24. Trigonometric Ratios of Complementary Angle

Let us Work Out 24

1 A. Question

Let us evaluate:

$$\frac{\sin 38^{\circ}}{\cos 52^{\circ}}$$

Answer

Given,
$$\frac{\sin 38^{\circ}}{\cos 52^{\circ}}$$

Need to evaluate the given equation

$$\Rightarrow$$
 we know that $\cos(90 - \theta) = \sin\theta$

$$\therefore \cos 52^\circ = \cos(90 - 38)^\circ$$

$$= \sin 38^{\circ}$$

$$\Rightarrow \frac{\sin 38^{\circ}}{\cos 52^{\circ}} = \frac{\sin 38^{\circ}}{\sin 38^{\circ}}$$

= 1

1 B. Question

Let us evaluate:

$$\frac{\cos ec79^{\circ}}{\sec 11^{\circ}}$$

Answer

Given,
$$\frac{\csc 79^\circ}{\sec 11^\circ}$$

Need to evaluate the given equation

$$\Rightarrow$$
 we know that $sec(90 - \theta) = cosec\theta$

$$\therefore \sec 11^{\circ} = \sec(90 - 79)^{\circ}$$

$$\Rightarrow \frac{\csc 79^{\circ}}{\sec 11^{\circ}} = \frac{\csc 79^{\circ}}{\csc 79^{\circ}}$$

= 1

1 C. Question

Let us evaluate:

$$\frac{\tan 27^{\circ}}{\cot 63^{\circ}}$$

Answer

Given,
$$\frac{\tan 27^{\circ}}{\cot 63^{\circ}}$$

Need to evaluate the given equation

$$\Rightarrow$$
 we know that $tan(90 - \theta) = cot\theta$

$$\therefore \tan 27^{\circ} = \tan(90 - 63)^{\circ}$$

$$\Rightarrow \frac{\tan 27^{\circ}}{\cot 63^{\circ}} = \frac{\cot 63^{\circ}}{\cot 63^{\circ}}$$

= 1

2 A. Question

Let us show that:

$$\sin 66^{\circ} - \cos 24^{\circ} = 0$$

Answer

Given,
$$\sin 66^{\circ} - \cos 24^{\circ} = 0$$

Need to prove the given equation as zero

$$\Rightarrow$$
 we know that $\cos(90 - \theta) = \sin\theta$

$$\therefore \cos 24^\circ = \cos(90 - 66)^\circ$$

$$= \sin 66^{\circ} - - - eq (1)$$

$$\Rightarrow \sin 66^{\circ} - \cos 24^{\circ} = 0$$

[substitute eq(1)]

$$\Rightarrow$$
 sin66° - sin66° = 0

2 B. Question

Let us show that:

$$\cos^2 57^\circ + \cos^2 33^\circ = 1$$

Answer

Given, $\cos^2 57^\circ + \cos^2 33^\circ$

Need to prove the given equation as one

- \Rightarrow we know that $\cos(90 \theta) = \sin\theta$
- $\therefore \cos 33^{\circ} = \cos(90 57)^{\circ}$
- $= \sin 57^{\circ} - eq (1)$
- \Rightarrow Substitute eq(1) in the given equation
- $\therefore \cos^2 57^\circ + \sin^2 57^\circ$
- \Rightarrow we know that, $\sin^2\theta + \cos^2\theta = 1$
- $\therefore \cos^2 57^\circ + \sin^2 57^\circ = 1$

Hence, proved

2 C. Question

Let us show that:

$$\cos^2 75^{\circ} - \sin^2 15^{\circ} = 0$$

Answer

Given, $\cos^2 75^\circ - \sin^2 15^\circ$

Need to prove the given equation as zero

- \Rightarrow we know that $cos(90 \theta) = sin\theta$
- $\therefore \cos 75^{\circ} = \cos(90 15)^{\circ}$
- $= \sin 15^{\circ} - eq (1)$
- \Rightarrow Substitute eq(1) in the given equation

$$\therefore \cos^2 75^\circ - \sin^2 15^\circ =$$

$$\sin^2 15^\circ - \sin^2 15^\circ = 0$$

Hence, proved

2 D. Question

Let us show that:

$$\csc^2 48^\circ - \tan^2 42^\circ = 1$$

Answer

Given, $\csc^2 48^\circ$ - $\tan^2 42^\circ$

Need to prove the given equation as one

- \Rightarrow we know that $tan(90 \theta) = \cot \theta$
- $\therefore \tan 42^{\circ} = \tan (90 48)^{\circ}$
- $= \cot 48^{\circ} - \operatorname{eq}(1)$
- \Rightarrow Substitute eq(1) in the given equation
- $\therefore \csc^2 48^\circ \cot^2 48^\circ$
- \Rightarrow we know that $\cot \theta = \frac{\cos \theta}{\sin \theta}$

And
$$\csc\theta = \frac{1}{\sin\theta}$$

$$\therefore \frac{1}{\sin^2 48^{\circ}} - \frac{\cos^2 48}{\sin^2 48}$$

$$= \frac{1 - \cos^2 48}{\sin^2 48}$$

$$\sin^2\theta + \cos^2\theta = 1$$

$$\therefore 1 - \cos^2 \theta = \sin^2 \theta]$$

$$\Rightarrow \frac{\sin^2 48}{\sin^2 48}$$

= 1

$$\therefore \csc^2 48^\circ - \tan^2 42^\circ = 1$$

Hence, proved

2 E. Question

Let us show that:

$$sec70^{\circ}sin20^{\circ} + cos20^{\circ}cosec70^{\circ} = 2$$

Answer

Given, $sec70^{\circ}sin20^{\circ} + cos20^{\circ}cosec70^{\circ} = 2$

Need to prove the given equation as two

 \Rightarrow we know that $sec(90 - \theta) = csc\theta$ and $csec(90 - \theta) = sec\theta$

$$\therefore \sec 70^{\circ} = \sec (90 - 20)^{\circ}$$

$$= \csc 20^{\circ} - - - eq (1)$$

And $\csc 70^{\circ} = \csc(90 - 20)$

$$= \sec 20^{\circ} - - - - eq(2)$$

 \Rightarrow Substitute eq(1) and eq(2) in the given equation

$$\therefore \csc 20^{\circ} \sin 20^{\circ} + \cos 20^{\circ} \sec 20^{\circ} = 2$$

$$\Rightarrow \frac{1}{\sin 20^{\circ}} \sin 20^{\circ} + \cos 20^{\circ} \frac{1}{\cos 20^{\circ}} = 2$$

$$[\csc \theta = \frac{1}{\sin \theta} \operatorname{and} \sec \theta = \frac{1}{\cos \theta}]$$

$$\Rightarrow \frac{\sin 20}{\sin 20} + \frac{\cos 20}{\cos 20} = 2$$

$$\Rightarrow 2 = 2$$

Hence, proved

3 A. Question

If two angles and are complementary angle, let us show that

$$\sin^2\alpha + \sin^2\beta = 1$$

Answer

Given, two angles are complementary $\alpha + \beta = 90^{\circ}$

$$\Rightarrow \sin^2 \alpha + \sin^2 \beta$$

$$\Rightarrow \sin^2 \alpha + \sin^2 (90 - \alpha)$$

$$\Rightarrow \sin^2 \alpha + \cos^2 \alpha$$

= 1

$$[\sin^2\theta + \cos^2\theta = 1]$$

3 B. Question

If two angles and are complementary angle, let us show that

$$\cot \beta + \cos \beta = \frac{\cos \beta}{\cos \alpha} (1 + \sin \beta)$$

Given,
$$\cot \beta + \cos \beta$$

$$[\cot\beta = \frac{\cos\beta}{\sin\beta}]$$

$$\Rightarrow \frac{\cos\beta}{\sin\beta} + \cos\beta$$

$$=\cos\beta(\frac{1}{\sin\beta} + 1)$$

$$= \cos\beta(\frac{1+\sin\beta}{\sin\beta})$$

$$=\frac{\cos\beta}{\sin\beta} (1 + \sin\beta)$$

$$=\frac{\cos\beta}{\sin(90-\alpha)} (1 + \sin\beta)$$

$$=\frac{\cos\beta}{\cos\alpha} (1 + \sin\beta)$$

3 C. Question

If two angles and are complementary angle, let us show that

$$\frac{\sec \alpha}{\cos \alpha} - \cot^2 \beta = 1$$

Given,
$$\frac{\sec\alpha}{\cos\alpha} - \cot^2\beta$$

$$\Rightarrow \frac{\sec \alpha}{\cos \alpha} - \cot^2 \beta$$

$$\Rightarrow [\sec \alpha = \frac{1}{\cos \alpha} \text{ and } \cot \beta = \frac{\cos \beta}{\sin \beta}]$$

$$\Rightarrow \frac{\frac{1}{\cos\alpha}}{\cos\alpha} - \frac{\cos^2\beta}{\sin^2\beta}$$

$$\Rightarrow \frac{1}{\cos^2 \alpha} - \frac{\cos^2 \beta}{\sin^2 \beta}$$

$$[\cos\alpha = \cos(90 - \beta)]$$

$$\Rightarrow \frac{1}{\cos^2(90-\beta)} - \frac{\cos^2\beta}{\sin^2\beta}$$

$$\Rightarrow \frac{1}{\sin^2 \beta} - \frac{\cos^2 \beta}{\sin^2 \beta}$$

$$\Rightarrow \frac{1-\cos^2\beta}{\sin^2\beta}$$

$$[\sin^2\theta + \cos^2\theta = 1]$$

$$\Rightarrow \frac{\sin^2 \beta}{\sin^2 \beta}$$

4. Question

If
$$\sin 17^\circ = \frac{x}{y}$$
, let us show that $\sec 10^\circ - \sin 73^\circ = \frac{x^2}{y\sqrt{y^2 - x^2}}$

Given,
$$\sin 17^{\circ} = \frac{x}{y}$$

To show, sec17°
$$-$$
 sin73° $\,=\,\frac{x^2}{y\sqrt{y^2-x^2}}$

$$[\sec \theta = \frac{1}{\cos \theta}]$$

$$\Rightarrow \frac{1}{\cos 17^{\circ}} - \sin 73^{\circ}$$

$$\Rightarrow$$
 sin73° = sin(90 - 17) = cos17

$$\Rightarrow \frac{1}{\cos 17^{\circ}} - \cos 17^{\circ}$$

$$=\frac{1-\cos^2 17}{\cos 17}$$

$$[\sin^2\theta + \cos^2\theta = 1]$$

$$=\frac{\sin^2 17}{\cos 17}$$

$$=\frac{\sin^2 17}{\sqrt{1-\sin^2 17}}$$

$$=\frac{\left(\frac{x}{y}\right)^2}{\sqrt{1-\!\left(\frac{x}{y}\right)^2}}$$

$$= \frac{\left(\frac{x}{y}\right)^2}{\sqrt{\left(\frac{y-x}{y}\right)^2}}$$

$$=\frac{(x)^2}{y\sqrt{y^2-x^2}}$$

5. Question

Let us show that $\sec^2 12^\circ - \frac{1}{\tan^2 78^\circ} = 1$

Answer

Given,
$$\sec^2 12 - \frac{1}{\tan^2 78} = 1$$

$$[\sec = \frac{1}{\cos \theta}]$$

$$\Rightarrow \tan 78 = \tan(90 - 12) = \cot 12$$

$$: \sec^2 12 - \frac{1}{\cot^2 12} = 1$$

$$\Rightarrow \frac{1}{\cos^2 12} - \frac{1}{\cot^2 12}$$

$$=\frac{1}{\cos^2 12} - \frac{\sin^2 12}{\cos^2 12}$$

$$=\frac{1-\sin^2 12}{\cos^2 12}$$

$$=\frac{\cos^2 12}{\cos^2 12}$$

Hence, proved

6. Question

$$\angle A + \angle B = 90^{\circ}$$
, let us show that $1 + \frac{\tan A}{\tan B} = \sec^2 A$

Given,
$$\angle A + \angle B = 90^{\circ}$$

To show that
$$1 + \frac{\tan A}{\tan B} = \sec^2 A$$

$$\Rightarrow 1 + \frac{\tan A}{\tan B}$$

$$\Rightarrow$$
 tanB = tan(90 - A) = cotA

$$=1 + \frac{\tan A}{\cot A}$$

$$[\cot A = \frac{1}{\tan A}]$$

$$=1 + \frac{\tan A}{\frac{1}{\tan A}}$$

$$= 1 + \tan^2 A$$

$$= sec^2 A$$

7. Question

Let us show that $\csc^2 22^{\circ} \cot^2 68^{\circ} = \sin^2 22^{\circ} + \sin^2 68^{\circ} + \cot^2 68^{\circ}$

Answer

Given,
$$\csc^2 22^{\circ} \cot^2 68^{\circ} = \sin^2 22^{\circ} + \sin^2 68^{\circ} + \cot^2 68^{\circ}$$

$$\Rightarrow \sin^2 22^\circ + \sin^2 68^\circ + \cot^2 68^\circ$$

$$=\sin^2 22^\circ + \sin^2 (90 - 22)^\circ + \cot^2 68^\circ$$

$$= \sin^2 22^\circ + \cos^2 22^\circ + \cot^2 68^\circ$$

$$= 1 + \cot^2 68^\circ$$

$$= \csc^2 68^\circ$$

8. Question

If
$$\angle A + \angle B = 90^\circ$$
, let us show that, $\sqrt{\frac{\sin p}{\cos Q} - \sin P \cos Q} - \cos P$

Given,
$$\angle A + \angle B = 90^{\circ}$$

To show
$$\sqrt{\frac{\sin P}{\cos Q} - \sin P \cos Q} = \cos P$$

$$\Rightarrow \sqrt{\frac{\sin P}{\cos Q} - \sin P \cos Q}$$

$$= \sqrt{\frac{\sin(90-Q)}{\cos Q}} - \sin(90-Q)\cos Q$$

$$= \sqrt{\frac{\cos Q}{\cos Q} - \cos Q \cos Q}$$

$$= \sqrt{1 - \cos^2 Q}$$

$$=\sqrt{\sin^2 Q}$$

$$= \sin(90 - p)$$

$$= \cos P$$

Hence proved

9. Question

Let us prove that cot 12°cot38° cot ° cot52° cot 78° cot 60° = $\frac{1}{\sqrt{3}}$

Answer

Given, cot12° cot38° cot52° cot78° cot60°

$$\Rightarrow$$
 we know that $\cot 60 = \frac{1}{\sqrt{3}}$

$$\Rightarrow$$
 cot12° cot38° cot52° cot78° $(\frac{1}{\sqrt{3}})$

=
$$\cot(90 - 78)\cot(90 - 52)\cot(52^{\circ}\cot(78^{\circ}))$$

=
$$\tan 78^{\circ} \tan 52^{\circ} \cot 52^{\circ} \cot 78^{\circ} \left(\frac{1}{\sqrt{3}}\right)$$

=
$$\tan 78^{\circ} \tan 52^{\circ} \frac{1}{\tan 52^{\circ}} \frac{1}{\tan 78^{\circ}} (\frac{1}{\sqrt{3}})$$

$$=\left(\frac{1}{\sqrt{3}}\right)$$

10. Question

AOB is a diameter of a circle with centre O and C is any point on the circle, joining A.C; B,C; and O, C let us show that

(i)
$$tan \angle ABC = cot \angle ACO$$

(ii)
$$\sin^2 \angle BCO + \sin^2 \angle ACO = 1$$

(iii)
$$\csc^2 \angle CAB - 1 = \tan^2 \angle ABC$$

(i)
$$tan \angle ABC = cot \angle ACO$$

$$\Rightarrow \angle AOC = 90^{\circ} = \angle BOC$$

$$\Rightarrow$$
 \angle CAO = 60° and

$$\angle$$
 ACO = 30°

$$\Rightarrow$$
 tan \angle ABC = tan(90 - \angle ACO)

$$[\tan(90 - \theta) = \cot\theta]$$

(ii)
$$\sin^2 \angle BCO + \sin^2 \angle ACO = 1$$

$$\Rightarrow \sin^2 \angle BCO + \sin^2 \angle ACO = 1$$

$$\Rightarrow \sin^2 \angle BCO + \sin^2 \angle ACO$$

$$\Rightarrow \sin^2 \angle BCO + \sin^2 (90 - \angle BCO)$$

$$\Rightarrow \sin^2 \angle BCO + \cos^2 \angle BCO$$

= 1

[since,
$$\sin^2\theta + \cos^2\theta = 1$$
]

(iii)
$$\csc^2 \angle CAB - 1 = \tan^2 \angle ABC$$

$$\Rightarrow$$
 cosec² \angle CAB - 1

$$\Rightarrow$$
 cosec(90 - \angle CAB) = sec \angle CAB

$$\Rightarrow$$
 \angle CAB = \angle ABC

$$\Rightarrow$$
 sec² \angle CAB - 1 = tan² \angle ABC

$$\Rightarrow$$
 sec² \angle ABC - 1 = tan² \angle ABC

$$\Rightarrow \tan^2 \angle ABC = \tan^2 \angle ABC$$

11. Question

ABCD is a rectangular figure, joining A,C let us prove that

(i) $tan \angle ACD = cot \angle ACB$

(ii)
$$\tan^2 \angle CAD + 1 = \frac{1}{\sin^2 \angle BAC}$$

Answer

AC is the diagonal line joining ABCD

(i) $tan \angle ACD = cot \angle ACB$

$$\Rightarrow \angle ACD + \angle ACB = 90$$

⇒ tan∠ACD

$$= tan(90 - \angle ACB)$$

= cot∠ACB

(ii)
$$\tan^2 \angle CAD + 1 = \frac{1}{\sin^2 \angle BAC}$$

$$\Rightarrow$$
 tan²∠CAD + 1

$$= \csc^2 \angle ADC$$

 $[\angle ADC = \angle BAC$, from the properties]

$$=\frac{1}{\sin^2 \angle BAC}$$

12 A1. Question

The value of $(\sin 43^{\circ} \cos 47^{\circ} + \cos 43^{\circ} \sin 47^{\circ})$

A. 0

B. 1

C. sin4°

Answer

⇒ Option B is correct as it satisfy the value

Given, sin43°cos47° + cos43°sin47°

Need to find the value

$$\Rightarrow \sin 43^{\circ} \cos (90 - 43)^{\circ} + \cos 43^{\circ} \sin (90 - 43)^{\circ}$$

$$\Rightarrow$$
 sin43°sin43° + cos43°cos43°

$$\Rightarrow \sin^2 43^\circ + \cos^2 43^\circ$$

= 1

[Since,
$$\sin^2\theta + \cos^2\theta = 1$$
]

- \Rightarrow Option A is incorrect because by solving the equation we get the value as 1
- \Rightarrow Option C is incorrect because by solving the equation we get the value as 1
- \Rightarrow Option D is incorrect because by solving the equation we get the value as 1

12 A2. Question

The value of
$$\left(\frac{\tan 35^{\circ}}{\cot 55^{\circ}} + \frac{\cot 78^{\circ}}{\tan 12^{\circ}}\right)$$
 is

- A. 0
- B. 1
- C. 2

D. none of this

Given,
$$\left(\frac{\tan 35^{\circ}}{\cot 55^{\circ}} + \frac{\cot 78^{\circ}}{\tan 12^{\circ}}\right)$$

$$\Rightarrow \left(\frac{\tan 35^{\circ}}{\cot 55^{\circ}} + \frac{\cot 78^{\circ}}{\tan 12^{\circ}}\right)$$

$$\Rightarrow \left(\frac{\tan 35^{\circ}}{\cot (90-35)^{\circ}} + \frac{\cot 78^{\circ}}{\tan (90-78)^{\circ}}\right)$$

$$\Rightarrow \left(\frac{tan35^{\circ}}{tan35^{\circ}} + \frac{cot78^{\circ}}{cot78^{\circ}}\right)$$

$$= 1 + 1$$

⇒ Option A is incorrect as it does not match the value 2

 \Rightarrow Option B is incorrect as it does not match the value 2

 \Rightarrow Option C is correct as it match the value 2

 \Rightarrow Option D is incorrect as it does not match the value 2

12 A3. Question

The value of $\{\cos(40^\circ + \theta) - \sin(50^\circ - \theta)\}\)$ is

A. 2cosθ

B. $7\sin\theta$

C. 0

D. 1

Answer

Given, $cos(40^{\circ} + \theta) - sin(50^{\circ} - \theta)$

 $[\cos(90^{\circ} - \theta) = \sin\theta]$

$$\Rightarrow \cos(90^{\circ} - (50^{\circ} - \theta)) - \sin(50^{\circ} - \theta)$$

$$\Rightarrow \sin(50^{\circ} - \theta) - \sin(50^{\circ} - \theta)$$

= 0

 \Rightarrow Option C is the correct as the value of cos(40° + 0) - sin(50° - 0) is 0

 \Rightarrow Option A is incorrect, since it does not match the value

⇒ Option B is incorrect, since it does not match the value

 \Rightarrow Option D is incorrect, since it does not match the value

12 A4. Question

ABC is triangle. Sin
$$\left(\frac{B+C}{2}\right)$$
 =

A.
$$\sin \frac{A}{2}$$

B.
$$\cos \frac{A}{2}$$

C. sinA

D. cosA

Answer

In a triangle A+B+C =180°

$$(B+C)/2 = 90^{\circ}-A/2$$

$$\sin\left(\frac{B+C}{2}\right) = \cos\frac{A}{2} \text{ (As sin(90^\circ-A) = cos A)}$$

12 A5. Question

If A + B = 90° and tan A = $\frac{3}{4}$, value of cot B is

- A. $\frac{3}{4}$
- B. $\frac{4}{3}$
- c. $\frac{3}{5}$
- D. $\frac{4}{5}$

Answer

Given, $A + B = 90^{\circ}$

And $\tan A = \frac{3}{4}$

 \Rightarrow cotB = cot(90 - A)

= tan A

$$=\frac{3}{4}$$

 \therefore Option A is correct, the value of cot B is also $\frac{3}{4}$

- ⇒ Option B is incorrect, as it does not match the given value
- ⇒ Option C is incorrect, as it does not match the given value
- ⇒ Option D is incorrect, as it does not match the given value

12 B. Question

Let us write whether the following statements are true of false:

- (i) The value of cos54° and sin36° are equal.
- (ii) The simplified value of ($\sin 12^{\circ} \cos 78^{\circ}$) is 1.

Answer

(i) The statement is **true**

$$\Rightarrow$$
 cos54° = cos(90 - 36)°

 $= \sin 36^{\circ}$

$$[\cos(90 - \theta) = \sin\theta]$$

- : the value of cos54° and sin36° has same values
- (ii) The given statement is False

$$\Rightarrow$$
 sin12° - cos78°

$$\Rightarrow$$
 sin12° - cos(90 - 12)°

$$\Rightarrow$$
 sin12° - sin12°

= 0

12 C. Question

Let us fill up the blanks:

- (i) The value of (tan 15° x tan 45° x tan 60° tan 75°) is_____.
- (ii) The value of (sin 12° x cos 18° x sec 78° cosec 72°) is _____.
- (iii) If A and B are complementary to each other, siin A = _____.

Answer

(i) The value of tan15° tan45° tan60° tan75° is $\sqrt{3}$

$$\Rightarrow$$
 we know that tan45° = 1 and tan60° = $\sqrt{3}$

$$\Rightarrow \tan 15^{\circ}(1)(\sqrt{3})\tan(90 - 15)$$

$$\Rightarrow \sqrt{3} \times \tan 15^{\circ} \cot 15^{\circ}$$

$$\Rightarrow \sqrt{3} \times \tan 15^{\circ} \frac{1}{\tan 15^{\circ}}$$

$$=\sqrt{3}\times 1$$

$$=\sqrt{3}$$

- (ii) The value of $sin12^{\circ}cos18^{\circ} \times sec78^{\circ}cosec72^{\circ}$ is 1
- ⇒ sin12°cos18° sec78°cosec72°
- \Rightarrow sin12°cos18°sec(90 12)°cosec(90 18)°
- ⇒ sin12°cos18°cosec12°sec18°
- $\Rightarrow \sin 12^{\circ} \cos 18^{\circ} \frac{1}{\sin 12^{\circ}} \frac{1}{\cos 18^{\circ}}$
- = 1
- (iii) sinA = cosB
- \Rightarrow If A and B are complementary angles then A + B = 90° and A = 90 B
- \Rightarrow sinA = sin(90 B)
- $= \cos B$

13 A. Question

If $\sin 10\theta = \cos 8\theta$ and 10θ is a positive acute angle, let us find the value of $\tan 9\theta$.

Answer

Given, $\sin 10\theta = \cos 8\theta$

And 10θ is a positive acute angle

$$\Rightarrow \sin 10\theta = \cos 8\theta$$

$$\Rightarrow \cos(90 - 10\theta) = \cos 8\theta$$

$$\Rightarrow$$
 90 - 10 θ = 8 θ

$$\Rightarrow$$
 90 = 18 θ

$$\Rightarrow \theta = 5$$

Hence, the value of θ is 5

13 B. Question

If $\tan 4\theta \times \tan 6\theta = 1$ and 6θ is a positive acute angle, let us find the value of θ .

Answer

Given, 6θ as a positive acute angle

$$\Rightarrow$$
 tan4θ tan6θ = 1

$$\Rightarrow$$
 tan4 θ cot(90 - 6 θ) = 1

$$\Rightarrow \cot(90 - 6\theta) = \frac{1}{\tan 4\theta}$$

$$\Rightarrow \cot(90 - 6\theta) = \cot 4\theta$$

$$\Rightarrow$$
 90 - 6 θ = 4 θ

$$\Rightarrow 10\theta = 90$$

$$\Rightarrow \theta = 9$$

13 C. Question

let us find the value of

$$\frac{2\sin^2 63^\circ + 1 + 2\sin^2 27^\circ}{3\cos^2 17^\circ - 2 + 3\cos^2 73^\circ}$$

Answer

Given,
$$\frac{(2\sin^2 63^\circ + 1 + 2\sin^2 27)}{(3\cos^2 17^\circ - 2 + 3\cos^2 73^\circ)}$$

$$\Rightarrow \frac{2\sin^2 63^\circ + 1 + 2\sin^2 (90 - 63)^\circ}{3\cos^2 (90 - 73)^\circ - 2 + 3\cos^2 73^\circ}$$

$$\Rightarrow \frac{2\sin^2 63^\circ + 1 + 2\cos^2 63^\circ}{3\sin^2 73^\circ - 2 + 3\cos^2 73^\circ}$$

$$\Rightarrow \frac{2(\sin^2 63^\circ + \cos^2 63^\circ) + 1}{3(\sin^2 73^\circ + \cos^2 73^\circ) - 2}$$

$$\Rightarrow \frac{2+1}{3-2}$$

$$=\frac{3}{1}$$

13 D. Question

let us find the value of (tan 1° × tan2° × tan 3°.....tan89°)

Answer

$$\Rightarrow$$
 tan1° tan2° tan3°tan(90 - 3)° tan(90 - 2)° tan(90 - 1)°

= 1

13 E. Question

If sec $5A = cosec (A + 36^{\circ})$ and 5A is a positive acute angle, let us find the value of A.

Answer

Given, $sec5A = cosec(A + 36^\circ)$

And 5A is positive acute angle

$$\Rightarrow$$
 sec5A = cosec(A + 36°)

$$\Rightarrow$$
 cosec(90° - 5A) = cosec(A + 36°)

$$[\sec\theta = \csc(90 - \theta)]$$

$$\Rightarrow$$
 90 - 5A = A + 36

$$\Rightarrow$$
 90 - 36 = 6A

$$\Rightarrow$$
 6A = 54

$$\Rightarrow$$
 A = 9

Hence, the value of A is 9