Progressions

INTRODUCTION

In this chapter, we will be concerned with the study of sequences, i.e., special types of functions whose domain is the set *N* of natural numbers. We will study particular types of sequences called *arithmetic* sequences, *geometric* sequences and *harmonic* sequences and also their corresponding series.

Premiums on life insurance, fixed deposits in a bank, loan instalments payments, disintegration or decay of radioactive materials and the like are some of the examples where the concept of sequence and series is used.

SEQUENCE

A sequence is a function whose domain is the set N of natural numbers and range, a subset of real numbers or complex numbers.

A sequence whose range is a subset of real numbers is called a *real sequence*. Since we will be dealing with real sequences only, we will use the term 'sequence' to denote a 'real sequence'.

Notation

The different terms of a sequence are usually denoted by a_1 , a_2 , a_3 , ... or t_1 , t_2 , t_3 , ... The subscript (always a natural number) denotes the position of the term in the sequence. The number occurring at the *n*th place of a sequence, i.e., t_n is called the *general term* of the sequence.

A sequence is said to be *finite* or *infinite* (accordingly as finite or infinite number of terms it has.)

PROGRESSIONS

If the terms of a sequence follow certain pattern, then the sequence is called a *progression*.

Illustration 1 Consider the following sequences:

- (i) 3, 5, 7, 9, ..., 21
- (ii) $8, 5, 2, -1, -4, \dots$

- (iii) 2, 6, 18, 54, ..., 1458
- (iv) $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots$
- (v) 1, 4, 9, 16, ...

We observe that each term (except the first) in (i) is formed by adding 2 to the preceding term; each term in (ii) is formed by subtracting 3 from the preceding term; each term in (iii) is formed by multiplying the preceding term by 3; each term in (iv) is formed by dividing the preceding term by 2; each term in (v) is formed by squaring the next natural number. Thus, each of (i) to (v) is a progression. Moreover, (i) and (iii) are finite sequences, whereas (ii), (iv) and (v) are infinite sequences.

However, to define a sequence we need not always have an explicit formula for the *n*th term. For example, for the infinite sequence 2, 3, 5, 7, 11, 13, 17, ... of all positive prime numbers, we may not be able to give an explicit formula for the *n*th term.

SERIES

By adding or subtracting the terms of a sequence, we obtain a *series*. A series is finite or infinite according as the number of terms in the corresponding sequence is finite or infinite.

Illustration 2 The following

(i)
$$3+5+7+9+...+21$$

(ii)
$$8+5+2+(-1)+...$$

(iii)
$$2+6+18+54+...+1458$$

(iv)
$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$

(v)
$$1+4+9+16+...$$

are the series corresponding to the above sequences, (i) to (v).

ARITHMETIC PROGRESSION (A.P.)

A sequence whose terms increase or decrease by a fixed number is called an *arithmetic progression*. The fixed number is called the *common difference* of the A.P.

In an A.P., we usually denote the first term by a, the common difference by d and the nth term by t_n . Clearly, $d = t_n - t_{n-1}$. Thus, an A.P. can be written as

$$a, a + d, a + 2d, ..., a + (n-1)d, ...$$

Illustration 3 Consider the series: 1, 3, 5, 7, 9, ...

Here 2nd term - 1st term = 3rd term - 2nd term = 4th term - 3rd term = ... = 2

Hence, 1, 3, 5, 7, ... are in A.P. whose first term is 1 and common difference is 2

Illustration 4 The series: 5, 3, 1, -1, -3, -5, -7, ... is in A.P. whose first term is 5 and common difference is -2.

Notes:

- A sequence t_1 , t_2 , t_3 , t_4 , ... will be in A.P. if $t_2 t_1 = t_3 t_2 = t_4 t_3 = ...$, i.e., $t_n t_{n-1} = \text{constant}$, for $n \ge 2$.
- Three numbers a, b, c are in A.P. if and only if b-a=c-b, i.e., if and only if a+c=2b.
- Any three numbers in an A.P. can be taken as a d, a, a + d. Any four numbers in an A.P. can be taken as a 3d, a d, a + d and a + 3d. Similarly, five numbers in an A.P. can be taken as

a-2d, a-d, a, a+d and a+2d.

GENERAL TERM OF AN A.P.

Let a be the first term and d be the common difference of an A.P. Then, the A.P. is a, a+d, a+2d, a+3d,... We also observe that

 t_1 , the first term, is a = a + (1 - 1) d;

 t_2 , the second term, is a + d = a + (2 - 1) d;

 t_3 , the third term, is a + 2d = a + (3 - 1) d;

 t_4 , the fourth term, is a + 3d = a + (4 - 1) d;

 t_n , the *n*th term, is a + (n-1) d.

Thus, the formula, $t_n = a + (n-1) d$ gives the general term of an A.P.

Notes:

- If an A.P. has *n* terms, then the *n*th term is called the *last term* of A.P. and it is denoted by *l*. Therefore, l = a + (n 1) d.
- If a is the first term and d the common difference of an A.P. having m terms, then nth term from the end is (m n + 1)th term from the beginning.
 - \therefore nth term from the end = a + (m n) d.

Illustration 5 A sequence $\leq t_n >$ is given by the formula $t_n = 10 - 3n$. Prove that it is an A.P.

Solution: We have

$$t_n = 10 - 3n \Rightarrow t_{n+1} = 10 - 3(n+1) = 7 - 3n.$$

$$t_{n+1} - t_n = (7-3n) - (10-3n) = -3,$$

which is independent of n and hence a constant. Therefore, the given sequence $< t_n >$ is an A.P.

Illustration 6 Find the *n*th term and 19th term of the sequence 5, 2, -1, -4, ...

Solution: Clearly, the given sequence is an A.P. with a = 5 and d = -3

$$\therefore t_n = a + (n-1) d = 5 + (n-1) (-3) = -3n + 8$$

For the 19th term, putting n = 19, we get $t_{19} = -3.19 + 8 = -49$

Sum of n terms of an A.P.

The sum of n terms of an A.P. with first term 'a' and common difference 'd' is given by

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

Notes:

 If S_n is the sum of n terms of an A.P. whose first term is 'a' and last term is l, then

$$S_n = \frac{n}{2} (a + l).$$

• If common difference *d*, number of terms *n* and the last term *l*, are given then

$$S_n = \frac{n}{2} [2l - (n-1) d]$$

• $t_n = S_n - S_{n-1}$.

Illustration 7 Find the sum of the series

$$.5 + .51 + .52 + ...$$
 to 100 terms

Solution: The given series is an A.P. with first term, a = .5 and common difference, d = .51 - .5 = .01

.. Sum of 100 terms

$$= \frac{100}{2} [2 \times .5 + (100 - 1) \times .01]$$

$$= 50 (1 + 99 \times .01) = 50 (1 + .99)$$

= $50 \times 1.99 = 99.5$

Illustration 8 Find the sum of 20 terms of an A.P., whose first term is 3 and the last term is 57.

Solution: We have, a = 3, l = 57, n = 20

$$S_n = \frac{n}{2} (a+l),$$

$$\therefore S_{20} = \frac{20}{2}(3+57) = 600.$$

Hence, the sum of 20 terms is 600

GEOMETRIC PROGRESSION

A sequence (finite or infinite) of non-zero numbers in which every term, except the first one, bears a constant ratio with its preceding term, is called a *geometric* progression, abbreviated as G.P.

Illustration 9 The sequences given below:

- (i) 2, 4, ,8, 16, 32, ...
- (ii) 3, -6, 12, -24, 48, ...

(iii)
$$\frac{1}{4}$$
, $\frac{1}{12}$, $\frac{1}{36}$, $\frac{1}{108}$, $\frac{1}{324}$, ...

(iv)
$$\frac{1}{5}$$
, $\frac{1}{30}$, $\frac{1}{180}$, $\frac{1}{1080}$, $\frac{1}{6480}$, ...

(v) x, x^2 , x^3 , x^4 , x^5 , ... (where x is any fixed real number)

are all geometric progressions. The ratio of any term in (i) to the preceding term is 2. The corresponding ratios in (ii),

(iii), (iv) and (v) are -2, $\frac{1}{3}$, $\frac{1}{6}$, and x, respectively. The ratio of any term of a G.P. to the preceding term is called the *common ratio* of the G.P. Thus, in the above examples, the common ratios are $2, -2, \frac{1}{3}, \frac{1}{6}$ and x, respectively

Note:

In a G.P., any term may be obtained by multiplying the preceding term by the common ratio of the G.P. Therefore, if any one term and the common ratio of a G.P. be known, any term can be written out, i.e., the G.P. is then completely known.

In particular, if the first term and the common ratio are known, the G.P. is completely known. The first term and the common ratio of a G.P. are generally denoted by *a* and *r*, respectively.

GENERAL TERM OF G.P.

Let a be the first term and r (\neq 0) be the common ratio of a G.P. Let $t_1, t_2, t_3, ..., t_n$ denote 1st, 2nd, 3rd, ..., nth terms, respectively. Then, we have

$$t_2 = t_1 r, \ t_3 = t_2 r, \ t_4 = t_3 r, \ ..., \ t_n = t_{n-1} r$$

On multiplying these, we get

$$t_2 t_3 t_4 \dots t_n = t_1 t_2 t_3 \dots t_{n-1} r^{n-1} \Rightarrow t_n = t_1 r^{n-1}$$
; but $t_1 = a$.

 \therefore General term = $t_n = ar^{n-1}$.

Thus, if a is the first term and r the common ratio of a G.P. then the G.P. is a, ar, ar^2 , ..., ar^{n-1} or a, ar, ar^2 , ... according as it is finite or infinite.

Cor. If the last term of a G.P. consisting of *n* terms is denoted by *l*, then $l = ar^{n-1}$.

Notes:

- If a is the first term and r the common ratio of a finite G.P. consisting of m terms, then the nth term from the end is given by arm-n.
- The *n*th term from the end of a G.P. with the last term l and common ratio r is l/r^{n-1} .
- Three numbers in G.P. can be taken as a/r, a, ar; four numbers in G.P. can be taken as a/r^3 , a/r, ar, ar^3 ; five numbers in G.P. can be taken as a/r^2 , a/r, a, ar, ar^2 , and so on...
- Three numbers a, b, c are in G.P. if and only if b/a = c/b, i.e., if and only if $b^2 = ac$.

Illustration 10 Find the *n*th term and 12th term of the sequence -6, 18, -54, ...

Solution: The given sequence is a G.P. with a = -6 and r = -3

$$\therefore t_n = ar^{n-1} = (-6)(-3)^{n-1} = (-1)^n \times 6 \times 3^{n-1}$$

For the 12th term, putting n = 12, we get

$$t_{12} = (-1)^{12} \times 6 \times 3^{11} = 2 \times 3^{12}$$

Sum of n terms of a G.P.

The sum of first n terms of a G.P. with first term a and common ratio r is given by

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

Notes:

(i) When r = 1

$$S_n = a + a + \dots$$
 up to *n* terms = na

(ii) It *l* is the last term of the G.P., then

$$S_n = \frac{lr - a}{r - a}, r \neq 1$$

Sum of An Infinite G.P. When |r| < 1

The sum of an infinite G.P. with first term a and

common ratio
$$r$$
 is $S_{\infty} = \frac{a}{1-r}$; when $|r| < 1$, i.e., $-1 < r < 1$

Illustration 11 Find the sum of 8 terms and n terms of the sequence 9, -3, 1, -1/3, ...

Solution: The given sequence is a G.P. with a = 9 and r = -1/3

We know that

$$S_8 = 9\frac{1 - (-1/3)^8}{1 - (-1/3)} = 9\frac{1 - 1/3^8}{4/3} = \frac{27}{4} \left(1 - \frac{1}{3^8} \right)$$
$$= \frac{27}{4} \frac{3^8 - 1}{3^8} = \frac{1}{4} \frac{6561 - 1}{3^5} = \frac{6560}{4 \times 243} = \frac{1640}{243}$$

Also,
$$S_n = 9 \frac{1 - (-1/3)^n}{1 - (-1/3)} = 9 \frac{1 - (-1)^n / 3^n}{4/3}$$
$$= \frac{27}{4} \frac{3^n - (-1)^n}{3^n} = \frac{3^n - (-1)^n}{4 \cdot 3^{n-3}}$$

Illustration 12 Find the sum of the infinite sequence 7, -1, $\frac{1}{7}, -\frac{1}{49}, \dots$

Solution: The given sequence is a G.P. with a = 7 and r = -

$$\frac{1}{7}$$
, so $|r| = \left| -\frac{1}{7} \right| = <1$

$$\therefore S = \frac{7}{1 - (-1/7)} = \frac{7}{8/7} = \frac{49}{8} \qquad \left(\because S = \frac{a}{1 - r} \right)$$

HARMONIC PROGRESSION

A sequence of non-zero numbers a_1 , a_2 , a_3 , ... is said to be a harmonic progression (abbreviated as H.P.) if the sequence

$$\frac{1}{a_1}$$
, $\frac{1}{a_2}$, $\frac{1}{a_3}$, ... is an A.P.

Illustration 13 The sequence $1, \frac{1}{4}, \frac{1}{7}, \frac{1}{10}, \dots$ is a H.P. The

sequence obtained by taking reciprocals of its corresponding terms, i.e., 1, 4, 7, 10, ... is an A.P.

A general H.P. is
$$\frac{1}{a}$$
, $\frac{1}{a+d}$, $\frac{1}{a+2d}$, ...

nth Term of An H.P.

nth term of H.P.

$$= \frac{1}{n \text{th term of the corresponding A.P.}}$$

Notes:

• Three numbers a, b, c are in H.P. if and only if $\frac{1}{a}$, $\frac{1}{a}$, are in A.P., i.e.,

$$\frac{1}{a} + \frac{1}{c} = 2 \times \frac{1}{b}$$
 or $b = \frac{2ac}{a+c}$.

- · No term of H.P. can be zero.
- There is no general formula for finding the sum to *n* terms of H.P.
- Reciprocals of terms of H.P. are in A.P. and then properties of A.P. can be used.

Illustration 14 Find the 100th of the sequence

$$1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \dots$$

Solution: The sequence $1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \dots$ is an H.P.

Corresponding A.P. is 1, 3, 5, 7, ...

Now, for the corresponding A.P., first term a = 1, d = 2

:. 100th term of the corresponding A.P.

$$= a + (100 - 1) d$$
$$= 1 + (100 - 1) 2 = 199$$

Hence, the 100th term of the given sequence = $\frac{1}{199}$

Some Special Sequences

1. The sum of first *n* natural numbers

$$\Sigma n = 1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$$

- 2. The sum of squares of first *n* natural numbers $\Sigma n^2 = 1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$.
- 3. The sum of cubes of first *n* natural numbers $\Sigma n^3 = 1^3 + \frac{1}{2}$

$$2^3 + 3^3 + ... + n^3 = \left\lceil \frac{n(n+1)}{2} \right\rceil^2$$
.

If nth term of a sequences is

$$T_n = an^3 + bn^2 + cn + d$$

then the sum of n terms is given by

$$S_n = \Sigma T_n = a\Sigma n^3 + b\Sigma n^2 + c\Sigma n + \Sigma d,$$

which can be evaluated using the above results.

Illustration 15 Find $2^2 + 4^2 + 6^2 + ... + (2n)^2$

Solution: *n*th term of the given series is $(2n)^2$. Then, $T_{..} = 4n^2$

$$\therefore S_n = 4 \Sigma n^2 = \frac{4n(n+1)(2n+1)}{6}$$

$$\therefore S_n = \frac{2n(n+1)(2n+1)}{3}$$

Illustration 16 Sum the series $1^2 + (1^2 + 2^2) + (1^2 + 2^2 + 2^2)$ 3^{2}) + ... to *n* terms

Solution: Here,
$$T_n = (1^2 + 2^2 + 3^2 + ... n^2)$$

$$=\Sigma n^2 = \frac{n(n+1)(2n+1)}{6}$$

$$=\frac{n(2n^2+3n+1)}{6}$$

$$= \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n$$

$$S_n = \sum \left(\frac{1}{3} n^3 + \frac{1}{2} n^2 + \frac{1}{6} n \right)$$
$$= \frac{1}{3} \sum n^3 + \frac{1}{2} \sum n^2 + \frac{1}{6} \sum n$$

$$=\frac{1}{3}\frac{n^2(n+1)^2}{4}+\frac{1}{2}\frac{n(n+1)(2n+1)}{6}$$

$$+\frac{1}{6}\frac{n(n+1)}{2}$$

$$=\frac{n(n+1)}{12}[n(n+1)+2n+1+1]$$

$$=\frac{n(n+1)}{12}(n^2+3n+2)$$

$$=\frac{n(n+1)}{12}(n+1)(n+2)$$

$$=\frac{n}{12}(n+1)^2(n+2).$$

Practice Exercises

DIFFICULTY LEVEL-1 (BASED ON MEMORY)

- 1. If the sum of the 6th and the 15th elements of an arithmetic progression is equal to the sum of the 7th, 10th and 12th elements of the same progression, then which element of the series should necessarily be equal to zero?
 - (a) 10th
- (b) 8th
- (c) 1st
- (d) None of these

[Based on MAT, 2003]

- 2. The sum of the 6th and 15th elements of an arithmetic progression is equal to the sum of 7th, 10th and 12th elements of the same progression. Which element of the series should necessarily be equal to zero?
 - (a) 10th
- (b) 8th
- (c) 1st
- (d) None of these

[Based on MAT, 2003]

3. If p, q, r, s are in harmonic progression and p > s, then:

(a)
$$\frac{1}{ps} \frac{1}{qr}$$
 (b) $q + r = p + s$

(b)
$$q + r = p + s$$

(c)
$$\frac{1}{a} + \frac{1}{r} = \frac{1}{p} + \frac{1}{s}$$
 (d) None of these

[Based on MAT, 2003]

- 4. Mohan ate half a pizza on Monday. He ate half of what was left on Tuesday and so on. He followed this pattern for one week. How much of the pizza would he have eaten during the week?
 - (a) 99.22%
- (b) 95%
- (c) 98.22%
- (d) 100%

[Based on MAT, 2003]

	(c) 15 months	(d) 18 months	15. What is the least	value of n such that
		[Based on MAT, 2002]		$+3^2 + + 3^n$) exceeds 2000?
7.		of the first 'n' terms of an A.P.		(b) 5
	$S_{2n} = 3S_n$. Then, the ratio		(a) 7	0.7075. 20
	(a) 4	(b) 6	(c) 8	(d) 6 [Based on I.P. Univ., 2002]
	(c) 8	(d) 10	16 771 612	
		[Based on MAT, 2002]	256. What is the	erms of an A.P., whose first term is 4, is
8.		P. Their sum is 28 and product is	(a) 35	(b) 36
	512. The numbers are:	78 4 8 779	(c) 37	(d) 116/3
	(a) 6, 9 and 13	(b) 4, 8 and 16	(6) 37	[Based on SCMHRD, 2002]
	(c) 2, 8 and 18	(d) 2, 6 and 18	15 TO 1	09 2V 4V 3U 90 3V
		[Based on MAT, 1999]		nean between two numbers is 4, their is A and geometric mean is G. If $2A + G^2$
9.	The sum of the series		= 27, then the nu	
	$1^2 + 2^2 + 3^2$	$+4^2 + + 15^2$ is:	(a) 8, 2	(b) 8, 6
	(a) 1080	(b) 1240	(c) 6, 3	(d) 6, 4
	(c) 1460	(d) 1620	(0) 0, 5	(4) 0, 4
		[Based on MAT, 1999]		metric progression in which all terms
10.	If the <i>n</i> th term of an A. difference is:	P. is $4n + 1$, then the common	And the state of t	n it, any term is equal to the sum of the ing terms, then what is the value of the
	(a) 3	(b) 4		
	(c) 5	(d) 6	(a) $\frac{1-\sqrt{5}}{2}$	(b) 1
		[Based on MAT, 1999]	2	
11.	If $\frac{1}{b-a} + \frac{1}{b-c} = \frac{1}{a} + \frac{1}{c}$, then a, b, c form a/an:	(c) $\frac{\sqrt{5}-1}{2}$	(d) None of these
	(a) Arithmetic progression(c) Harmonic progression	on (b) Geometric progression on (d) None of these.	55 40 10	nd 14th term of an A.P. are consecutive the common ratio of the G.P. will be
		[Based on MAT, 1999]	(a) 1.5	(b) 2
12.	In G.P., the first term is 5 eighth term is:	and the common ratio is 2. The	(c) 3	(d) 2.5
	(a) 640	(b) 1280		erms of an infinite geometric series is 6
	(c) 256	(d) 160		all terms of the infinite series formed by
	(No. / 1920-00)	[Based on MAT, 2000]	squaring the terr second term of the	ns of the previous series is 24. Find the
13.	If the arithmetic mean of	two numbers is 5 and geometric	second term or th	ic first series.
	mean is 4, then the numb	있는 사용하는 경우 다른 사람들이 되었다. 그는 사람들이 보고 있는 것이다. 그는 사람들이 보고 있는 것이다.	(a) $\frac{6}{25}$	(b) $\frac{8}{25}$
	(a) 4, 6	(b) 4, 7	25	25
	(c) 3, 8	(d) 2, 8	. 24	(d) $\frac{576}{25}$
		[Based on MAT, 2000]	(c) $\frac{24}{25}$	(d) —

14. The series of positive integers is divided in the following

What will be the first term in the (n + 1)th group?

(a) $\frac{(n^2-n+2)}{2}$ (b) $\frac{(n^2+n+2)}{2}$

(c) $\frac{(2n^2+3)}{4n}$ (d) $\frac{n(n+1)^2}{4}$

1 + (2 + 3) + (4 + 5 + 6) + (7 + 8 + 9 + 10) + ...

way

5. If $\log_x a$, $a^{x/2}$ and $\log_h x$ are in GP, then x is:

6. A person pays ₹975 in monthly instalments, each monthly instalment being less than the former by ₹5. The amount of the first instalment is ₹100. In what tune, will the entire

(b) 26 months

(b) $\log_a(\log_e a) + \log_a(\log_e b)$

(d) $\log_a(\log_e b) - \log_a(\log_e a)$

[Based on MAT, 2002]

(a) $\log_a(\log_b a)$

 $(c) - \log_a(\log_a b)$

amount be paid?
(a) 12 months

22.	The number of two	-digit numbers exactly divisible by 3 is:	mean is 4, then the	ne numbers are:
	(a) 33	(b) 32	(a) 4, 6	(b) 4, 7
	(c) 31	(d) 30	(c) 3, 8	(d) 2, 8
		[Based on MAT (Feb), 2008]		[Based on MAT (Dec), 2000]
23.		rs are divided into groups as (1), (2, 3), 0) and so on. The sum of the numbers s:	less than their A.M.	and B are such that their G.M. is 20 per cent M. Find the ratio between the numbers.
	(a) 1225	(b) 24505	(a) 3:2	(b) 4:1
	(c) 62525	(d) 52650	(c) 2:1	(d) 3:1
	(0) 02020	[Based on MAT (Sept), 2007]	32 If log 2 log (2 ^x	-5) and $\log_3\left(2^x - \frac{7}{2}\right)$ are in A.P., then
24.	instalments which are paid he dies lea	pay off a debt of ₹3600 by 40 annual are in AP. When 30 of the instalments aving one-third of the debt unpaid. The	the value of x is: (a) 2	(b) 3
	value of the 8th ins		(c) 4	(d) 5
	(a) ₹35 (c) ₹65	(b) ₹50 (d) None of these [Based on MAT (Dec), 2006]	angle is 120° and	es of a polygon are in AP, the smallest d the common difference is 5. Then, the of the polygon are:
25.		members whose ages are in AP, the	(a) 16	(b) 9
	member of the club	the being 3 months. If the youngest to is just 7 years old and the sum of the purpose of 250 years then the number of	(c) 8	(d) 12 [Based on MAT (May), 1999]
	members in the clu (a) 15 (c) 25	mbers is 250 year, then the number of ab are: (b) 20 (d) 30 [Based on MAT (Feb), 2006]	instalments which are paid, he dies I the value of the fi	
26	Harry many tames o		(a) 55	(b) 53
20.		respectively and the sum of terms is 40?	(c) 51	(d) 49 [Based on MAT (May), 1999]
	(a) 15	(b) 10	35 A five digit num	ber divisible by 3 is to be formed using
	(c) 5	(d) 20 [Based on MAT (Dec), 2007]	numerical 0, 1, 2	, 3, 4 and 5 without repetition. The total this can be done is:
27.	In a geometric prog	gression, the sum of the first and the last	(a) 122	(b) 210
		product of the second and the last but	(c) 216	(d) 217
		etermine the first term of the series.		[Based on SNAP, 2010]
	(a) 64	(b) 64 or 2	36. The sum of all ev	en natural numbers less than 100 is:
	(c) 2 or 32	(d) 32	(a) 2450	(b) 2272
		[Based on MAT (Feb), 2005]	(c) 2352	(d) 2468
28.	1 for each positive i	rated by the rule that the xth term is x^2 + integer x. In this sequence, for any value		[Based on FMS, 2005]
		(x + 1)th term less the value of xth term is		ld numbers between 100 and 200 is:
	(a) $2x^2 + 1$	(b) $x^2 + 1$	(a) 6200	(b) 6500
	(c) $2x + 1$	(d) x + 2 [Based on MAT (Feb), 2005]	(c) 7500	(d) 3750
		[Based on HAT (Feb), 2003]		[Based on FMS, 2006]

29. What is the eighth term of the sequence $1, 4, 9, 16, 25, \dots$?

30. If the arithmetic mean of two numbers is 5 and geometric

(b) 64

(d) 200

[Based on MAT (Sept), 2003]

(a) 8

(c) 128

21. The average of 49th, 50th and 51st term of an arithmetic

terms of this arithmetic progression?

(a) 4,851

(c) 5,049

progression is equal to 49. What is the sum of the first 99

(d) Cannot be determined

38. If a, b, c are in G.P. and a $(a) \frac{1}{x} + \frac{1}{z} = \frac{2}{y}$ $(c) \frac{1}{x} + \frac{1}{y} = \frac{2}{z}$	(b) $\frac{1}{x} + \frac{1}{z} = -\frac{2}{y}$ (d) $\frac{1}{x} + \frac{1}{y} = -\frac{2}{z}$	 46. The second term in sum is 25/2. Then is (a) 2/25 (c) 4/25 47. If three positive residues the second term in sum is 25/2. Then is sum is 25/2. The is 25/2.
	[Based on FMS, 2009]	in Harmonic Pro
39. The angles of a pentago One of the angles, in deg	on are in arithmetic progression. grees, must be	$(a-2b+c)$ is equal (a) $2 \log (c-b)$
(a) 108	(b) 90	(c) $2 \log (c-a)$
(c) 72	(d) 54	
-	[Based on FMS, 2010] = 1, 2,, $n - 1$ and $x_1 = 1$, find	48. If the positive real Progression, such value of <i>b</i> is:
$x_1 + x_2 + \dots + x_n$. (a) $\frac{n+3}{3}$	$(b) \frac{n^2-1}{2}$	(a) $2^{\frac{3}{2}}$
$(c) \frac{n^2 - n}{4}$	$(d) \frac{n^2 + 3n}{4}$	(c) $2^{\frac{1}{3}}$
	[Based on FMS, 2010]	49. Find the sum of the
	non-zero, form an arithmetic a by 1 or increasing c by 2 results on. Then b equals:	$\frac{2}{11}$
(a) 16	(b) 14	(a) $3e - 1$
(c) 12	(d) 10	(c) $3(e+1)$
	[Based on FMS, 2010]	

42. If the sum of the first 10 terms of an arithmetic progression is four times the sum of the first five terms, then the ratio of the first term to the common difference is:

- (a) 1:2
- (b) 2:1
- (c) 1:4
- (d) 4:1

[Based on FMS, 2011]

43. The sum to infinity of $\frac{1}{7} + \frac{2}{7^2} + \frac{1}{7^3} + \frac{2}{7^4} + \dots$

- (a) $\frac{1}{24}$
- (b) $\frac{5}{48}$
- (c) $\frac{1}{16}$
- (d) None of these

[Based on FMS, 2011]

44. How many two digit odd numbers can be formed from the digits 1, 2, 3, 4, 5 and 8, if repetition of digit is allowed?

- (a) 5
- (b) 15
- (c) 35
- (d) 18

[Based on HFT, 2005]

45. The positive numbers x, y, z are in arithmetic progression. They are also in harmonic progression. Then:

- (a) They cannot be in geometric progression
- (b) x and 2 cannot be equal
- (c) y, z, x cannot be in arithmetic progression
- (d) None of the above

[Based on HFT, 2005]

- a geometric infinite series is 2, whose the fourth term of the series is:
 - (b) 2/5
 - (d) 4/5

[Based on HFT, 2005]

- eal numbers a, b and c (c > a) are gression, then $\log (a + c) + \log$
 - (b) $2 \log (a-c)$
 - (d) $\log a + \log b + \log c$

[Based on HFT, 2008]

numbers a, b and c are in Arithmetic that abc = 4, then minimum possible

- (b) $2^{\frac{2}{3}}$
- (d) None of these

[Based on IIFT, 2008]

e following series.

$$\frac{2}{1!} + \frac{3}{2!} + \frac{6}{3!} + \frac{11}{4!} + \frac{18}{5!} + \dots$$

- (b) 3(e-1)
- (d) 3e + 1

[Based on IIFT, 2010]

- 50. How many positive integers 'n' can we form using the digits 3, 4, 4, 5, 6, 6, 7, if we want 'n' to exceed 60,00,000?
 - (a) 320
- (b) 360
- (c) 540
- (d) 720

[Based on HFT, 2010]

- **51.** If $\frac{1}{x} + \frac{1}{z} + \frac{1}{x y} + \frac{1}{z y} = 0$, which of the following
 - (a) x, y, z are in HP of $x, \frac{y}{2}$, z are in A.P.
 - (b) x, y, z are in AP or x, y, z are in H.P.
 - (c) $x, \frac{y}{2}$, z are in HP or x, y, z are in G.P.
 - (d) x, y, z are in GP or x, y, z are in A.P.

[Based on JMET, 2006]

- 52. The angles of a convex hexagon in degrees are integers and in arithmetic progression. $\angle M$ denote the largest of these 6 angles. Then the maximum value that M can take is:
 - (a) 125°
- (b) 150°
- (c) 175°
- (d) 179°

[Based on JMET, 2006]

53. Ho	w many multiples of 7 are there between	en 33 and 329?	(a) 8	(b) 9
(a)	43		(c) 10	(d) 11
(b)	35			[Based on ATMA, 2005
(c)	329		55. $\frac{1}{2} + \frac{1}{3} + \frac{1}{6} + \frac{1}{10} + \frac{1}{1$	1 + equals
(d)	77		2 3 6 10	15
	[Based	on ATMA, 2008]	(a) 2	(b) 3
54. In	a regular polygon, each interior ang	le is 140°. The	(c) 5	(d) ∞
nur	mber of sides in the polygon will be:			[Based on JMET, 2006
	-	DIFFICULTY I	EVEL-2	
	_	(Based on I		
4 771	C 2 1 - 1 150 - 1		() 2/13	(1) 22/3
	e sum of 3rd and 15th elements of gression is equal to the sum of 6th,		(a) $2/^{13}$ (c) $2^{1/4}$	(b) $2^{2/3}$ (d) $2^{3/4}$
27/11/200	ments of the same progression. Then w	Constitution and the Constitution of the Const	(c) 2	
	series should necessarily be equal to z	120	5 110 4 4	[Based on CAT, 2004] of the series $1 + 2x + 4x^2 + 7x^3 + 10x^4$
(a)	1st (b) 9th		+ up to ∞? (Gi	
(c)	12th (d) None of the	ese	+ up to ∞. (GI	ven o < x < 1)
		ed on CAT, 2003]	$(a) \frac{1-x(1-x)}{1-x(1-x)}$	(b) $\frac{x^2+1}{(1-x)^2}$
2. If 1 pro	$og_3 2$, $log_3 (2^x - 5)$, $log_3 (2^x - 7/2)$ a gression, then the value of x is equal to	re in arithmetic	(a) $\frac{1-x(1-x)}{(1-x)^3}$	$(b) \frac{1}{(1-x)^2}$
(a)	5 (b) 4		(c) $\frac{1+x(1-x)}{(1-x)^3}$	(d) None of these
(c)		L CAT 20021	$(1-x)^{3}$	25.0
stac	e are 8436 steel balls, each with a radius cked in a pile, with 1 ball on top, 3 bal er, 6 in the third layer, 10 in the fourth, there of horizontal layers in the pile is:	ls in the second	S_2 is drawn by journal Square S_3 is drawn	dimensions 6 cm × 6 cm. Another square pining the mid-points of the sides of S_1 on joining the mid-points of S_2 and so on of area (S_1) + area (S_2) + ∞ ?
(a)	34 (b) 38		(a) 72 cm^2	(b) $36\sqrt{2}(\sqrt{2}-1) \text{ cm}^2$
(c)	500	ed on CAT, 2003]	(c) 14.4 cm^2	(d) $36\sqrt{2} \text{ cm}^2$
	T be the set of integers $\{3, 11, 19, 27\}$ and S be a subset of T such that the			n of all two-digit numbers that give a then they are divided by 7?
	ments of S is 470. The maximum poss	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(a) 666	(b) 676
elei	ments in S is:		(c) 683	(d) 777
(a)	32 (b) 28			[Based on CAT, 2004
(c)	29 (d) 30		10 The infinite sum	$1 + \frac{4}{7} + \frac{9}{7^2} + \frac{16}{7^3} + \frac{25}{7^4} + \dots$ equals:
(0)		ed on CAT, 2003]	10. The minite sum	$7 + \frac{7}{7} + \frac{7^2}{7^2} + \frac{7^3}{7^3} + \frac{7^4}{7^4} + \dots$ equals.
= 1	a certain examination paper, there are n , 2 , n , there are 2^{n-j} students who ans estions wrongly. If the total number of	questions. For j wered j or more	(a) $\frac{27}{14}$	(b) $\frac{21}{13}$
	6095, then the value of n is:	miong unawera	(c) $\frac{49}{27}$	(d) $\frac{256}{147}$
(a)			27	147
(c)				[Based on CAT, 2004
	The state of the s	ed on CAT, 2003]	$+ + 100 \times 2^{99}$	eries $1 + 2 \times 2 + 3 \times 2^2 + 4 \times 2^3 + 5 \times 2^4$ is:
	-y and $xyz = 4$, then what is the min	30.	(a) 99×2^{100}	(b) $99 \times 2^{100} + 1$
	ue of y?	1	(c) 100×2^{100}	(d) $100 \times 2^{100} + 1$

				70-10-022
12	The	vial		o.f
LZ.	1110	vai	110	()1

$$(1^3 + 2^3 + 3^3 + \dots 15^3) - (1 + 2 + 3 + \dots 15)$$
 is:

- (a) 14280
- (b) 14400
- (c) 12280
- (d) 13280

13. f(a, b) is a series of which the first three terms are $(a+b)^2$, (a^2+b^2) and $(a-b)^2$. We add the first n terms of the series f(a, b) and call it S(a, b). If a = 7, b = 3, then find S(7, 3) for n = 20.

- (a) -5980
- (b) 6000
- (c) 6960
- (d) None of these

[Based on FMS (Delhi), 2004]

- 14. 30 trees are planted in a straight line at intervals of 5 m. To water them, the gardener needs to bring water for each tree, separately from a well, which is 10 m from the first tree in line with the trees. How far will he have to walk in order to water all the trees beginning with the first tree? Assume that he starts from the well.
 - (a) 4785 m
- (b) 4795 m
- (c) 4800 m
- (d) None of these

[Based on FMS (Delhi), 2004]

- 15. f(x) + 2x; where x is an integer. If we arrange the value of f(x), for x = 25, 24, 23... (continuously decreasing value of x), we get an Arithmetic Progression (A.P.) whose first term is 50. Find the maximum value of the sum of all the terms of the A.P.
 - (a) 600
- (b) 625
- (c) 650
- (d) None of these

[Based on FMS (Delhi), 2004]

16. If one of the roots of the equation

$$3x^3 + 11x^2 + 12x + 4 = 0$$
:

is (-1), then all the three roots are in

- (a) Arithmetic progression
- (b) Geometric progression
- (c) Harmonic progression
- (d) None of the above

[Based on HTTM, Gwalior, 2003]

- 17. A man has an apple orchard and he sells to his first customer half of all the apples plus half an apple; to the 2nd customer he sells half of the rest plus half an apple, and so on. To the seventh customer, he sells half of what remains and another half an apple. And that is all he had. How many apples did the man start out with?
 - (a) 47
- (b) 97
- (c) 127
- (d) 137
- **18.** The value of $2^{\frac{1}{4}}$, $2^{\frac{2}{8}}$, $2^{\frac{3}{16}}$, $2^{\frac{4}{32}}$... is equal to:
 - (a) 1

- (b) 2
- (c) $\frac{3}{2}$

(d) $\frac{5}{2}$

19. If
$$\frac{3+5+7+...+n \text{ terms}}{5+8+11+...+10 \text{ terms}} = 7$$
, then the value of *n* is:

- (a) 35
- (b) 36
- (c) 37
- (d) 40
- **20.** If the sum of first *n* natural numbers is one-fifth of the sum of their squares, then *n* is:
 - (a) 5

(b) 6

- (c) 7
- (d) 8

[Based on FMS (Delhi), 2002]

21. The number of ordered triplets of positive integers which are solutions of the equation:

$$x + y + z = 100$$
 is

- (a) 4851
- (b) 5081
- (c) 6871
- (d) 7081

[Based on FMS (Delhi), 2002]

22. Three distinct numbers x, y, z form a geometric progression in that order, and x + y, y + z, z + x form an arithmetic progression in that order. Find the common ratio of the geometric progression.

- (a) -2
- (b) 2
- (c) 0.5
- (d) -0.5

[Based on SCMHRD, 2002]

23. The digits of a three-digit number form G.P. If 400 is subtracted from it, then we get another three-digit number whose digits form an arithmetic series. What is the sum of these two numbers?

- (a) 1356
- (b) 1648
- (c) 1462
- (d) 1000

[Based on SCMHRD, 2002]

 Find the sum of all natural numbers not exceeding 1000, which are divisible by 4 but not by 8.

- (a) 62500
- (b) 62800
- (c) 64000
- (d) 65600

[Based on SCMHRD, 2002]

25. If a, b, c are in A.P. and x, y, z are in G.P., then the value of $x^{b-c}y^{c-a}z^{a-b}$ is:

- (a) 0
- (b)
- (c) xyz
- (d) $x^a y^b z$

26. If $\log 2$, $\log (2^x - 1)$ and $\log (2^x + 3)$ (all to the base 10) be three consecutive terms of an Arithmetic Progression, then the value of x is equal to:

- (a) 0
- (b) 1
- (c) log₂5
- (d) $\log_{10} 2$

[Based on REC Tiruchirapalli, 2002]

- 27. Consider a sequence where the *n*th term, $t_n = n/(n + 2)$, n = 1, 2, ... the value of $t_3 \times t_4 \times t_5 \times ... \times t_{53}$ equals.
 - (a) 4/495
- (b) 2/495
- (c) 12/55
- (d) 1/1485

[Based on CAT, 2007]

- 28. I open a book store with a certain number of books. On the first day, I sell 1 book; on the second day, I sell 2 books; on the third day, I sell 3 books and so on. At the end of the month (30 days). I realise that I sold the same number of books with which I started. Find the number of books in the beginning.
 - (a) 365
- (b) 420
- (c) 465
- (d) 501
- 29. A contractor, who got the contract for building the flyover, failed to construct the flyover in the specified time and was supposed to pay ₹50,000 for the first day of extra time. This amount increased by ₹4,000 each day. If he completes the flyover after one month of stipulated time, he suffers a loss of 10% in the business. What is the amount he received for making the flyover in crores of rupee? (one month = 30 days):
 - (a) 3.1
- (b) 3.24
- (c) 3.46
- (d) 3.68

Directions (Questions 30 to 34): Refer to the data below and answer the questions that follow.

The starting term of an A.P. is equal to the starting term of a G.P. The difference between the fifth term of the A.P. and the list term of the A.P. is equal to the difference between the first term of the G.P. and the 2nd term of the G.P.

- 30. The first term of the progression is:
 - (a) 0
- (b) 1

- (c) 2
- (d) 3
- 31. The common difference of the A.P. is:
 - (a) 1
- (b) 2
- (c) 3
- (d) 4
- 32. The common ratio of the G.P. is:
 - (a) 1
- (0) 3
- (c) 5
- (d) 7
- 33. The sum of the first four terms of the A.P. is:
 - (a) 5
- (b) 10
- (c) 15
- (d) 20
- 34. The sum of the first four terms of G.P. is:
 - (a) 120
- (b) 126
- (c) 150
- (d) 156
- 35. A boy throws a ball to the ground with force from a height of 10 m. After hitting the ground for the first time it rises to a height of 20 m. There after it rises only upto half the prior height on hitting the ground.

What is the total distance travelled by the ball till it comes to rest?

- (a) 80 m
- (b) 40 m
- (c) 50 m
- (d) 90 m

- 36. There are two arithmetic progressions, A₁ and A₂, whose first terms are 3 and 5 respectively and whose common differences are 6 and 8 respectively. How many terms of the series are common in the first n terms of A₁ and A₂, if the sum of the nth terms of A₁ and A₂ is equal to 6,000?
 - (a) 103
- (b) 107
- (c) 109
- (d) 113
- 37. Infinite circles are inscribed successively inside the upper half of circles, as shown in the figure below. If the radius of the largest circle is $\frac{1}{\pi}$ units, find the sum of area of all the circles formed in square units.

(a) 2

- (b) 1.5
- (c) 1.33
- (d) 1
- 38. Given x = 1/0 $y + y^2 y^2 y^3 + y^4 + ... \infty$ and $z = 1 + y + y^2 + y^3 + y^4 + ... \infty$ (|y| < 1). Which of the following is true?
 - (a) Harmonic mean of x and y is 1
 - (b) Arithmetic mean of x and z is 1
 - (c) Harmonic mean of x and z is 1
 - (d) None of these
- 39. Three numbers form an increasing geometric progression. When the second number is doubled, the numbers form an arithmetic progression. What is the ratio of the first number and the third number?
 - (a) $1:7-4\sqrt{3}$
- (b) $1:7 + 4\sqrt{3}$
- (c) $1:2-\sqrt{3}$
- (d) Either (a) or (b)
- 40. Twenty six men -A, B, C... Y and Z running at the respective speeds of a, b, c, ... y and z are participating in a 10 Km running race on a circular track of length 100 m. Their speeds are in arithmetic progression from a to z, in that order. If the time taken by Z to meet A, for the first time after the start, is 20 seconds and the time taken by M to complete the race is 52 minutes and 5 seconds, then find the time taken for all the twenty six men to meet for the first time at the starting point. (All of them started the race at same time and from the same point).
 - (a) 1,000 seconds
- (b) 500 seconds
- (c) 225 seconds
- (d) 125 seconds

- **41.** The pth and the (p+3)th term of an arithmetic progression are in the ratio p:p + 3. The sum of the first 3p terms of the arithmetic progression and the sum of its first 4p terms are in the ratio 61:108. Find the value of p.
 - (a) 10
- (c) 20
- **42.** If $a_1, a_2, a_3, ..., a_n$ are in A.P. where $a_i > 0$ for all *i*, then the value of $\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + ... + \frac{1}{\sqrt{a_{n-1}} + \sqrt{a_n}}$ is:
 - (a) $\frac{n-1}{\sqrt{a_1} + \sqrt{a_n}}$ (b) $\frac{n+1}{\sqrt{a_1} + \sqrt{a_n}}$
- **43.** A retailer has n stones by which he can measure (or weigh) all the quantities from 1 kg to 121 kg (in integers only. e.g., 1 kg, 2 kg, 3 kg,) keeping these stones on either side of the balance. What is the minimum value of n?
 - (a) 3
- (b) 4
- (c) 5
- (d) 11
- **44.** In a certain examination paper, there are n questions. For i = 1, 2, ..., n, there are 2^{n-j} students who answered jor more questions wrongly. If the total number of wrong answers is 4,095, then the value of n is:
 - (a) 12
- (c) 10
- (d) 9
- 45. An intelligence agency forms a code of two distinct digits selected from 0, 1, 2, ..., 9 such that the first digit of the code is non zero. The code, handwritten on a slip, can however potentially create confusion when read upside down - for example, the code 91 may appear as 16. How many codes are there for which no such confusion can arise?
 - (a) 80
- (c) 71
- (d) 69
- **46.** Let S_1 be a square of side a. Another square S_2 is formed by joining the mid-points of the sides of S_1 . The same process is applied to S_2 to form yet another square S_3 , and so on. If A_1 , A_2 , A_3 , ... be the areas and P_1 , P_2 , P_3 , ... be the perimeters of S_1 , S_2 , S_3 , ..., respectively, then the ratio
 - $\frac{P_1 + P_2 + P_3 + ...}{A_1 + A_2 + A_3 + ...}$ equals:
 - (a) $\frac{2(1+\sqrt{2})}{a}$ (b) $\frac{2(2-\sqrt{2})}{a}$
 - (c) $\frac{2(2+\sqrt{2})}{a}$ (d) $\frac{2(1+2\sqrt{2})}{a}$
- **47.** The 288th term of the sequence a, b, b, c, c, c, d, d, d, d, ... is:
 - (a) u
- (b) v
- (c) w
- (d) x

[Based on SNAP, 2008]

- 48. The first two terms of a geometric progression add up to 12. The sum of the third and the fourth terms is 48. If the terms of the geometric progression are alternately positive and negative, then the first term is:
 - (a) -2
- (c) -12
- (d) 8

[Based on SNAP, 2009, 2010]

- **49.** Given that $(1^2 + 2^2 + 3^2 + ... + 10^2) = 385$, then the value of $(2^2 + 4^2 + 6^2 + ... + 20^2)$ is equal to:
 - (a) 770
- (c) 1155
- $(d) (385)^2$

[Based on FMS (MS), 2006]

- 50. From a group of boys and girls, 15 girls leave. There are then left two boys for each girl. After this 45 boys leave. There are then 5 girls for each boy. The number of girls in the beginning was:
 - (a) 40
- (b) 43
- (c) 29
- (d) None of these

[Based on FMS, 2011]

[Based on HFT, 2005]

- 51. The ratio between the number of sides of two regular polygons is 1:2 and the ratio between their interior angles is 2:3. The number of sides of these polygons are respectively:
 - (a) 4, 8
- (b) 5, 10
- (c) 6, 12
- (d) 8, 16
- **52.** The inverse of the sum of the following series up to nterms can be written as $\frac{3}{4} + \frac{3}{36} + \frac{7}{144} + \dots$:

(a)
$$\frac{(n-1)^2}{n^2+2n}$$

(b)
$$\frac{n^2 + 2n}{(n-1)^2}$$

(c)
$$\frac{n^2 + 2n}{(n+1)^2}$$
 (d) $\frac{(n+1)^2}{n^2 + 2n}$

(d)
$$\frac{(n+1)^2}{n^2+2n}$$

[Based on HFT, 2006]

- **53.** If $H_1, H_2, H_3, ..., H_n$, are n Harmonic means between 'a' and 'b' ($\neq a$), then value of $\frac{H_1 + a}{H_1 - a} + \frac{H_n + b}{H_n - b}$ is equal to:
 - (a) n+1
- (b) 2n
- (c) 2n+3
- (d) n-1

[Based on HFT, 2008]

- **54.** Suppose a, b and c are in Arithmetic Progression and a^2 , b^2 and c^2 are in Geometric Progression. If a < b < c and a $+b+c=\frac{3}{2}$, then the value of a is equal to:
 - (a) $\frac{1}{2\sqrt{2}}$
- (b) $\frac{1}{2\sqrt{3}}$
- (c) $\frac{1}{2} \frac{1}{\sqrt{3}}$
- (d) $\frac{1}{2} \frac{1}{\sqrt{2}}$

[Based on HFT, 2008]

55.	Sum of the series $1^2 - 2^2$	$+3^2-4^2++2001^2-2002^2$	(a) 26	(b) 32	
	$+2003^2$ is:		(c) 34	(d) 40	
	(a) 2007006	(b) 1005004		[Based on XAT, 2011]	
	(c) 200506	(d) None of these [Based on HFT, 2008]	1 mm daily insi	agic pot. He puts one gold ball of radius de it for 10 days. If the weight of the first	
56.	instalments which are in 30 of the instalments hav	ff a debt of ₹3600 by 40 annual Arithmetical Progression when e been paid, he dies leaving one- The value of the 8th instalment	every day, how magic pot?	the radius of a ball inside the pot doubles much gold has the saint made due to his	
	is:		(a) $\frac{(2^{30}-69)}{7}$	g (b) $\frac{(2^{30}+69)}{7}$ g	
	(a) ₹35	(b) ₹50	7	7	
	(c) ₹65	(d) None of these	(c) $\frac{(2^{30}-71)}{7}$	$ (d) \frac{(2^{30} + 71)}{7} g $	
57.		wdown, a multinational company	7	7	
		wances of its employees. Rashid,		[Based on JMET, 2011]	
		of the company whose monthly	62. If x , y and z are in harmonic progression, which of the		
	salary has been reduced to ₹42000 is unable to cut down on his expenditure. He finds that there is a deficit of		following stater	nent(s) is/are true?	
	Control of the Contro	nings and expenses in the first	y(x+z)	z(x-y)	
	month. This deficit, be	cause of inflationary pressure,	$I. x = \frac{y(x+z)}{2z}$	II. $x = \frac{z(x-y)}{y-z}$	
	will keep on increasing by ₹500 every month. Rashid		y-z		
	has a saving of ₹60000 which will be used to fill this deficit. After his savings get exhausted, Rashid would		III. $x = \frac{y-z}{x-z}$		
	그리 그리 그리는 그리는 그리는 그리는 그리는 그리는 그리는 그리는 그리	friends. How soon will he start	(a) I only	(b) I and II	
	borrowing?		(c) II only	(d) II and III	
	(a) 10th months	(b) 11th months	;=5000 Be	[Based on CAT, 2009]	
	(c) 12th months	(d) 13th months		ural numbers N is divided into subsets	
5 0	T	[Based on HFT, 2009]		2, 3), $A_3 = (4, 5, 6)$, $A_4 = (7, 8, 9, 10)$ and he sum of the elements of the subset A_{50} ?	
50.		nent, the houses of a row are from 1 to 49. Assuming that	(a) 42455	(b) 61250	
		h that the sum of the numbers of	(c) 62525	(d) 65525	
		house numbered 'x' is equal to		[Based on CAT, 2009]	
		of the houses following it. Then,		which Ram Kumar buys Bank's cash	
	what will be the value of 'x'?			ery year exceeds the previous year's	
	(a) 21	(b) 30		00. After 20 years, he finds that the total tificates purchased by him is ₹83000. Find	
	(c) 35	(d) 42		e certificate purchased by him in the 13th	
50	TI	[Based on IIFT, 2010]	year.		
39.	The operation (x) is define	ed by	(a) ₹4900	(b) ₹6900	
	I. (1) = 2		(c) ₹1300	(d) None of these	
	II. $(x+y) = (x)(y)$		Sarones M. Waller	[Based on CAT, 2010]	
	for all positive integers x and y If $\sum_{x=1}^{n} (x) = 1022$, then n is equal to		progression is	rd and 15th elements of an arithmetic equal to the sum of 6th, 11th, and 13th	
				same progression. Then which element of d necessarily be equal to zero?	
	(a) 8	(b) 9	(a) 1st	(b) 9th	
	(c) 10	(d) 11	(c) 12th	(d) None of these	
		[Based on XAT, 2010]	77 TO TO THE TOTAL PROPERTY.	[Based on CAT, 2010]	
60.		integer, denoted as x is unknown.		he sum of the squares of the first n odd s. If $S_n = 533n$, find the value of n .	
		20, 4, 10, 4, 8 and 4. If the mean, se seven integers are arranged in	(a) 18	(b) 20	
	median and mode of thes	se seven integers are arranged in	(-)	(-)	

increasing order, they form an arithmetic progression. The

sum of all possible wayes of x is:

(d) 30

[Based on CAT, 2011]

(c) 24

- **67.** Consider a sequence S whose nth term T_n is defined as 1 + 3/n, where n = 1, 2, ... Find the product of all the consecutive terms of S starting from the 4th term to the 60th term.
 - (a) 1980.55
- (b) 1985.55
- (c) 1990.55
- (d) 1975.55

[Based on CAT, 2012]

- **68.** If $(a^2 + b^2)$, $(b^2 + c^2)$ and $(a^2 + c^2)$ are in geometric progression (G.P.), which of the following holds true?
 - (a) $b^2 c^2 = \frac{a^4 c^4}{b^2 + a^2}$ (b) $b^2 a^2 = \frac{a^4 c^4}{b^2 + c^2}$
 - (c) $b^2 c^2 = \frac{b^4 a^4}{b^2 + a^2}$ (d) $b^2 a^2 = \frac{b^4 c^4}{b^2 + a^2}$

[Based on CAT, 2012]

- **69.** If $ax^2 + bx + c = 0$ and 2a, b and 2c are in arithmetic progression (A.P.), which of the following are the roots of the equation?
 - (a) a, c
- (c) $-\frac{a}{2}, -\frac{c}{2}$ (d) $-\frac{c}{a}, -1$

[Based on CAT, 2012]

- 70. The sum of first ten terms of an AP is 155 and the sum of first terms of a GP is 9. The first term of the AP is equal to the common ratio of the GP and the first term of the GP is equal to the common difference of the AP. Which can be the AP as per the given conditions?
 - (a) 2, 4, 6, 8
- (c) $\frac{25}{2}$, $\frac{79}{6}$, $\frac{83}{6}$,
- (d) Both (b) and (c)

[Based on CAT, 2013]

- 71. If $a_1, a_2, a_3, \dots, a_n$ be an AP and s_1, s_2 and s_3 be the sum of first n, 2n and 3n terms respectively, then $S_3 - S_2 - S_1$ is equal to (where a is the first term and d is the common difference):
 - (a) 3a 2n d
- (b) a(n + 2d)
- (c) 3a + 2nd
- $(d) 2n^2d$

[Based on CAT, 2013]

72. What is the value of the following expression?

$$\left(\frac{1}{(2^2-1)}\right) + \left(\frac{1}{(4^2-1)}\right) + \left(\frac{1}{(6^2-1)}\right) + \dots + \left(\frac{1}{(20^2-1)}\right)$$

- (a) $\frac{9}{10}$
 - (b) $\frac{10}{19}$
- (c) $\frac{10}{21}$
- (d) $\frac{11}{21}$

[Based on CAT, 2000]

- 73. Let $u_{n+1} = 2u_n + 1$, (n = 0, 1, 2, ...) and $u_0 = 0$. Then, u_{10} would be nearest to:
 - (a) 1023
- (b) 2047
- (c) 4095
- (d) 8195

[Based on CAT, 1993]

- 74. A young girl counted in the following way on the fingers of her left hand. She started calling the thumb 1, the index finger 2, middle finger 3, ring finger 4, and little finger 5, then reversed the direction, calling the ring finger 6, middle finger 7, index finger 8, thumb 9 and then back to the index finger for 10, middle finger for 11 and so on. She counted up to 1994. She ended on her:
 - (a) thumb
- (b) index finger
- (c) middle finger
- (d) ring finger

[Based on CAT, 1993]

- 75. Balls are arranged in rows to form an equilateral triangle. The first row consists of one ball, the second row consists of two balls and so on. If 669 more balls are added, then all the balls can be arranged in the shape of a square and each of the sides contains 8 balls less than each side of the triangle had. The initial number of balls is:
 - (a) 1600
- (b) 1500
- (c) 1540
- (d) 1690
- **76.** x, 17, $3x y^2 2$, and $3x + y^2 30$, are four consecutive terms of an increasing arithmetic sequence. The sum of the four numbers is divisible by:
 - (a) 2

(b) 3

- (c) 5
- (d) 7

[Based on XAT, 2014]

Answer Keys

DIFFICULTY LEVEL-1

1. (b) 2. (b) 3. (c) 4. (a) 5. (a) 6. (c) 7. (b) **8.** (b) **9.** (b) **10.** (b) **11.** (c) **12.** (a) **13.** (d) 14. (b) 15. (c) 16. (d) 17. (c) 18. (c) 19. (b) 20. (c) 21. (a) 22. (d) 23. (c) 24. (c) 25. (c) 26. (b) 27. (b) 28. (c) 29. (b) 30. (d) 31. (b) 32. (b) 33. (b) 34. (c) 35. (c) **36.** (a) **37.** (c) **38.** (a) **39.** (a) 40. (d) 41. (c) 42. (a) 43. (d) 44. (d) 45. (c) 46. (a) 47. (c) 48. (b) 49. (b) 50. (c) 51. (a) 52. (c) 53. (a) 54. (b) 55. (b)

DIFFICULTY LEVEL-2

Explanatory Answers

DIFFICULTY LEVEL-1

1. (b) Let a be the first term and d be the common ratio of an A.P.

$$(a + 5d) + (a + 14d)$$

$$= (a + 6d) + (a + 9d) + (a + 11d)$$

$$\Rightarrow a + 7d = 0$$

$$\Rightarrow 8th \text{ term} = 0.$$

2. (b) Let a be the first term of the series in A.P.

Let d be its common difference.

$$(a+5d) + (a+14d)$$

$$= (a+6d) + (a+9d) + (a+11d)$$

$$\Rightarrow 2a+19d = 3a+26d \Rightarrow a = -7d$$

$$\Rightarrow 8th \text{ term} = a+7d \Rightarrow -7d+7d = 0.$$

3. (c) p, q, r, s are in harmonical progression

$$\Rightarrow \frac{1}{p}, \frac{1}{q}, \frac{1}{r} \text{ and } \frac{1}{s} \text{ are in A.P.}$$

$$\Rightarrow \frac{1}{q} - \frac{1}{p} = \frac{1}{s} - \frac{1}{r}$$

$$\Rightarrow \frac{1}{q} + \frac{1}{r} = \frac{1}{p} + \frac{1}{s}.$$

4. (a) Mohan ate $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128}$ of the pizza during the week. That is,

$$\frac{\frac{1}{2}\left[1 - \left(\frac{1}{2}\right)^{7}\right]}{1 - \frac{1}{2}} = 1 - \frac{1}{128} = \frac{127}{128} = 99.22\%$$
Here $a = \frac{1}{2}$, $r = \frac{1}{2}$ for the given G.P. of 7 terms

5. (a) Given statement

$$\Rightarrow (a^{x/2})^2 = (\log_b x) \times (\log_x a) \Rightarrow a^x = \log_b a$$

$$\Rightarrow x \log_a = \log_a [\log_b a] \Rightarrow x = \log_a [\log_b a].$$

6. (c) Let *n* be the number of months in which all the instalments can be paid

First instalment = ₹100

Last instalment = ₹5

Common Difference = -5

⇒ Sum of the series with *n* terms whose first term is 100 or common difference is (-5) = 975

i.e.,
$$\frac{n}{2} [2a + (n-1)d] = 975$$

i.e.,
$$\frac{n}{2} [2 \times 100 + (n-1)(-5)] = 975$$

i.e.,
$$n^2 - 41n + 390 = 0$$

i.e., $n = 26$ or $n = 15$

For n = 15, total amount paid

$$= \frac{15}{2} [2 \times 100 + (15 - 1)(-5)]$$
$$= \frac{15}{2} [200 - 70] = 975.$$

7. (b)
$$S_n = \frac{n}{2}[a + (n-1)d]$$

[where a is the first term and d is the common difference]

$$S_{2n} = \frac{n}{2} [a + (n-1)d]$$

$$S_{3n} = \frac{3n}{2} [a + (3n-1)d]$$

Given,
$$S_{2n} = 3S_n$$

$$\Rightarrow n[a+2nd-d] = 3\left[\frac{n}{2}(a+nd-d)\right]$$

$$\Rightarrow$$
 $d = \frac{a}{1+n}$

$$\frac{S_{3n}}{S_n} = \frac{\frac{3n}{2}[a+3nd-d]}{\frac{n}{2}[a+nd-d]}$$

$$= \frac{3\left[a+\frac{3na}{1+n} - \frac{a}{1+n}\right]}{a+\frac{na}{1+n} - \frac{a}{1+n}} = 6.$$

8. (b) Let the three numbers be a, ar, ar^2 , where r is the common ratio

$$\therefore \quad a + ar + ar^2 = 28 \text{ and } a^3 r^3 = 512$$

$$\therefore \quad ar = 8 \Rightarrow a + ar^2 = 20$$

$$\Rightarrow \quad 8r^2 - 20r + 8 = 0$$

$$\Rightarrow \quad r = 2, \ r = \frac{1}{2}$$

If r = 2, a = 4. Therefore, the three numbers are 4, 8, 16.

9. (b) The sum of the squares of the first n natural numbers is

$$\frac{n(n+1)(2n+1)}{6}$$

Put
$$n = 15$$
, we have, $1^2 + 2^2 + 3^2 + 4^2 + ... + 15^2$
= $\frac{15(15+1)(30+1)}{6} = 1240$.

10. (b) nth term= a + (n-1)d = 4n + 1where a = first term and d = common difference $\therefore (a-d) + nd = 1 + 4n \Rightarrow a - d = 1, d = 4$

11. (c)
$$\frac{1}{b-a} - \frac{1}{c} = \frac{1}{a} - \frac{1}{b-c}$$

$$\Rightarrow b = \frac{2ac}{a+c} \Rightarrow \frac{1}{a}, \frac{1}{b}, \frac{1}{c} \text{ are in A.P.}$$

$$\Rightarrow a, b, c \text{ are in H.P.}$$

12. (a) *n*th term of a G.P. = ar^{n-1} where a = first term and r is the common ratio \therefore 8th term = $5 \times (2)^7 = 5 \times 128 = 640$.

13. (d) Let x, y be the numbers

$$\therefore \frac{x+y}{2} = 5 \text{ and } \sqrt{xy} = 4 \Rightarrow xy = 16$$

$$\therefore x+y = 10, xy = 16$$

$$\Rightarrow (x-y)^2 = (x+y)^2 - 4xy = 100 - 64 = 36$$

$$\Rightarrow x-y = 6$$

$$\therefore x = 8, y = 2.$$

14. (b) Number of terms in the first n groups = 1 + 2 + 3 + ...

$$n=\frac{n(n+1)}{2}=\frac{n^2+n}{2}$$

So, first term is the (n + 1)th group

$$= \frac{n^2 + n}{2} + 1$$
$$= \frac{n^2 + n + 2}{2}.$$

15. (c)
$$\frac{3^n - 1}{3 - 1} > 2000 \implies 3^n > 4001 \implies n = 8$$
.

16. (d)
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

where a = 4, d = ?, n = 12

$$S_{12} = 256 = \frac{12}{2} [2 \times 4 + (12 - 1) \times d]$$

$$\Rightarrow \qquad d = \frac{104}{33}$$

 \therefore Last term = 12th term = T_{12}

$$T_{12} = a + (n - 1) d$$
$$= 4 + (12 - 1) \times \frac{104}{33}$$
$$= 4 + \frac{104}{3} = \frac{116}{3}.$$

17. (c) Let the numbers be a and b, then

$$\frac{2ab}{a+b} = 4 \text{ and } a+b+ab=27$$

$$\Rightarrow 2(a+b)-ab=0 \text{ and } a+b+ab=27$$

$$\Rightarrow ab=8 \text{ and } a+b=9$$

$$\Rightarrow a=6, b=3$$

18. (c) Let the 3 numbers in the geometric progression be a, ar: ar^2 .

$$\therefore \qquad a = ar + ar^2$$

$$\therefore \qquad r^2 + r = 1$$

$$\Rightarrow \qquad r^2 + r - 1 = 0$$

$$\therefore \qquad r = \frac{-1 \pm \sqrt{(1)^2 - 4(1)(-1)}}{2(1)}$$

$$= \frac{-1 \pm \sqrt{5}}{2}$$

: All the numbers are positive, the ratio cannot be negative

$$\therefore \ \frac{-1-\sqrt{5}}{2} \text{ is not possible}$$

$$\therefore \qquad r = \frac{\sqrt{5} - 1}{2}.$$

19. (b) As per the given information: $(a + d) \times (a + 13d) = (a + 5d)^2$ Solving, a = 3d

Now common ratio of G.P., (a + 5d)/(a + d) = 2.

20. (c)
$$\frac{a}{1-r} = 6 \text{ and } \frac{a^2}{1-r^2} = 24$$

Dividing, $\frac{a}{1+r} = 4$

$$\Rightarrow \qquad r = \frac{1}{5} \text{ and } a = \frac{24}{5}$$

Hence, second term of the first series = $a \times r = \frac{24}{25}$.

21. (a) Average of 49th, 50th and 51st term = 50th term = 49 Hence, (a + 49d) = 49

Sum of the first 99 terms = 49 terms before 50th term + 50th term + 49 terms after 50th term = 99×50 th term = $99 \times 49 = 4.851$.

22. (d) Required numbers are 12,15,18,, 99

This is an AP with a = 12 and d = 3

∴
$$T_n = a + (n-1)d$$

 $99 = 12 + (n-1) \times 3$
⇒ $n-1 = \frac{99-12}{3}$
 $n = 29 + 1 = 30$.

23. (c) Let,
$$S = 1 + 2 + 4 + 7 + ... + T_n$$

or, $S = 1 + 2 + 4 + ... + T_{n-1} + T_n$
Subtracting, we get $0 = 1 + [1 + 2 + 3 + ... (n-1)] - T_n$
 $\Rightarrow T = 1 + 2 + 3 + ... + (n-1) + 1$

$$0 = 1 + [1 + 2 + 3 + \dots (n - 1)] - T_n$$

$$\Rightarrow T_n = 1 + 2 + 3 + \dots + (n - 1) + 1$$

$$= \frac{n(n - 1)}{2} + 1$$

:. First number of 50th term,

$$= \frac{50 \times 49}{2} + 1 = 1226$$

:. Sum of numbers of 50th term,

=
$$1226 + 1227 + \dots$$
 upto 50th term
= $\frac{50}{2} [2 \times 1226 + (50 - 1) \times 1]$
= $25 \times 2501 = 62525$.

24. (c) Let the first instalment be 'a' and the common difference between any two consecutive instalments be 'd'

Using the formula for the sum of an A.P.

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

We have.

$$3600 = \frac{40}{2} \left[2a + (40 - 1)d \right] = 20(2a + 39d)$$

$$\Rightarrow 180 = 2a + 39d \tag{1}$$

Again,
$$2400 = \frac{30}{2} [2a + (30 - 1)d]$$
$$= 15(2a + 29d)$$
$$\Rightarrow 160 = 2a + 29d$$
(2)

Solving Eqs. (1) and (2),

Therefore,
$$180 = 2a + 39 \times 2$$

 $\Rightarrow 2a = 102 \Rightarrow a = 51$

Value of 8th instalment

$$= 51 + (8 - 1) \times 2 = 51 + 14$$

= ₹65.

25. (c) Let n be the number of members in the club.

Then,
$$250 = \frac{n}{2} \left[2 \times 7 + (n-1) \frac{3}{12} \right]$$

$$\Rightarrow \qquad 250 = \frac{n}{2} \left[14 + \frac{1}{4}n - \frac{1}{4} \right]$$

$$\Rightarrow \qquad 250 = 7n + \frac{n^2}{8} - \frac{n}{8}$$

$$\Rightarrow \qquad n = 25.$$

26. (b)
$$T_{5} = a + (n-1) \times d$$

$$2 = -14 + 4d$$

$$d = \frac{16}{4} = 4$$

$$\therefore \qquad S_{n} = \frac{n}{2} [2a + (n-1) \times d]$$

$$\Rightarrow \qquad 40 = \frac{n}{2} [-28 + (n-1) \times 4]$$

$$\Rightarrow \qquad 80 = -28 n + 4n^{2} - 4n$$

$$\Rightarrow \qquad 4n^{2} - 32n - 80 = 0$$

$$\Rightarrow \qquad n^{2} - 8n - 20 = 0$$

$$\Rightarrow \qquad (n-10) (n+2) = 0$$

$$\therefore \qquad n = 10. \qquad (\because n \neq -2)$$

27. (b) Let the last term be n, then

$$a + ar^{n-1} = 66 (1)$$

 $ar \times ar^{n-2} = 128$ and. $a^2r^{n-1} = 128$ (2)

From Eqs. (1) and (2),

$$a (66 - a) = 128$$

$$\Rightarrow a^2 - 66a + 128 = 0$$

$$\Rightarrow a = 64, 2.$$

28. (c) $(x+1)^{th}$ term $-x^{th}$ term $=(x+1)^2+1-(x^2+1)$ $= x^2 + 2x + 1 + 1 - x^2 - 1 = 2x + 1$

29. (b) 1, 4, 9, 16, 25, $(1)^2 (2)^2 (3)^2 (4)^2 (5)^2$

> Each term of the progression is the square of a natural number

> Hence, the eighth term of the sequence will be $(8)^2 = 64.$

30. (d) Let the two numbers be x and yThen, A.M.

or.

$$\frac{x+y}{2} = 5$$

$$\Rightarrow x+y = 10$$
and, G.M. $\sqrt{xy} = 4$ (1)
$$xy = 16$$

$$\Rightarrow (x-y)^2 = (x+y)^2 - 4xy$$

$$= 100 - 64 = 36$$
or, $x-y = 6$ (2)

x - y = 6

Solving Eqs. (1) and (2), x = 8 and y = 2. $\sqrt{AB} = 0.8 \times \frac{(A+B)}{2}$ 31. (b) $AB = 0.16 (A + B)^2$ Using option (b), $4 = 0.16 (4 + 1)^2 \Rightarrow 4 = 4$. we find that **32.** (b) Given $2 \log_3(2^x - 5) = \log_3 2 + \log_3(2^x - 7/2)$ $(2^x - 5)^2 = 2[2^x - 7/2]$ $=2^{2x}-10.2^x+25=2.2^x-7$ $\Rightarrow 2^{2x} - 12.2^x + 32 = 0$ $\Rightarrow v^2 - 12v + 32 = 0$ \Rightarrow (v-8)(v-4)=0or. $2^x = 3^2$, 2^2 or, x = 3, 2

 \therefore x = 2 is impossible, so x = 3.

33. (b) Let the polygon has n sides.

.

Given the smallest interior angle is 120°, hence the greatest exterior angle will be $(180^{\circ} - 120^{\circ}) = 60^{\circ}$. We know sum of exterior angles of a polygon = 360°

x = 2, gives $2^x - 5 = -1$

$$60 + 55 + 50 + \dots = 360$$

{Common difference = -5}

$$\therefore \frac{n}{2}[2a+(n-1)d]=360$$

$$\frac{n}{2}[120 + (n-1) \times -5] = 360$$

$$\Rightarrow n^2 - 25n + 144 = 0$$

$$\Rightarrow n = 9, 16$$

Number of sides cannot be 16 Hence, n = 9.

34. (c) Sum of 40 instalments $S_{40} = 3600$

$$= 20 (2a + 39d)$$
$$2a + 39d = 180$$
(1)

Sum of 30 instalments $S_{30} = 2400 = 15(2a + 29d)$

$$\Rightarrow \qquad 2a + 29d = 160 \tag{2}$$

Solving Eqs. (1) and (2), we get

$$a = 51$$
 and $d = 2$

:. The value of first instalment = ₹51.

- **35.** (c) Using the digits 0, 1, 2, 3, 4 and 5, five-digit numbers divisible by 3, can be formed using the following combinations.
 - Case (i): 1, 2, 3, 4, 5

Total number of numbers formed using these digits = 5! = 120

Case (ii): 0, 1, 2, 4, 5

Total number of numbers formed using these digits

 $= 4 \times 4 \times 3 \times 2 = 96$

Thus, total numbers = 120 + 96 = 216

Hence, option (c).

36. (a) We know that

Sum of even number = n(n + 1)

Here, n = 49

 \therefore Sum = 49 × 50 = 2450.

37. (c) Sum between 100 to 200,

$$S_n = \frac{50}{2}(101 + 199)$$
$$= 25 \times 300 = 7500.$$

38. (a) Let
$$a^x = b^y = c^z = k$$

$$\Rightarrow \qquad a = k^{\frac{1}{x}}, b = k^{\frac{1}{y}}$$

and, $c = k^{\frac{1}{z}}$

$$b^2 = ac \Rightarrow k^{\frac{2}{y}} = k^{\frac{1}{z}} \cdot k^{\frac{1}{x}}$$

$$\Rightarrow \qquad \frac{\frac{2}{x^y}}{k^y} = k^{\frac{1}{z} + \frac{1}{x}}$$

 $\Rightarrow \frac{2}{v} = \frac{1}{z} + \frac{1}{x}.$

39. (a) The sum of interior angles of a pentagon = 540°

Let the angles of the pentagon be a - 2d, a - d, a, a + d, a + 2d

$$\therefore a-2d+a-d+a+a+d+a+2d=540$$

 \therefore 5a = 5400

∴ $a = 108^{\circ}$

.. One of the angles must be 108°.

40. (d)
$$x_{k+1} = x_k + \frac{1}{2}$$

 $x_1, x_2, x_3, \dots x_n$ form an arithmetic progression with common difference d = 1/2

$$x_1 = 1, \text{ first term } a = 1$$

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$= \frac{n}{2} \left[2(1) + (n-1)\frac{1}{2} \right]$$

$$= \frac{n}{2} \left[2 + \frac{n}{2} - \frac{1}{2} \right] = \frac{n}{2} \left[\frac{n+3}{2} \right]$$

$$= \frac{n^2 + 3n}{4}.$$

41. (c) a, b, c form an A.P.

$$2b = a + c$$

Increasing a by 1 or c by 2 results in a G.P.

$$b^2 = (a+1)c \tag{1}$$

and,
$$b^2 = a(c+2)$$
 (2)

$$\therefore (a+1)c = a(c+2)$$

$$\therefore ac + c = ac + 2a$$

$$c = 2a$$

Now. 2b = a + c

$$\therefore \qquad 2b = a + 2a$$

$$\therefore \qquad b = \frac{3a}{2}$$

Putting this in Eq. (1), we get

$$\frac{9a^2}{4} = (a+1) 2a$$

$$\therefore \frac{9a}{4} = 2a+2$$

$$a = 8a + 8$$

$$b = \frac{3a}{2}$$

$$= \frac{3 \times 8}{2} = 12.$$

42. (a) Let the first term and the common difference of the arithmetic progression be a and d, respectively. It is given the sum of the first ten terms is equal to four times the sum of the first five terms.

Sum of the first five terms =
$$\frac{5}{2}[2a + 4d]$$

Sum of the first ten terms = $\frac{10}{2}[2a + 9d]$

Given, $\frac{10}{2}[2a+9d] = 4\left[\frac{5}{3}(2a+49d)\right]$

$$2a + 9d = 2[2a + 4d]$$

$$d = 2a$$

Thus, the ratio of the first term to the common difference

$$=\frac{a}{d}=\frac{1}{2}$$
.

43. (d)
$$\frac{1}{7} + \frac{2}{7^2} + \frac{1}{7^3} + \frac{2}{7^4} + \dots$$

$$= \left[\frac{1}{7} + \frac{1}{7^3} + \dots \right] + \left[\frac{2}{7^2} + \frac{2}{7^2} + \dots \right]$$

$$= \frac{\frac{1}{7}}{1 - \frac{1}{7^2}} + \frac{\frac{2}{7^2}}{1 - \frac{1}{7^2}}$$

$$= \frac{\frac{7}{48} + \frac{2}{48}}{16}$$

$$= \frac{9}{48} = \frac{3}{16}.$$

- **44.** (*d*) Number are 1, 2, 3, 4, 5, 8
 - :. Total digit = 6

Here repetition of digits is allowed

- ... First place can be filled by any 6 ways, and second place can be filled by 3 ways

 Total number of ways = ${}^{6}P_{1} \times {}^{3}P_{1} = 6 \times 3 = 18$.
- **45.** (c) Since, x, y, z are in A.P. and also in H.P.

In A.P.
$$y = \frac{x+z}{2}$$
In H.P.
$$y = \frac{2xz}{x+z}$$

$$\therefore \frac{2xz}{x+z} = \frac{x+z}{2}$$

$$\Rightarrow (x+z)^2 - 4xz = 0$$

$$\therefore x = z$$

Hence y, z and x connot be in A.P.

46. (a)
$$ar = 2$$

$$\Rightarrow a = \frac{2}{r}$$
Also,
$$\frac{2}{r(1-r)} = \frac{25}{2}$$

$$\therefore r = \frac{4}{5}, \frac{1}{5}$$

$$\therefore T_4 = ar^3 = \frac{2}{r} \times r^3$$

$$= 2r^2 = 2 \times \frac{1}{25} \text{ or, } 2 \times \frac{16}{25}$$

$$= \frac{2}{25} \text{ or, } \frac{32}{25}.$$

47. (c) a, b, c are in H.P.

$$\therefore \qquad b = \frac{2ac}{a+c} \tag{1}$$

Now,
$$\log (a + c) + \log (a - 2b + c)$$

 $= \log [(a + c) \times (a - 2b + c)]$
 $= \log [a^2 - 2ab + ac + ac - 2bc + c^2]$
 $= \log [(a^2 + c^2 + 2ac) - 2ab - 2bc]$
 $= \log [(a + c)^2 - 2b(a + c)]$
 $= \log [(a + c)^2 - 2 \times \frac{2ac}{a + c} \times (a + c)]$
 $= \log [(a + c)^2 - 4ac]$
 $= \log [a - c]^2$
We know that $c > a$
and, $(a - c)^2 = (c - a)^2$
 $\therefore \log (c - a)^2 \Rightarrow 2 \log (c - a)$.

48. (b) a b c = 4 and a, b, c are in AP. Then, value of b will be minimum when all three are equal

$$b^3 = 4$$

$$b = 4^{\frac{1}{3}} = 2^{\frac{2}{3}}$$

49. (b) Given series is

=3(e-1)

Remember that, $e = 1 + \frac{1}{2!} + \frac{1}{2!} + ...$

$$\frac{2}{1!} + \frac{3}{2!} + \frac{6}{3!} + \frac{11}{4!} + \frac{18}{5!} + \dots$$

So, the nth term of the given series is

$$t_n = \frac{2 + (n-1)^2}{n!}$$
and,
$$S_n = \sum_{n=1}^{\infty} \left[\frac{2}{n!} + \frac{(n-1)^2}{n!} \right]$$

$$= \sum_{n=1}^{\infty} \left[\frac{2}{n!} + \frac{n^2 - 2n + 1}{n!} \right]$$

$$= \sum_{n=1}^{\infty} \left[\frac{2}{n!} + \frac{n}{(n-1)!} - \frac{2}{(n-1)!} + \frac{1}{n!} \right]$$

$$= \sum_{n=1}^{\infty} \left[\frac{3}{n!} + \frac{n-1+1}{(n-1)!} - \frac{2}{(n-1)!} \right]$$

$$= \sum_{n=1}^{\infty} \left[\frac{3}{n!} \right] + \sum_{n=2}^{\infty} \left[\frac{1}{(n-2)!} \right] + \sum_{n=1}^{\infty} \left[\frac{1}{(n-1)!} - \frac{2}{(n-1)!} \right]$$

$$= \sum_{n=1}^{\infty} \frac{3}{n!} + \sum_{n=2}^{\infty} \frac{1}{(n-2)!} - \sum_{n=1}^{\infty} \frac{1}{(n-1)!}$$

$$= 3 \left[1 + \frac{1}{2!} + \frac{1}{3!} + \dots \right] + e - e$$

50. (c) As per the given condition, number in the highest position should be either 6 or 7, which can be done in two ways.

If the first digit is 6, the other digits can be arranged in

$$=\frac{6!}{2!}$$
 = 360 ways

If the first digit is 7, the other digits can be arranged in

$$=\frac{6!}{2!\times 2!}=180$$
 ways

Thus, the required possibilities for

$$n = 360 + 180 = 540$$
 ways.

51. (a)
$$\frac{1}{x} + \frac{1}{z - y} + \frac{1}{z} + \frac{1}{x - y} = 0$$

$$\Rightarrow \frac{x + z - y}{x(z - y)} + \frac{x + z - y}{z(x - y)} = 0$$

$$\Rightarrow xz - xy + zx - zy = 0$$

$$2xz = y(x + z)$$

$$\frac{2}{y} = \frac{1}{x} + \frac{1}{z}$$

Hence, x, y, z are in H.P. and x, $\frac{y}{2}$, z are in A.P.

52. (c) Let the angle be

$$(a-5d) + (a-3d) + (a-d)$$

+ $(a+d) + (a+3d) + (a+5d) = 720$
[Sum of angles of hexagon = 720°]
 $\Rightarrow 6a = 720^{\circ} \Rightarrow a = 120^{\circ}$

The largest angle should be a multiple of one of the convex angles and less than 180°, hence it can be 175°

53. (a) Given series be 35, 42, 49, ..., 329

Here,
$$a = 35$$

 $d = 7$
and, $t_n = 329$, than $n = ?$
 \therefore $t_n = a + (n - 1)d$
 \Rightarrow $329 = 35 + (n - 1) \times 7$
 \Rightarrow $294 = (n - 1)7$
 \Rightarrow $n - 1 = \frac{294}{7} = 42$
 \therefore $n = 42 + 1 = 43$.

54. (b)
$$\frac{(2n-4)\times 90}{n} = 140$$
$$18n - 36 = 14n$$

$$n = 9$$
.

55. (b)
$$\frac{1}{1} + \left(\frac{1}{3} + \frac{1}{6}\right) + \left(\frac{1}{10} + \frac{1}{15}\right) + \dots$$

$$= 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \dots$$

$$= \frac{3}{2} \left[1 + \frac{1}{2} + \frac{1}{2^2} + \dots \infty\right]$$

$$= \frac{3}{2} \left[1 - \frac{1}{2}\right] = \frac{3}{2} \times 2 = 3.$$

DIFFICULTY LEVEL-2

1. (c) Let the first term be a and common difference d.

As we know, nth term of an AP

$$= a + (n-1) d$$

According to the question,

$$a + (3 - 1) d + a + (15 - 1) d$$

$$= a + (6 - 1) d + a + (11 - 1) d + a + (13 - 1) d$$

$$\Rightarrow 2a + 16 d = 3a + 27 d$$

$$\Rightarrow a = -11 d$$

we have to find the value of n such that a + (n - 1)

$$0 = -11d + (n-1) d \Rightarrow n = 12.$$

2. (d) $\log_3 2$, $\log_3 (2^x - 5)$, $\log_3 (2^x - 7/2)$ are in arithmetic progression,

Putting 2x = t

$$\Rightarrow (t-5)^2 = 2 \times (t-7/2)$$

$$\Rightarrow t^2 - 10t + 25 = 2t - 7$$

$$\Rightarrow t^2 - 12t + 32 = 0 \Rightarrow t = 4, 8$$

Now,
$$2^x = 4$$

 $\Rightarrow x = 2$ which is not possible because $2^x - 5$ is negative.

If,
$$2^x = 8 \Rightarrow x = 3$$

 \therefore $x = 3$.

3. (c) Let there be total n layers of balls.

1st layer \rightarrow 1 ball

2nd layer \rightarrow 3 balls 3rd layer \rightarrow 6 balls 4th layer \rightarrow 10 balls

$$n$$
th layer $\rightarrow \frac{n(n+1)}{2}$ balls

According to the question,

$$\sum \frac{n(n+1)}{2} = 8436$$

$$\Rightarrow \sum \frac{n^2}{2} + \frac{n}{2} = 8436$$

$$\Rightarrow \sum \frac{n^2}{2} + \sum \frac{n}{2} = 8436$$

$$\Rightarrow \frac{1}{2} \times \frac{n(n+1)(2n+1)}{6} + \frac{1}{2} \times \frac{n(n+1)}{2} = 8436$$

$$\Rightarrow \frac{1}{2} \left\{ \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \right\} = 8436$$

Now, go through the options:

$$n = 36$$
 satisfies

 \therefore Number of layers = 36.

4. (*d*)
$$T = \{3, 11, 19, 27, ..., 451, 459, 467\}$$

Terms in set T are in A.P.

We have to find the number of elements in S (subset of T) such that no two elements add up to 470. As we know, in a finite A.P. the sum of the terms equidistant from beginning and end is always the same. Sum of first and last term = 3 + 467 = 470.

Number of terms =
$$\frac{467 - 3}{8} + 1 = 59$$

So, there are 29 pairs which give 470 as sum.

So, the number of element such that sum of no two elements is 470 = 59 - 29 = 30.

 (a) No. of students who answered one or more questions wrongly = 2^{n-j}

The value of j lies between 1 and n (including 1 and n)

.. Total number of wrong answers

$$=2^{n-1}+2^{n-2}+2^{n-3}+...+2^{1}+2^{0}$$

According to the question,

$$2^{0} + 2^{1} + \dots + 2^{n-3} + 2^{n-2} - 2^{n-1} = 4095$$

$$\Rightarrow \frac{1(2^{n} - 1)}{2 - 1} = 4095 \Rightarrow 2n - 1 = 4095$$

$$\Rightarrow 2^{n} = 4095 + 1 = 40996 \Rightarrow n = 12.$$

6. (b) Since y - x = z - y

 \therefore x, y and z are in AP.

Let x, y and z are (a-d), (a) and (a+d)

Again, xyz = 4

$$\Rightarrow$$
 $(a-d)$ a $(a+d) = 4$

$$\Rightarrow a(a^2-d^2)=4$$

$$\Rightarrow \qquad a^2 - d^2 = \frac{4}{a} \Rightarrow d^2 = a^2 - \frac{4}{a}$$

For minimum possible value of y, i.e., a, d should be equal to zero. That is,

$$a^2 - \frac{4}{a} = 0 \Rightarrow a^2 = \frac{4}{a} \Rightarrow a^3 = 2^2$$

$$\Rightarrow \qquad a = (2^2)^{1/3} = 2^{2/3}.$$

7. (a) Let,
$$S = 1 + 2x + 4x^2 + 7x^3 + 10x^4 + ...$$
 (1)

Then.

$$xS = x + 2x^2 + 4x^3 + 7x^4 + \dots$$
 (2)

From (1) and (2),

$$S(1-x) = 1 + x + 2x^2 + 3x^3 + 4x^4 + \dots$$
 (3)

$$xS(1-x) = x + x^2 + 2x^3 + 3x^4 + \dots$$
 (4)

From (3) and (4).

$$S(1-x)^2 = 1 + x^2 + x^3 + x^4 + \dots$$

$$\Rightarrow$$
 $S(1-x)^2 = 1 + x^2(1 + x + x^2 + x^3 + ...)$

$$\Rightarrow S(1-x)^2 = 1 + \frac{x^2}{1-x}$$

$$\therefore \qquad S = \frac{[1 - x(1 - x)]}{(1 - x)^3}$$

8. (a) Area =
$$36 + 36\frac{1}{2} + 36\frac{1}{4} + 36\frac{1}{8}$$
 ...
= $\frac{36}{1 - \frac{1}{2}} = 36 \times 2 = 72$
= 72 cm^2 .

9. (b) The two-digit number is of the form 7n + 3

First two-digit number will be for n = 1

i.e.,
$$7 \times 1 + 3 = 10$$

Last two-digit number will be for n = 13

i.e.,
$$7 \times 13 + 3 = 94$$

No. of teems
$$= 13$$

Sum of all 13 terms =
$$\frac{13}{2}(10 + 94)$$

= $13 \times 52 = 676$.

10. (c) We have to find the sum of the series

$$1 + \frac{4}{7} + \frac{9}{7^2} + \frac{16}{7^3} + \frac{25}{7^4} + \dots$$

Putting
$$\frac{1}{7} = x$$
 we get

$$1 + 2^2x + 3^2x^2 + 4^2x^3 + 5^2x^4 + \dots$$

Let,
$$S = 1 + 4x + 9x^{2} + 16x^{3} + 25x^{4} + \dots$$
$$Sx = x + 4x^{2} + 9x^{3} + 16x^{4} + \dots$$
$$S - Sx = 1 + 3x + 5x^{2} + 7x^{3} + 9x^{4} + \dots$$

$$x (S - Sx) = x + 3x^2 + 5x^3 + 7x^4 + \dots$$

$$(S-Sx)-\{x\ (S-Sx)\}$$

$$= 1 + 2x + 2x^2 + 2x^3 + ... + to \infty$$

$$\Rightarrow (1-x)^2 S = 1 + \frac{2x}{1-x}; \text{ Since } |x| \le 1$$

$$\Rightarrow \qquad S = \frac{1+x}{(1-x)^3}$$

We may use it as direct formula for solving this type of problem.

Substituting
$$x = \frac{1}{7}$$
 we get

$$S = \frac{1 + \frac{1}{7}}{\left(1 - \frac{1}{7}\right)^3} = \frac{8 \times 243}{7 \times 216} = \frac{49}{27}.$$

11. (b) Let
$$S = 1 + 2 \times 2 + 3 \times 2^2 + 4 \times 2^3 + ... + 100 \times 2^{99}$$

$$\therefore 2S = 1 \times 2 + 2 \times 2^2 + 3 \times 2^3 + ... + 99 \times 2^{99}$$

$$+ 100 \times 2^{100}$$

Subtracting, we get

$$-S = 1 + 1 \times 2 + 1 \times 2^{2} + 1 \times 2^{3} + \dots + 1 \times 2^{99}$$
$$-100 \times 2^{100}$$
$$= \frac{1(2^{100} - 1)}{2 - 1} - 100 \times 2^{100}$$
$$= 2^{100} - 1 - 100 \times 2^{100}$$

$$S = 100 \times 2^{100} - 2^{100} + 1 = 99 \times 2^{100} + 1$$

12. (a) Given expression

$$= \left[\frac{15 \times 16}{2}\right]^2 - \frac{15 \times 16}{2} = (120)^2 - 120$$
$$= 120 \times 119 = 14280.$$

13. (a)
$$(a+b)^2$$
, (a^2+b^2) , $(a-b)^2$, ...

This is a series in A.P. with common difference (-2ab).

Given,
$$n = 20$$

$$S(a, b) = \frac{20}{2} [2(a+b)^2 + (20-1)(-2ab)]$$

$$= 10 [2a^2 + 2b^2 + 4ab - 38ab]$$

$$= 20 [a^2 + b^2 - 17ab]$$

$$S(7,3) = 20 [49 + 9 - 357]$$
$$= 20 \times (-299) = -5980.$$

14. (b) To find the sum of the series:

$$10+10+15+15+(20+20)+...+(150+150)+155$$

$$= 2(10+15+...+150)+155$$

$$= 2\left[\frac{29}{2}(2\times10+(29-1)\times5)\right]+155$$

$$= 29(20+140)+155$$

$$= 29\times160+155$$

$$= 4640+155=4795.$$

15. (c) Max. sum = S
=
$$50 + 48 + 46 + ... + 6 + 4 + 2$$

= $\frac{25}{2} [2 \times 50 + (25 - 1) (-2)]$
= $\frac{25}{2} [100 - 48] = 25 \times 26 = 650$.

16. (c) The roots of the given equation are -2, -1, -2/3. These roots are neither in A.P. nor in G.P. These roots are in H.P. because $-\frac{1}{2}$, -1, $-\frac{3}{2}$ are in A.P. with common difference $-\frac{1}{2}$.

$$\therefore$$
 -2,-1, $-\frac{2}{3}$ are in H.P.

17. (c) Let x be the original number of apples, then first customer bought $\frac{x}{2} + \frac{1}{2} = \frac{x+1}{2}$, the 2nd customer bought $\frac{1}{2}\left(x - \frac{x+1}{2}\right) + \frac{1}{2} = \frac{x+1}{2^2}$, the third customer bought $t \cdot \frac{1}{2}\left(x - \frac{x+1}{2} - \frac{x+1}{4}\right) + \frac{1}{2} = \frac{x+1}{2^3}$ and the 7th customer bought $\frac{x+1}{2^7}$, we thus have the following equation: $\frac{x+1}{2} + \frac{x+1}{2^2} + \frac{x+1}{2^3} + \dots + \frac{x+1}{2^2} = x$ or, (x+1)

$$\left(\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^7}\right) = x$$

Computing the sum of the terms of the G.P. in the parentheses, we get

$$\frac{x}{x+1} = 1 - \frac{1}{2^7} \implies x = 2^7 - 1 = 127.$$

18. (b) The given product = $2^{\frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \frac{4}{32} + \dots}$

Let,
$$S = \frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \frac{4}{32} + \dots$$
 (1)

$$\therefore \frac{1}{2}S = \frac{1}{8} + \frac{2}{16} + \frac{3}{32} + \dots$$
 (2)

$$(1) - (2) \frac{1}{2}S = \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots = \frac{\frac{1}{4}}{1 - \frac{1}{2}} = \frac{1}{2}$$

 \therefore The given product = $2^1 = 2$.

19. (a)
$$S_n = \text{Sum of } n \text{ terms of an A.P.}$$
$$= \frac{n}{2} [2a + (n-1)d]$$

where a = first term, d = common difference

$$\therefore \frac{3+5+7+...+n \text{ terms}}{5+8+11+...+10 \text{ terms}} = 7$$

$$\Rightarrow \frac{\frac{n}{2}[2 \times 3 + (n-1) \times 2]}{\frac{10}{2}[2 \times 5 + (10-1) \times 3]} = 7$$

$$\Rightarrow \frac{n(2n+4)}{370} = 7$$

$$\Rightarrow \qquad 2n^2 + 4n - 2590 = 0$$

$$\Rightarrow \qquad n^2 + 2n - 1295 = 0$$

$$\Rightarrow n^2 + 37n - 35n - 1295 = 0$$

$$\Rightarrow$$
 $n(n+37)-35(n+37)=0$

$$\Rightarrow \qquad (n-35)(n+37)=0$$

$$\Rightarrow \qquad (n-33)(n+37)=0$$

$$\Rightarrow \qquad n=35.$$

20. (c) Sum of the first *n* natural numbers =
$$\frac{n(n+1)}{2}$$

Sum of the squares of the first *n* natural numbers

$$=\frac{n(n+1)(2n+1)}{6}$$

$$\therefore \frac{n(n+1)}{2} = \frac{1}{5} \left(\frac{n(n+1)(2n+1)}{6} \right)$$

$$\Rightarrow \qquad 2n+1=15 \Rightarrow n=7.$$

21. (a) x can take the values 1, 2, ... 98.

For x = 1, y can take the values 1, 2, ..., 98

For x = 2, y can take the values 1, 2, ..., 97

For x = 98, v can take the value 1

Since z is dependent on x and y, therefore the required number of solutions

$$= 98 + 97 + 96 + \dots + 1$$
$$= \frac{98(98+1)}{2} = 4851.$$

22. (a) x, y, z are in G.P.

$$x + y$$
, $y + z$, $z + x$ are in A.P. (1)

$$\therefore$$
 Common ratio of the G.P. = $\frac{y}{x} = \frac{z}{y} = r$, say

Also (1)

$$\Rightarrow y+z = \frac{(x+y)+(z+x)}{2} \Rightarrow 2x = y+z$$

$$\therefore r = \frac{y}{x} = \frac{y}{(y+z)/2} = \frac{2y}{y+z} = \frac{2}{1+\frac{z}{-}}$$

$$\Rightarrow$$
 $r = \frac{2}{1+r}$

$$\Rightarrow$$
 $r^2 + r - 2 = 0$

$$\Rightarrow$$
 $(r-1)(r+2)=0$

$$r = -2$$
 $[r = 1 \Rightarrow x = y = z].$

23. (c) Let the digits of a three-digit number be x, y and z and the number be 100z + 10y + x, where x, y, z are in G.P.

$$\therefore \qquad \qquad y^2 = xz$$

 \Rightarrow xz must be a square number

i.e.,
$$xz = 9$$
, i.e., $x = 1$, $z = 9$

$$\therefore$$
 $y = 3$, so that x , y , z are in A.P.

.. The number is 931.

 \Rightarrow The other number will be 531 so that 1, 3 and 5 are in A.P. Their sum = 931 + 531 = 1462.

$$T_n = a + (n-1) d$$

Here,
$$a = 4, d = 8,$$

$$T_{,,} = 996$$

$$\therefore$$
 996 = 4 + $(n-1) \times 8$

$$\Rightarrow$$
 $8n-8+4=996 \Rightarrow n=125$

$$S_{125} = \frac{125}{2} [2 \times 4 + (125 - 1) \times 8]$$
$$= \frac{125}{2} [8 \times 125] = 62500.$$

25. (b) x, y, z are in G.P.
$$\Rightarrow$$
 y = \sqrt{xz}

a, b, c are in A.P.
$$\Rightarrow$$
 b = $\frac{a+c}{2}$

$$\therefore \quad \text{The expression} = x^{\frac{a+c}{2}-c} (xz).z^{\frac{c-a}{2}a-\frac{a+c}{2}}$$

$$= x^{\frac{a+c}{2}} - c + \frac{c-a}{2} \cdot z^{\frac{c-a}{2}} + a - \frac{a+c}{2}$$
$$= x^{0}z^{0} = 1.$$

 $= x^{x} z^{3} = 1.$ 26. (c) $\log 2, \log (2^{x} - 1), \log (2^{x} + 3)$ are in A.P. $\Rightarrow 2 [\log (2^{x} - 1)] = \log 2 + \log (2^{x} + 3)$ $= \log [2 \times (2^{x} + 3)]$ $\Rightarrow \log (2^{x} - 1)^{2} = \log [2^{x+1} + 6)]$ $\Rightarrow (2^{x} - 1)^{2} = 2^{x+1} + 6 = 2^{x} \times 2 + 6$ Let, $2^{x} = y$ $\therefore (y - 1)^{2} = 2y + 6$ $\Rightarrow y^{2} - 2y + 1 = 2y + 6$ $\Rightarrow y^{2} - 4y - 5 = 0$ $\Rightarrow (y - 5) (y + 1) = 0$ $\Rightarrow y = 5, -1.$ If $y = 5 \Rightarrow 2^{x} = 5$ $\Rightarrow x \log 2 = \log 5$

27. (b)
$$t_n = \frac{n}{n+2}$$

$$t_3 = \frac{3}{3+2} = \frac{5}{3}, t_4 = \frac{4}{6}, t_5 \frac{5}{7}, \dots t_{53} = \frac{53}{55}$$

$$t_3 \times t_4 \times t_5 \times \dots \times t_{53} = \frac{3}{5} \times \frac{4}{6} \times \frac{5}{7} \times \dots \times \frac{53}{55}$$

$$= \frac{2}{495}.$$

 $x = \frac{\log 5}{\log 2} \Rightarrow x = \log_2^5$.

28. (*c*) The first day, I sell 1 book, on the second day, I sell 2 books and so on. This is an A.P. and for one month (i.e., 30 days), the number of books sold is same as the sum of first *n* natural numbers

$$=\frac{n(n+1)}{2}=\frac{30\times31}{2}=465$$

The numbers of books in the beginning is 465.

29. (b) The sum of money that the contractor was supposed to pay for the period of one month over the stipulated time is

$$S_{30} = \frac{30}{2}$$
 [2 × 50000 + (30 – 1) 4000]

$$\left[\because S_n = \frac{n}{2} \left[2a + (n-1)d \right] \right],$$

where, a = 50,000, n = 30, d = 4000

$$S_{30} = 10[100000 + 29 \times 4,000]$$

∴
$$S_{30} = ₹3240000 = ₹32.4 \text{ lakhs}$$

Loss in the business = 10%

:. Amount he received for making the flyover

$$=\frac{3240000}{0.1}$$
 = ₹3,24,00,000 = ₹3.24 crores.

For answers to Questions 30 to 34:

Let the first term of the progression be a.

Also, the common ratio be r and common difference be d.

Thus,
$$ar - a = (a + 4d) - a$$

or,
$$a(r-1) = 4d \tag{1}$$

Also,
$$a(r^2 - 1) = 24d$$
 (2)

Dividing (2) by (1) we get: r + 1 = 6

Thus, r = 5.

Putting in (1), $4a = 4d \ a = d$.

Also,
$$a + 4d = 5$$
, we get $a = 1$, $d = 1$

Thus, we have the following answers.

- 30. (b)
- 31. (a)
- 32. (c)
- 33. (b)
- 34. (d)
- 35. (d) Distance travelled by the ball ground till it rises 20 m and then comes back to the ground = 40 m

Next it rises 10 m

.. Distance from ground to top to ground = 20 m, this continues

So, the series = 40 + 20 + 10 + ...

$$40 \div \left(1 - \frac{1}{2}\right) = 80 \text{ m}$$

But the ball was first thrown from a height of 10 m.

- :. Total distance = 80 + 10 = 90 m.
- 36. (b) Given the arithmetic progressions

$$A_1 \rightarrow 3, 9, 15, 21 \dots$$
 and $A_2 \rightarrow 5, 13, 21, 29$

We can see that the first term common between the two series is 21. Since the common difference of A_1 and A_2 are 6 and 8 respectively, any two consecutive terms common between A_1 and A_2 differ by L.C.M. (6, 8) i.e., 24. So, the series of common terms also form an arithmetic progression. The series is 21, 45, 69, . . . say let us call it series A_3 .

Given that

$$(t_n \text{ of } A_1) + (t_n \text{ of } A_2) = 6,000$$

 $\Rightarrow (3 + (n-1) 6) + (5 + (n-1) 8) = 6,000$

$$\Rightarrow 14n - 6 = 6,000$$

$$\Rightarrow n = \frac{6000}{14} = 429$$

$$t_{429} \text{ of } A_1 = (3 + (429 - 1) 6 = 2,571)$$

$$t_{429} \text{ of } A_2 = 5 + (429 - 1) 8 = 3,427$$

So, all the terms common to A_1 and A_2 will be less than 2571

 \therefore The number of terms common to A_1 and A_2 is same as the number of terms in A_3 less than or equal to 2571

i.e.,
$$\left[\frac{2571 - 21}{24}\right] + 1 = \left[\frac{2550}{24}\right] + 1 = 107.$$

37. (c) Radius of the largest circle = $\frac{1}{\sqrt{\pi}}$

⇒ Area of largest circle = 1 square unit

Now, each subsequent circle's radius is half the radius of previous circle. Therefore, areas would be circle fourth.

.. Sum of areas of all the circles is S, where

$$S = 1 + \frac{1}{4} + \frac{1}{16}$$
 ...infinite terms

$$S = \frac{4}{3} \text{ square units.}$$

38. (c)
$$1-y+y^2-y^3+y^4 \dots \infty (|y| < 1)$$

$$\Rightarrow \qquad x = \frac{1}{1+y}$$

$$\Rightarrow \qquad y = \frac{1}{x}-1 \qquad (1)$$
and,
$$z = 1+y+y^2+y^3+\dots \infty (|y| < 1)$$

$$\Rightarrow \qquad z = \frac{1}{1-y}$$

$$\Rightarrow \qquad y = 1-\frac{1}{-} \qquad (2)$$

From (1) and (2)

 $\frac{1}{x} + \frac{1}{2} = \frac{2}{1}$

 $\Rightarrow x$, 1, z are in H.P.

or, 1 is the H.M. of x and z.

39. (a) Three numbers = $\frac{a}{a}$, a, ar

Double of second number = 2a

Hence, $\frac{a}{r}$, 2a and ar are in A.P.

$$\sigma \Rightarrow 4a = \frac{a}{r} + ar \Rightarrow 4 = \frac{1}{r} + r$$

$$r = 2 \pm \sqrt{3}$$

Since the G.P. is increasing, $r = 2 + \sqrt{3}$

$$\Rightarrow \frac{1}{r} = 2 - \sqrt{3}$$

Hence, ratio of the first number and third number = $1:r^2 = 1:7 - 4\sqrt{3}$.

40. (b) Given that the speeds $a, b, c \dots z$ are in A.P

.. Let a, b, c ... be $a, a + \Delta, a + 2\Delta, ... a + 25\Delta$. Given time taken by Z to meet A, for the first time is 20 sec, i.e.,

$$\frac{100}{25\Delta + a - a} = 20 \Rightarrow \Delta = 0.2 \text{ minutes/second}$$

Time taken by M to complete the race at a speed of $a + 12\Delta$, is = 52 minutes and 5 second

$$\Rightarrow \frac{100 \times 100}{a + 12\Delta} = 3125$$

$$\Rightarrow 10,000 = (a + 2.4) (3125)$$

$$\Rightarrow a = 0.8 \text{ minutes/second}$$

:. Time taken by all of them to meet for first time at the starting point is

$$LCM\left(\frac{100}{a}, \frac{100}{b}, \frac{100}{c}, \dots, \frac{100}{z}\right)$$

$$= LCM\left(\frac{100}{0.8}, \frac{100}{1.0}, \frac{100}{1.2}, \dots, \frac{100}{0.8 + 25(0.2)}\right)$$

$$= \frac{LCM(100, 100, \dots 100)}{HCF(0.8, 1.0, 1.2, \dots, 5.8)} = \frac{100}{0.2} = 500 \text{ seconds.}$$

41. (c) Let the first term and the common ratio of the arithmetic progression be a and d respectively.

Given,
$$\frac{a+(p-1)d}{a+(p+2)d} = \frac{p}{p+3}$$

$$\Rightarrow pa+3a+d(p-1)(p+3) = pa+dp(p+2)$$

$$\Rightarrow 3a = 3d \Rightarrow a = d$$

Also given,
$$\frac{\left(\frac{3p}{2}\right)[2d + (3p - 1)d]}{\left(\frac{4p}{2}\right)[2d + (4p - 1)d]} = \frac{61}{108}$$

$$\Rightarrow \frac{3}{4} \left(\frac{3p+1}{4p+1} \right) = \frac{61}{108} \Rightarrow p = 20.$$

42. (a) Go through options

Let 1, 2, 3, 4, 5, ... be an A.P. then

$$\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + \frac{1}{\sqrt{a_3} + \sqrt{a_4}} + \frac{1}{\sqrt{a_4} + \sqrt{a_5}}$$

$$= \frac{1}{\sqrt{1} + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{4}} + \frac{1}{\sqrt{4} + \sqrt{5}}$$

$$= -\left(\sqrt{1} - \sqrt{2}\right) - \left(\sqrt{2} - \sqrt{3}\right) - \left(\sqrt{3} - \sqrt{4}\right) - \left(\sqrt{4} - \sqrt{5}\right)$$

$$= \sqrt{5} - \sqrt{1} = \sqrt{5} - \sqrt{1} \times \frac{\sqrt{5} + \sqrt{1}}{\sqrt{5} + \sqrt{1}}$$

$$= \frac{5 - 1}{\sqrt{5} + \sqrt{1}} = \frac{4}{\sqrt{5} + \sqrt{1}} = \frac{n - 1}{\sqrt{a_1} + \sqrt{a_n}}.$$

The weight of each stone (in kg) is 1, 3, 9, 27, 81

1 kg = 1 kg
2 kg =
$$3 - 1 = 2$$
 kg
3 kg = 3 kg
4 kg = $(3 + 1) = 4$ kg
5 kg = $9 - (3 + 1) = 5$ kg
6 kg = $(9 - 3) = 6$ kg
7 kg = $(9 + 1) - 3 = 7$ kg
8 kg = $(9 - 1) = 8$ kg
9 kg = 9 kg
10 kg = $(9 + 1) = 10$ kg and so on

Remember he is allowed to put the stones on either side of the balance.

- 44. (a) There are 2^{n-j} students who answer wrongly. by 5 nor by 2. For j = 1, 2, 3, ..., n, the number of students will be a GP with base 2. Hence, $1 + 2 + 2^2 + ... + 2^{n-1} = 4,095$. Using the formula, we get $2^n = 4095 + 1$ $\Rightarrow n = 12$.
- **45.** (c) The digits which create confusion are 0, 1, 6, 8, 9.

The total number of two-digit codes having distinct digits and first digit non-zero.

1st place	2nd place
9 options	9 options
(1 to 9)	(one digit is already used
20 00	out of 1 to 9 and 0 is
	included)

 $= 9 \times 9 = 81$ such codes

Total number of two digit codes which can create confusion

1st digit	2nd digit
4 options	4 options
(1, 6, 8 or 9)	(one digit is already used out of 1, 6, 8 and 9 and 0 is also included)
$= 4 \times 4 = 16$	

But these 16 two-digit codes include 69 and 96, which create no confusion. Apart from these, 10, 60, 80 and 90 are such two digit codes as create no confusion because these codes are no expected. Hence total number of two-digit codes which create no confusion

$$= 81 - 16 + 6 = 71.$$

46. (c) By the given condition in the problem,

Area and perimeter of $S_1 = a^2$, 4a

Area and perimeter of
$$S_2 = \frac{a^2}{2}, \frac{4a}{\sqrt{2}}$$

Area and perimeter of
$$S_3 = \frac{a^2}{4}, \frac{4a}{(\sqrt{2})^2}$$

Area and perimeter of
$$S_4 = \frac{a^2}{8}, \frac{4a}{(\sqrt{2})^3}$$

Then, required ratio

$$= \frac{4a + \frac{4a}{\sqrt{2}} + \frac{4a}{(\sqrt{2})^2} + \frac{4a}{(\sqrt{2})^3} + \dots}{a^2 + \frac{a^2}{2} + \frac{a^2}{4} + \frac{a^2}{8} + \dots}$$

$$= \frac{4a\left[1 + \frac{1}{\sqrt{2}} + \frac{1}{(\sqrt{2})^2} + \frac{1}{(\sqrt{2})^3} \dots\right]}{a^2\left[1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} \dots\right]}$$

$$= \frac{4a \left| \frac{1}{1 - \frac{1}{\sqrt{2}}} \right|}{a^2 \left| \frac{1}{1 - \frac{1}{2}} \right|} = \frac{4a \left| \frac{\sqrt{2}}{\sqrt{2} - 1} \right|}{a^2 \times 2}$$

$$\Rightarrow \frac{4a\left|\frac{\sqrt{2}}{\sqrt{2}-1}\right|}{a^2 \times 2} = \frac{2\sqrt{2}(\sqrt{2}+1)}{a} = \frac{2(2+\sqrt{2})}{a}.$$

- **47.** (d) The last instance of *n*th letter is $\frac{n(n+1)\text{th}}{2}$ letter of series is $S_{23} = 276$ th and $S_{24} = 300$ th. All terms from 276 to 300 are 24th letters of the alphabet i.e., *x*.
- **48.** (c) Let 'd' be the first term and 'r' be the common difference

$$a + ar = 12 \tag{1}$$

$$ar^2 + ar^3 = 48 (2)$$

On dividing Eq. (2) by Eq. (1), we get

$$=\frac{ar^2(1+r)}{a(1+r)}$$

$$=\frac{48}{12} \Rightarrow r^2 = 4 \Rightarrow r = \pm 2$$

and since terms arealternately positive and negative common ratio is '-2'

$$\therefore$$
 First term is $a - 2a = 12$

$$\Rightarrow$$
 $a = -12$.

- **49.** (b) $385 \times 4 = 1540$.
- **50.** (a) Let the initial number of boys and girls in the group = B and G, respectively.

After 15 girls leave, there are two boys for each girl.

$$B = 2 (G - 15) \tag{1}$$

Then, 45 boys leave after which there are 5 girls for each boy.

$$5(B-45)=(G-15)$$

$$5B - 225 = G - 15$$

From Eq. (1),

$$B = 2G - 30$$

$$5(2G-30)-225=G-15$$

$$\Rightarrow$$
 9G = 225 - 15 + 150

$$G = \frac{360}{9} = 40.$$

51. (a)
$$\frac{\frac{(2n_1 - 4) \times 90^{\circ}}{n_1}}{\frac{(2 \times 2n_1 - 4) \times 90^{\circ}}{2n_1}} = \frac{2}{3} \quad [\because n_2 = 2n_1]$$

$$\therefore n_1 = 4 \text{ and } n_2 = 8.$$

52. (d) The inverse of the sum of the series

$$\frac{3}{4} + \frac{3}{36} + \frac{7}{144} + \dots \text{ is } \frac{(n+1)^2}{n^2 + 2n}.$$

53. (b) $a, H_1, H_2 \dots H_n, b$ are in H.P.

$$\therefore H_1 = \frac{(n+1)ab}{a+nb}$$

and,
$$H_n = \frac{(n+1)ab}{an+b}$$

$$\therefore H_1 + a = \frac{(n+1)ab}{a+nb} + a$$

$$= \frac{nab + ab + a^2 + nab}{a + nb}$$

and,
$$H_1 - a = \frac{n ab + ab - a^2 - nab}{a + nb}$$

$$\therefore \qquad \frac{H_1 + a}{H_1 - a} = \frac{2 nb + ab + a^2}{ab - a^2}$$

$$=\frac{2\,nb+b+a}{b-a}$$

Similarly,
$$\frac{H_n + b}{H_n - b} = \frac{2na + a + b}{a - b}$$

$$\therefore \frac{H_1+a}{H_1-a}+\frac{H_n+b}{H_n-b}=\frac{2nb-2na}{b-a}$$

$$=2n.$$

54. (d) a, b, c are in A.P.

$$2b = a + c$$

but it is given that

$$b+a+c=\frac{3}{2}$$

$$\Rightarrow 2b+b=\frac{3}{2}$$

$$\Rightarrow b=\frac{1}{2}$$

$$\therefore a+c=1$$
 (1)

Now,
$$a^2$$
, b^2 , c^2 are in G.P.

$$b^4 = a^2 c^2$$

$$\Rightarrow b^2 = -a c \qquad (: a < b < c)$$

$$\Rightarrow \frac{1}{4} = -ac$$

$$\Rightarrow c = -\frac{1}{4a} \tag{2}$$

From Eqs. (1) and (2),

$$1 - a = -\frac{1}{4a}$$

$$4a - 4a^{2} = -1$$

$$4a^{2} - 4a - 1 = 0$$

$$a = \frac{+4 \pm \sqrt{16 + 16}}{2 \times 4}$$

$$\Rightarrow \qquad a = \frac{+4 \pm \sqrt{32}}{2 \times 4}$$

$$\Rightarrow \qquad a = \frac{4}{8} - \frac{4\sqrt{2}}{8}$$

$$\Rightarrow \qquad a = \frac{1}{2} - \frac{1}{\sqrt{2}}.$$

55. (a)
$$1^2 - 2^2 + 3^2 - 4^2 + \dots 2001^2 - 2002^2 + 2003^2$$

= $(1^2 + 3^2 + \dots 2001^2 + 2003^2) - (2^2 + 4^2 + 6^2 + \dots 2002^2)$
= $(1^2 + 3^2 + \dots 2003^2) - 2^2 [1^2 + 2^2 + 3^2 + \dots 1001^2]$
= $(1^2 + 3^2 + \dots 2003^2) - 4 \left[\frac{1001 \times (1001 + 1)(2002 + 1)}{6} \right]$
= $(1^2 + 3^2 + \dots 2003^2) - 4 \times \left[\frac{1001 \times 1002 \times 2003}{6} \right]$

We know that

$$= [1^{2} + 3^{2} + 5^{2} \dots 2003^{2}]$$

$$= [1^{2} + 2^{2} + 3^{2} + \dots 2003^{2}] - [2^{2} + 4^{2} + 6^{2} \dots 2002^{2}]$$

$$= \frac{2003 \times 2004 \times 2007}{6} - \frac{4 \times 1001 \times 1002 \times 2003}{6}$$

$$\therefore = \frac{2003 \times 2004 \times 4007}{6} - \frac{4 \times 1001 \times 1002 \times 2003}{6}$$
$$4 \times 1001 \times 1002 \times 2003$$

$$= \frac{2003 \times 2004 \times 4007}{6} - \frac{4 \times 2 \times 1001 \times 1002 \times 2003}{6}$$

$$= \frac{2004}{6} [2003 \times 4007 - 4 \times 1001 \times 2003]$$

$$= 334 [8026021 - 8020012]$$

$$= 334 \times 6009$$

$$= 2007006.$$

56. (c) As per question, let first term = a and common difference = d

$$2400 = \frac{30}{2} [2a + (30 - 1) d] \tag{1}$$

$$3600 = \frac{40}{2} [2a + (40 - 1) d] \tag{2}$$

To solve Eqs. (1) and (2)

$$a = 51$$
 and $d = 2$

Hence, the value of 8th instalment

$$= ₹[51 + (7) × 2]$$

= ₹65.

57. (d) Let Rashid's savings will last till 'n' months

$$\therefore \frac{n}{2} [2 \times 2000 + (n-1) 500] = 60000$$

[: Expenditure every month increases by 500 rupees]

$$\Rightarrow n^2 + 7n - 240 = 0$$

$$\Rightarrow n = 12.38$$

.. Rashid after 13 months will start borrowing money from his friends.

58. (c) From the given information, sum of the first (x-1) natural numbers

= sum of the natural numbers from (x + 1) to 49

So,
$$\frac{(x-1)(x)}{2} = \frac{49 \times 50}{2} - \frac{(x)(x+1)}{2}$$
$$2x^2 = 49 \times 50 \Rightarrow x = 35.$$

Now, this is a GP with common ratio = 2.

On equating this with 1022, we get n = 9.

60. (*d*) The integers are 4, 4, 4, 8, 10, 20 and *x*

Consider (A) x < 4

$$Mean = \frac{50 + x}{?}, Median 4, Mode = 4$$

If these are in AP, mean 4.

So,
$$\frac{50+x}{7} = 4 \Rightarrow x = -22$$

Consider (B) $4 \le x \le 8$

$$\frac{50+x}{7}$$
 i.e., $\frac{54}{7} < \text{Mean} < \frac{58}{7}$

Mean = x. Mode = 4

as these are in AP, x = 6, Mean = 8

Consider (C) 8 < x

Mean =
$$\frac{50 + x}{7} > \frac{58}{7}$$

Median = 8, Mode = 4

As these are in AP, Mean = 12 i.e., x = 34

So, x can be
$$-22$$
, 6 or 34

The sum of these is 18, which is not there among the option. In exam, we would have to make a decision. the negative value of -22 seems to have been ignored.

In this case, the mean, median and mode are all equal to 4. As 18 is not there among the options, we have to select 40 (6 + 34).

61. (c) Weight of a solid spherical ball is proportional to the cube of its radius. The radius and weights of the 10 bails on the day 10 are tabulated below.

Ball put on day	Radius (mm)	Weight (gm)
1	29	89
2	2 ⁸	88
3	27	87
#	:	*
9	21	8
10	2 ⁰	1

The total weight of the 10 balls on day 10 is

$$1 + 8 + 8^2 + 8^9 = \frac{8^{10} - 1}{7} = \frac{2^{30} - 1}{3}$$

The weight of the 10 balls before they were put in the pot = 10 g

.. The weight of the gold 'made' by the saint (g).

$$\frac{2^{30}}{7} - 10 = \frac{2^{30} - 71}{7}.$$

62. (b) As x, y and z are in harmonic progression, $\frac{1}{x}$, $\frac{1}{y}$ and $\frac{1}{z}$ are in arithmetic progession.

$$\therefore \frac{1}{z} - \frac{1}{y} = \frac{1}{y} - \frac{1}{x}$$

$$y - z \qquad x - y$$

$$\Rightarrow \frac{y-z}{yz} = \frac{x-y}{xy}.$$

Multiplying both the sides by xyz, we get

$$x(y-z) = z(x-y)$$
$$x = \frac{z(x-y)}{y-z}.$$

It implies II is true.

And.

$$\frac{1}{z} - \frac{1}{y} = \frac{1}{y} - \frac{1}{x}$$

$$\Rightarrow \frac{2}{y} = \frac{1}{z} + \frac{1}{x}$$

$$\Rightarrow \frac{2}{y} = \frac{z+x}{xz}$$

$$\Rightarrow x = \frac{y(x+z)}{2z}$$

It implies I is true.

63. (c) A_1 has 1 element, A_2 has 2 elements, A_3 has 3 elements,..., A_{40} has 49 elements.

Number of elements in A_1 , A_2 , A_3 ,... A_{49} are all combined.

Therefore,

$$1 + 2 + 3 + \dots + 49 = \frac{49 \times 50}{2}$$
$$= 49 \times 25 = 1225.$$

Thus,
$$A_{so} = (1226, 1227, ..., 1275)$$
.

Thus, sum of elements in A_{50} ,

$$\frac{50}{2}(1226+1275) = 25 \times 2501$$
$$= 62525.$$

64. (*a*) Let the value of certificates purchased in the first year be ₹*a*.

The difference between the values of the certificates is 300 (d = 300).

As it follows arithmetic progression, the total value of certificates after 20 years is given by

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$\Rightarrow 83000 = \frac{20}{2} [2a + (20-1)300]$$

$$\Rightarrow 83000 = 10(2a + 5700)$$

$$\Rightarrow 2a + 5700 = 8300.$$

On simplifying, we get

The value of the certificates purchased by him in the 13th year is

$$a+(n-1)d$$

= 1300+(13-1)×300
= ₹4900.

65. (c) If we consider the third term to be x

The 15th term will be (x + 12d)

6th term will be(x + 3d)

11th term will be (x + 8d) and 13th term will be (x + 10d)

We are given

$$2x + 12d = 3x + 21d$$
or $x + 9d = 0$

x + 9d will be the 12th term.

66. (b) The sum of the squares of the first n odd natural numbers = Sum of the squares of the (2n-1) natural numbers – Sum of the squares of the first (n-1) even natural numbers

$$\therefore S_n = \frac{(2n-1)(2c)(4n-1)}{6} - 4\left[\frac{(n-1)n(2n-1)}{6}\right]$$

$$= \frac{n(2n-1)(2n+1)}{3}$$
As $S_n = 533n$,
$$\frac{n(2n-1)(2n+1)}{3} = 533n$$

$$\Rightarrow 4n^2 = 1600$$

$$\Rightarrow n = 20$$
.

67. (b) [29(2)] We have

$$T_n = \frac{n+3}{n}$$
.

Therefore, $T_4T_5T_6...T_{58}T_{59}T_{60}$

So.

$$\left(\frac{7}{4}\right)\left(\frac{8}{5}\right)\left(\frac{9}{6}\right)\left(\frac{10}{7}\right)\cdots\left(\frac{61}{58}\right)\left(\frac{62}{59}\right)\left(\frac{63}{60}\right)$$
$$=\frac{61.62.63}{4.5.6}=1985.55.$$

68. (b)

As
$$(a^2 + b^2)$$
, $(b^2 + c^2)$ and $(a^2 + c^2)$ are in G.P.,
 $(b^2 + c^2)^2 = (a^2 + b^2)(a^2 + c^2)$
 $\Rightarrow b^4 + c^4 + 2b^2c^2 = a^4 + a^2b^2 + a^2c^2 + b^2c^2$
 $\Rightarrow b^4 + c^4 + b^2c^2 = a^4 + a^2b^2 + a^2c^2$
 $\Rightarrow b^2(b^2 + c^2) + c^4 = a^2(b^2 + c^2) + a^4$
 $\Rightarrow (b^2 - a^2)(b^2 + c^2) = a^4 - c^4$
 $\therefore b^2 - a^2 = \frac{a^4 - c^4}{b^2 + c^2}$.

69. (d) As 2a, b and 2c are in A.P.,

$$2b = 2a + 2c$$

$$\Rightarrow b = a + c$$

$$x = \frac{-b \pm \sqrt{(a+c)^2 - 4ac}}{2a}$$

$$= \frac{-b \pm (a-c)}{2a}$$

$$= \frac{-(a+c)\pm (a-c)}{2a} = -\frac{c}{a} \text{ or, } -1.$$

70. (*d*) Let the A.P. be a, a + d, a + 2d,......

And the G.P. be b, br, br^2 , br^3 ,....

Given: sum of 10 terms of A.P. = 155

So,

$$\frac{n}{2}[2a+(n-1)d] = 155$$

$$\Rightarrow \frac{10}{2}(2a+9d) = 155$$

$$\Rightarrow 2a+9d = 31$$
Also, given that $b+br = 9$

Since b = d and r = a

So,
$$d + ad = 9$$
 (2)

Solving (1) and (2), we get

$$a = 2$$
, $\frac{25}{2}$ and $d = 3$, $\frac{2}{3}$

So, the AP can be 2, 5, 8, 11,...

Or,
$$\frac{25}{2}$$
, $\frac{79}{6}$, $\frac{83}{6}$,......

71. (*d*) Let us consider an AP of 6 terms, say, 1, 2, 3, 4, 5 and 6.

Then,
$$3n = 6$$
, $2n = 4$, $n = 2$

Now
$$S_3 - S_2 - S_1$$

= $(1 + 2 + 3 + 4 + 5 + 6) - (1 + 2 + 3 + 4) - (1 + 2)$
= $21 - 10 - 3 = 8$

In the above AP, n = 2, d = 1, a = 1

From the options, we get

$$2 n^2 d = 2 \times 2^2 \times d = 8$$

that is equal to $S_2 - S_2 - S_1$,

Therefore, (d) is the correct answer.

72. (c) Given expression

$$= \frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots + \frac{1}{19.21}$$

$$= \frac{1}{2} \left(1 - \frac{1}{3} \right) + \frac{1}{2} \left(\frac{1}{3} - \frac{1}{5} \right) + \frac{1}{2} \left(\frac{1}{5} - \frac{1}{7} \right)$$

$$+ \dots + \frac{1}{2} \left(\frac{1}{19} - \frac{1}{21} \right)$$

$$= \frac{1}{2} \left(1 - \frac{1}{21} \right) = \frac{1}{2} \times \frac{20}{21} = \frac{20}{42} = \frac{10}{21}.$$

73. (a)
$$U_{n+1} = 2U_n + 1(n = 0, 1, 2,....)$$

Put $n = 0, U_1 = 1$
 $n = 1, U_2 = 3$
 $n = 2, U_3 = 7$
 $n = 3, U_4 = 15$
 $n = 4, U_5 = 31$
Seeing the pattern it is clear that $U_n = 2^n - 1$

Hence, $U_{10} = (2)^{10} - 1 = 1023$.

74. (c) If the girl counts the way as given in the question, then counting serial for the thumb will be 1, 8, 17, 25, Hence, number 1992 will also fall on thumb. Hence,

number 1994 will end on her middle finger.

75. (c)
$$1600 + 669 = 2269 =$$
Not a perfect square

$$1500 + 669 = 2169 =$$
Not a perfect square

$$1540 + 669 = 2209 =$$
Square of 47

$$1690 + 669 = 2359 = Not a perfect square$$

Thus, by adding 669 to each of the alternatives, we note that 1540 + 669 = 2209, and this is the only square number.

So each side of the square contains $\sqrt{2209} = 47$ balls. \therefore Each side of the triangle will contain 55 balls

Thus the triangle will contain

$$1+2+3+\dots+55 = \frac{55(55+1)}{2} = 1540$$
 balls.

76. (a) Since

$$x$$
, 17, $3x - y^2 - 2$ and $3x + y^2 - 30$ are in A.P.

$$\therefore 17 - x = 3x + y^2 - 30 - 3x + y^2 + 2$$

$$\Rightarrow x + 2y^2 = 45$$
(1)

Also,
$$17 - x = 3x - y^2 - 2 - 17$$

 $\Rightarrow 4x - y^2 = 36$ (2)

Solving equations (1) and (2), we get x = 13

Now,
$$x+17+3x-y^2-2+3x+y^2-30$$

= $7x-15=7(13)-15=76$

Out of the given options, 76 is only divisible by 2.