation of active nuclei is a. 

6.287. A gold foil of mass m = 0.20 g was irradiated during 
= 6.0 hours by a thermal neutron flux falling normally on its 

surface. Following i = 12 hours after the completion of irradiation 
the activity of the foil became equal to A = 1.9.107  dis/s. Find 
the neutron flux density if the effective cross-section of formation 
of a radioactive nucleus is a --= 96 b, and the half-life is equal 
to T = 2.7 days. 

6.288. How many neutrons are there in the hundredth generation 
if the fission process starts with No  = 1000 neutrons and takes 
place in a medium with multiplication constant k = 1.05? 

6.289. Find the number of neutrons generated per unit time in 
a uranium reactor whose thermal power is P = 100 MW if the 
average number of neutrons liberated in each nuclear splitting is 
v = 2.5. Each splitting is assumed to release an energy E = 
= 200 MeV. 

6.290. In a thermal reactor the mean lifetime of one generation 
of thermal neutrons is ti = 0.10 s. Assuming the multiplication 
constant to be equal to k = 1.010, find: 

(a) how many times the number of neutrons in the reactor, and 
consequently its power, will increase over t = 1.0 min; 

(b) the period T of the reactor, i.e. the time period over which 
its power increases e-fold. 

6.7. ELEMENTARY PARTICLES 

• Total energy and momentum of a relativistic particle: 

E = moc2 	T,  pc =ITT (T 	2rnoc2), 	 (6.7a) 

where T is the kinetic energy of the particle. 
• When examining collisions of particles it pays to use the invariant: 

E2 —p2c2 =m8c4, 	 (6.7b) 

where E and p are the total energy and the total momentum of the system prior 
to collision, mo  is the rest mass of the formed particle. 

• Threshold (minimal) kinetic energy of a particle m striking a stationary 

	

particle M and activating the endoergic reaction in 	M 	m1  + m2  + ... : 

(rni+m2+ • • •)2— (m+M)2  Tth= 	 c2, 	 (6.7c) 
2M 

where in, M, m1, m 2, . . . are the rest masses of the respective particles. 
• Quantum numbers classifying elementary particles: 
Q, electric charge, 
L, lepton charge, 
B, baryon charge, 
T, isotopic spin, T2, its projection, 
S, strangeness, S = 2(Q) — B, 
Y, hypercharge, Y = B + S. 



• Relation between quantum numbers of strongly interacting particles: 

Q.--Tz-1- 2 =Tz+ B 2
±S 
	 (6.7d) 

• Interactions of particles obey the laws of conservation of the Q, L and 
B charges. In strong interactions the laws of conservation of S (or Y), T, and 
its projection 7', are also valid. 

6.291. Calculate the kinetic energies of protons whose momenta 
are 0.10, 1.0, and 10 GeVic, where c is the velocity of light. 

6.292. Find the mean path travelled by pions whose kinetic 
energy exceeds their rest energy 11 = 1.2 times. The mean lifetime 
of very slow pions is To  = 25.5 ns. 

6.293. Negative pions with kinetic energy T = 100 MeV travel 
an average distance 1= 11 m from their origin to decay. Find the 
proper lifetime of these pions. 

6.294. There is a narrow beam of negative pions with kinetic 
energy T equal to the rest energy of these particles. Find the ratio 
of fluxes at the sections of the beam separated by a distance 1 = 
= 20 m. The proper mean lifetime of these pions is vci = 25.5 ns. 

6.295. A stationary positive pion disintegrated into a muon and 
a neutrino. Find the kinetic energy of the muon and the energy of 
the neutrino. 

6.296. Find the kinetic energy of a neutron emerging as a result 
of the decay of a stationary E - hyperon (E n -). 

6.297. A stationary positive muon disintegrated into a positron 
and two neutrinos. Find the greatest possible kinetic energy of the 
positron. 

6.298. A stationary neutral particle disintegrated into a proton 
with kinetic energy T = 5.3 MeV and a negative pion. Find the 
mass of that particle. What is its name? 

6.299. A negative pion with kinetic energy T = 50 MeV disinteg-
rated during its flight into a muon and a neutrino. Find the energy 
of the neutrino outgoing at right angles to the pion's motion direc-
tion. 

6.300. A E 4-  hyperon with kinetic energy Tz  = 320 MeV disinteg-
rated during its flight into a neutral particle and a positive pion 
outgoing with kinetic energy T,, = 42 MeV at right angles to the 
hyperon's motion direction. Find the rest mass of the neutral particle 
(in MeV units). 

6.301. A neutral pion disintegrated during its flight into two 
gamma quanta with equal energies. The angle of divergence of 
gamma quanta is 8 = 60°. Find the kinetic energy of the pion and of 
each gamma quantum. 

6.302. A relativistic particle with rest mass m collides with 
a stationary particle of mass M and activates a reaction leading to 
formation of new particles: m M ± m2  . .., where the 
rest masses of newly formed particles are written on the right-hand 
side. Making use of the invariance of the quantity E2  — p2c2, dem- 
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onstrate that the threshold kinetic energy of the particle m required 
for this reaction is defined by Eq. (6.7c). 

6.303. A positron with kinetic energy T = 750 keV strikes a sta-
tionary free electron. As a result of annihilation, two gamma quanta 
with equal energies appear. Find the angle of divergence between 
them. 

6.304. Find the threshold energy of gamma quantum required 
to form 

(a) an electron-positron pair in the field of a stationary electron; 
(b) a pair of pions of opposite signs in the field of a stationary 

proton. 
6.305. Protons with kinetic energy T strike a stationary hydrogen 

target. Find the threshold values of T for the following reactions: 

(a) I)  + -4- 13 	 P; (b) P 	 P 	n°• 
6.306. A hydrogen target is bombarded by pions. Calculate the 

threshold values of kinetic energies of these pions making possible 
the following reactions: 

(a) 2-c -  + p 	+ E -; (b) a° + p —)-K+ + A°. 
6.307. Find the strangeness S and the hypercharge Y of a neutral 

elementary particle whose isotopic spin projection is T, = +1/2 
and baryon charge B = +1. What particle is this? 

6.308. Which of the following processes are forbidden by the law 
of conservation of lepton charge: 

(1) n 	+ + v; 	(4) p + e- 	+ v; 
(2) a+ -*la+ + e-  + e+; 	(5) p,+ -3-e+ + v + v; 
(3) 21- 	+ v; 	(6) K- 	+ 

6.309. Which of the following processes are forbidden by the law 
of conservation of strangeness: 

(1) 21--  + p E 	+ K+; (4) n + p A° + E +; 
(2) n-  + p E + + K-; (5) a-  + n E-  + K+ + K-; 
(3) a-  + p K+ + K-  + n; (6) K-  + p + K+ + K°? 

6.310. Indicate the reasons why the following processes are for-
bidden: 

(1) E -  —0- A° + a-; (4) n + p E + + A°; 
(2) n-  + p 	+ K-; (5) n-  + e+ + e-; 
(3) K-  + n -÷52-  + K+ + K°; (6) 	it-  + vE  + 
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