
Chapter 1

Asymptotic Analysis

aLGoRithm
An algorithm is a fi nite set of instructions that, if followed, accom-
plishes a particular task.

All algorithms must satisfy the following.

 • Input: Zero or more quantities are externally supplied.
 • Output: Atleast one quantity is produced.
 • Defi niteness: Each instruction should be clear and unambiguous.
 • Finiteness: The algorithm should terminate after fi nite number

of steps.
 • Effectiveness: Every instruction must be very basic.

Once an algorithm is devised, it is necessary to show that it
computes the correct answer for all possible inputs. This process
is called algorithm validation. Analysis of algorithms refers to the
task of determining how much computing time and storage an
algorithm requires.

Analyzing Algorithms
The process of comparing 2 algorithms rate of growth with respect
to time, space, number of registers, network, bandwidth etc is
called analysis of algorithms.

This can be done in two ways

 1. Priori Analysis: This analysis is done before the execution;
the main principle behind this is frequency count of
fundamental instruction.

 This analysis is independent of CPU, OS and system
architecture and it provides uniform estimated values.

 2. Posterior analysis: This analysis is done after the execution.
It is dependent on system architecture, CPU, OS etc. it
provides non-uniform exact values.

Recursive Algorithms
A recursive function is a function that is defi ned in terms of itself.
An algorithm is said to be recursive if the same algorithm is
invoked in the body.

Towers of Hanoi
There was a diamond tower (labeled A) with 64-golden disks. The
disks were of decreasing size and were stacked on the tower in
decreasing order of size bottom to top. Besides this tower there
were 2 other diamond towers (labeled B and C) we have to move
the disks from tower A to tower B using tower C for intermediate
storage. As the disks are very heavy, they can be moved only one at
a time. No disk can be on top of a smaller disk .

Tower A

Tower B

Tower C

Figure 1 Towers of Hanoi

  Algorithm

  Recursive algorithms

  Towers of Hanoi

  Time complexity

  Space complexity

  SET representation

  TREE representation

  Preorder traversal

  Post-order traversal

  In order traversal

  Data structure

  Worst-case and average-case analysis

  Asymptotic notations

  Notations and functions

  Floor and ceil

  Recurrence

  Recursion-tree method

  Master method

LEARNING OBJECTIVES

3.82  |  Unit 3  •  Algorithms

Assume that the number of disks is ‘n’. To get the largest
disk to the bottom of tower B, we move the remaining (n
– 1) disks to tower C and then move the largest to tower B.
Now move the disks from tower C to tower B.

Example:

A

3
2
1

B C

A

2
1

B C
3

A
21

B
3

C

A
21

B

3

C

A
2 1

B

3

C

A
2 1

B
3

C

A

2
1

B
3

C

A

2
1

B

3

C

To move ‘3’ disks from tower A to tower ‘C’ requires 7 disk
movements
\  For ‘n’ disks, the number of disk movements required
is 2n – 1 = 23 – 1 = 7

Time complexity
	 T(n) = 1 + 2T(n – 1)
	 T(n) = 1 + 2(1 + 2 (T(n – 2)))
	 T(n) = 1 + 2 + 22 T(n – 2)
	 T(n) = 1 + 2 + 22 (1 + 2T(n – 3))
	 T(n) = 1 + 2 + 22 + 23 + T(n – 3)
	 T(n) = 1 + 2 + 22 + … + 2i–1 + 2i T(n – i)

T n i

i

n

() =
=

−

∑2
0

1

The time complexity is exponential, it grows as power of 2.

\  T(n) @ O(2n)

Space complexity
The space complexity of an algorithm is the amount of
memory it needs to run to completion. The measure of the
quantity of input data is called the size of the problem. For
example, the size of a matrix multiplication problem might
be the largest dimension of the matrices to be multiplied.
The size of a graph problem might be the number of edges.
The limiting behavior of the complexity as size increases is
called the asymptotic time complexity.

•• It is the asymptotic complexity of an algorithm which
ultimately determines the size of problems that can be
solved by the algorithm.

•• If an algorithm processes inputs of size ‘n’ in time cn2 for
some constant c, then we say that the time complexity of
that algorithm is O(n2), more precisely a function g(n) is
said to be O( f (n)) if there exists a constant c such that
g(n) ≤ c( f (n)) for all but some finite set of non-negative
values for n.

•• As computers become faster and we can handle larger
problems, it is the complexity of an algorithm that deter-
mines the increase in problem size that can be achieved
with an increase in computer speed.

•• Suppose we have 5 algorithms Algorithm 1 – Algorithm 5
with the following time complexities.

Algorithm Time Complexity

Algorithm – 1
Algorithm – 2
Algorithm – 3
Algorithm – 4
Algorithm – 5

n
n log n

n2

n3

2n

The time complexity is, the number of time units required
to process an input of size ‘n’. Assume that input size ‘n’ is
1000 and one unit of time equals to 1 millisecond.

Chapter 1  •  Asymptotic Analysis  |  3.83

The following figure gives the sizes of problems that can
be solved in one second, one minute, and one hour by each
of these five algorithms.

Algorithm
Time

Complexity

Maximum
Problem Size

1 sec 1 min 1 hour

Algorithm – 1 n 1000 6 × 104 3.6 × 106

Algorithm – 2 n log n 140 4893 2.0 × 105

Algorithm – 3 n2 31 244 1897

Algorithm – 4 n3 10 39 153

Algorithm – 5 2n 9 15 21

From the above table, we can say that different algorithms
will give different results depending on the input size.
Algorithm – 5 would be best for problems of size 2 ≤ n ≤ 9,
Algorithm – 3 would be best for 10 ≤ n ≤ 58, Algorithm – 2
would be best for 59 ≤ n ≤ 1025, and Algorithm – 1 is best
for problems of size greater than 1024.

Set Representation
A common use of a list is to represent a set, with this rep-
resentation the amount of memory required to represent a
set is proportional to the number of elements in the set. The
amount of time required to perform a set operation depends
on the nature of the operation.

•• Suppose A and B are 2 sets. An operation such as A ∩ B
requires time atleast proportional to the sum of the sizes
of the 2 sets, since the list representing A and the list rep-
resenting B must be scanned atleast once.

•• The operation A ∪ B requires time atleast proportional to
the sum of the set sizes, we need to check for the same
element appearing in both sets and delete one instance of
each such element.

•• If A and B are disjoint, we can find A ∪ B in time inde-
pendent of the size of A and B by simply concatenating
the two lists representing A and B.

Graph Representation
A graph G = (V, E) consists of a finite, non-empty set of
vertices V and a set of edges E. If the edges are ordered pairs
(V, W) of vertices, then the graph is said to be directed; V is
called the tail and W the head of the edge (V, W). There are
several common representations for a graph G = (V, E). One
such representation is adjacency matrix, a V X V matrix
M of 0’s and 1’s, where the ij

th
 element, m[i, j] = 1, if and

only if there is an edge from vertex i to vertex j.

•• The adjacency matrix representation is convenient for
graph algorithms which frequently require knowledge of
whether certain edges are present.

•• The time needed to determine whether an edge is present
is fixed and independent of |V| and |E|.

•• Main drawback of using adjacency matrix is that it
requires |V|2 storage even if the graph has only O(|V|)
edges.

•• Another representation for a graph is by means of lists.
The adjacency list for a vertex v is a list of all vertices
W adjacent to V. A graph can be represented by |V| adja-
cency lists, one for each vertex.

Example:

1 2

4 3

Figure 2  Directed graph

1 2 3 4

1
2
3
4

0 1 0 1
0 0 1 0
0 0 0 0
0 1 1 0

















Figure 3  Adjacency matrix

3

2 3 0

0Vertex – 2
Vertex – 3

Vertex – 4

Vertex – 1 2 4 0

Figure 4  Adjacency lists

There are edges from vertex – 1 to vertex – 2 and 4, so the
adjacency list for 1 has items 2 and 4 linked together in the
format given above.

•• The adjacency list representation of a graph requires stor-
age proportional to |V| + |E|, this representation is used
when |E|< < |V|2.

Tree Representation
A directed graph with no cycles is called a directed acyclic
graph. A directed graph consisting of a collection of trees is
called a forest. Suppose the vertex ‘v’ is root of a sub tree,
then the depth of a vertex ‘v’ in a tree is the length of the
path from the root to ‘v’.

•• The height of a vertex ‘v’ in a tree is the length of a long-
est path from ‘v’ to a leaf.

•• The height of a tree is the height of the root
•• The level of a vertex ‘v’ in a tree is the height of the tree

minus the depth of ‘v’.

3.84  |  Unit 3  •  Algorithms

1

2

3

5

4
7

10

9

8

6

Left child Right child

 1 2 6
 2 3 4
 3 0 0
 4 0 5
 5 0 0
 6 7 8
 7 0 0
 8 0 9
 9 0 10
10 0 0

Figure 5  A binary tree and its representation

•• Vertex 3 is of depth ‘2’, height ‘0’ and the level is 2
(Height of tree - depth of ‘3’ = 4 – 2 = 2).

•• A binary tree is represented by 2 arrays: left child and
right child.

•• A binary tree is said to be complete if for some integer
k, every vertex of depth less than k has both a left child
and a right child and every vertex of depth k is a leaf. A
complete binary tree of height k has exactly (2k+1 – 1)
vertices.

•• A complete binary tree of height k is often represented by
a single array. Position 1 in the array contains the root.
The left child of the vertex in position ‘i’ is located at
position ‘2i’ and the right child at position ‘2i + 1’.

Tree Traversals
Many algorithms which make use of trees often traverse the
tree in some order. Three commonly used traversals are pre-
order, postorder and inorder.

Pre-order Traversal
A pre-order traversal of T is defined recursively as follows:

	 1.	 Visit the root.
	 2.	 Visit in pre-order the sub trees with roots v

1,
v

2
 … v

k
 in

that order.

12

13

14

11

16

17

15

18

  

17

11

12

14

18

16
13

15

	 (a)	 (b)

15

13

11

12

14

18

17

16

Figure 6  (a) Pre-order, (b) Post-order (c) In-order

Post-order traversal
A post-order traversal of T is defined recursively as follows:

	 1.	 Visit in post-order the sub trees with roots v
1
, v

2
, v

3
,

… v
k
 in that order.

	 2.	 Visit the root r.

In-order Traversal
An in-order traversal is defined recursively as follows:

	 1.	 Visit in in-order the left sub tree of the root ‘r’.
	 2.	 Visit ‘r’.
	 3.	 Visit in inorder the right sub tree of r.

Example:  Consider the given tree

C

D

E

B

A

What are the pre-order, post-order and in-order traversals of
the above tree?

Solution:  Pre-order – CBADE
			  Post-order – ABEDC
			  In-order – ABCDE

Data Structure
A data structure is a way to store and organize data in-order
to facilitate access and modifications. No single data struc-
ture works well for all purposes, it is important to know the
strengths and limitations of several data structures.

Efficiency
Algorithms devised to solve the same problem often differ
dramatically in their efficiency. Let us compare efficiencies
of Insertion sort and merge sort; insertion sort, takes time
equal to C

1
n2 to sort ‘n’ elements, where C

1
 is a constant

that does not depend on ‘n’. It takes time proportional to
n2, merge sort takes time equal to C

2
nlog n, C

2
 is another

constant that also does not depend on ‘n’. Insertion sort has
a smaller constant factor than merge sort (C

1
 < C

2
) constant

factors are far less significant in the running time.

 (c)

Chapter 1  •  Asymptotic Analysis  |  3.85

Merge sort has a factor of ‘log n’ in its running time,
insertion sort has a factor of ‘n’, which is much larger.
Insertion sort is faster than merge sort for small input sizes,
once the input size ‘n’ becomes large enough, merge sort
will perform better. No matter how much smaller C

1
 is than

C
2
. There will always be a crossover point beyond which

merge sort is faster.

Example:   Consider 2 computers, computer A (faster
computer), B (slower computer). Computer A runs insertion
sort and computer B runs merge sort. Each computer is
given 2 million numbers to sort. Suppose that computer A
executes one billion instruction per second and computer B
executes only 10 million instructions per second, computer
A is 100 times faster than computer B (C

1
 = 4, C

2
 = 50).

How much time is taken by both the computers?

Solution:  Insertion sort takes C1 * n2 time
		 Merge sort takes C

2
 * n * log n time

		 C
1
 = 4, C

2
 = 50

		 Computer A takes

4 2 10 instructions

10 instructions/second
4 seconds

6

9

× ×
≅

()2

000

		 Computer B takes

=

× × × ×50 2 10 2 10

10

6 6

7

log() insturctions

instructions/second
		 = 209 seconds

By using an algorithm whose running time grows more
slowly, even with an average compiler, computer B runs
20 times faster than computer A. The advantage of merge
sort is even more pronounced when we sort ten million
numbers. As the problem size increases, so does the relative
advantage of merge sort.

Worst-case and average-case analysis
In the analysis of insertion sort, the best case occurs when
the array is already sorted and the worst case, in which the
input array is reversely sorted. We concentrate on finding
the worst-case running time, that is the longest running time
for any input of size ‘n’.

•• The worst-case running time of an algorithm is an upper
bound on the running time for any input. It gives us a
guarantee that the algorithm will never take any longer.

•• The ‘average-case’ is as bad as the worst-case. Suppose
that we randomly choose ‘n’ numbers and apply inser-
tion sort. To insert an element A[j], we need to determine
where to insert in sub-array A [1 … J – 1]. On average
half the elements in A[1 … J – 1] are less than A[j] and
half the elements are greater. So t

j
 = j/2. The average-case

running time turns out to be a quadratic function of the
input size.

Asymptotic Notations
Asymptotic notations are mostly used in computer science
to describe the asymptotic running time of an algorithm.
As an example, an algorithm that takes an array of size n
as input and runs for time proportional to n2 is said to take
O(n2) time.

5 Asymptotic Notations:

•• O (Big-oh)
•• q (Theta)
•• W (Omega)
•• o (Small-oh)
•• w

How to Use Asymptotic Notation
for Algorithm Analysis?
Asymptotic notation is used to determine rough estimates
of relative running time of algorithms. A worst-case anal-
ysis of any algorithm will always yeild such an estimate,
because it gives an upper bound on the running time T(n) of
the algorithm, that is T(n) g(n).

Example:

a ← 0 1 unit 1 time

for i ← 1 to n do{ 1 unit n times

for j ← 1 to i do{ 1 unit n(n + 1)/2 times

a ← a + 1 1 unit n(n +1)/2 times

Where the times for the inner loop have been computed as fol-
lows: For each i from 1 to n, the loop is executed i times, so the

total number of times is 1 2 3 1 2
1

+ + + + = = +
=
∑� n i n n
i

n

()/

Hence in this case
T(n) = 1 + n + 2n (n +1)/2 = n2 + 2n + 1
If we write g(n) = n2 + 2n + 1, then T(n) ∈ q(g(n)),
That is T(n) ∈ q(n2 + 2n + 1), we actually write T(n) ∈ q(n2),
as recommended by the following rule:

•• Although the definitions of asymptotic notation allow one
to write, for example, T(n) ∈ O(3n2 + 2).
We simplify the function in between the parentheses as

much as possible (in terms of rate of growth), and write
instead T(n) ∈ O(n2)
For example: T(n) ∈ q(4n3 – n2 + 3)
			  T(n) ∈ q(n3)

For instance O i
i

n

=
∑








1

, write O(n2) after computing the sum.

•• In the spirit of the simplicity rule above, when we are to
compare, for instance two candidate algorithms A and B
having running times (T

A
(n) = n2 – 3n + 4 and T

B
(n) = 5n3

+ 3, rather than writing T
A
(n) ∈ O(T

B
(n)), we write T

A
(n)

∈ q(n2), and T
B
(n) ∈ q(n3), and then we conclude that A

3.86  |  Unit 3  •  Algorithms

is better than B, using the fact that n2(quadratic) is better
than n3(cubic) time, since n2 ∈ O(n3).

Order of Growth
In the rate of growth or order of growth, we consider only
the leading term of a formula. Suppose the worst case run-
ning time of an algorithm is an2 + bn + c for some constants
a, b and c. The leading term is an2. We ignore the leading
term’s constant coefficient, since constant factors are less
significant than the rate of growth in determining compu-
tational efficiency for large inputs. Thus we can write, the
worst-case running time is q(n2).

We usually consider one algorithm to be more efficient
than another if its worst-case running time has a lower order
of growth. Due to constant factors and lower order terms,
this evaluation may be in error for small inputs. But for
large inputs, q(n2) algorithm will run more quickly in the
worst-case than q(n3) algorithm.

q-Notation
A function f (n) belongs to the set q(g(n)) if there exists a
positive constant C

1
 and C

2
 such that it can be “sand witched”

between C
1
g(n) and C

2
g(n) for sufficiently large n. We write

f (n) ∈ q (g(n)) to indicate that f (n) is a member of q (g(n))
or we can write f (n) = q (g(n)) to express the same notation.

C2g(n)

C1g(n)

n0 n

f (n)

The above figure gives an intuitive picture of functions f (n)
and g(n), where we have that f (n) = q (g(n)), for all the val-
ues of ‘n’ to the right of n

o
, the value of f (n) lies at or above

C
1
g(n) and at or below C

2
g(n). g(n) is asymptotically tight

bound for f (n). The definition of q(g(n)) requires that every
member f (n) ∈ q(g(n)) be asymptotically non-negative, that
is f (n) must be non-negative whenever ‘n’ is sufficiently large.

The q-notation is used for asymptotically bounding a
function from both above and below. We would use q(theta)
notation to represent a set of functions that bounds a par-
ticular function from above and below.

Definition: We say that a function f (n) is theta of g(n) writ-
ten as f (n) = q(g(n)) if such exists positive constants C

1
, C

2

and n
0
such that 0 ≤ C

1
g(n) ≤ f (n) ≤ C

2
 g(n), ∀ n ≥ n

0
.

Example:  Let f (n) = 5.5n2 – 7n, verify whether f (n) is
q(n2). Lets have constants c

1
 = 9 and n

0
 = 2, such that 0 ≤

f (n) ≤ C
1
 n2, ∀n ≥ n

0
. From example, 4 we have constants

C
2
 = 3, and n

0
 = 2.8, such that 0 ≤ C

2
 n2 ≤ f (n), ∀n ≥ n

0
.

To show f (n) is q(n2), we have got hold of two constants
C

1
 and C

2
. We fix the n

0
 for q as maximum {2, 2.8} = 2.8.

•• The lower order terms of an asymptotically positive func-
tion can be ignored in determining asymptotically tight
bounds because they are insignificant for large n.

•• A small fraction of the highest order term is enough to
dominate the lower order term. Thus setting C1 to a value
that is slightly smaller than the coefficient of the highest
order term and setting C2 to a value that is slightly larger
permits the inequalities in the definition of q-notation to
be satisfied. If we take a quadratic function f (n) = an2 +
bn + c, where a, b and c are constants and a > 0. Throwing
away the lower order terms and ignoring the constant
yields f (n) = q (n2).

•• We can express any constant function as q(n0), or q(1) we
shall often use the notation q(1) to mean either a constant
or a constant function with respect to some variable.

O-Notation
We use O-notation to give an upper bound on a function,
within a constant factor.

n0 n

Cg(n)

f (n)

The above figure shows the intuition behind O-notation. For
all values ‘n’ to the right of n

0
, the value of the function f (n)

is on or below g(n). We write f (n) = O(g(n)) to indicate that
a function f (n) is a member of the set O(g(n)).

f (n) = q(g(n)) implies f (n) = O(g(n)). Since q notation is
stronger notation than O-notation set theoretically, we have
q(g(n)) ⊆ O(g(n)). Thus any quadratic function an2 + bn
+ c, where a > 0, is in q(n2) also shows that any quadratic
function is in O(n2) when we write f (n) = O(g(n)), we are
claiming that some constant multiple of g(n) is an asymp-
totic upper bound on f (n), with no claim about how tight an
upper bound it is.

The O-notation is used for asymptotically upper bound-
ing a function. We would use O (big-oh) notation to represent
a set of functions that upper bounds a particular function.

Definition  We say that a function f (n) is big oh of g(n) writ-
ten as f (n) = O(g(n)) if there exists positive constants C and
n

0
 such that

0 ≤ f (n) ≤ Cg(n), ∀ n ≥ n
o

Solved Examples
Example 1:  let f (n) = n2

Then f (n) = O(n2)
f (n) = O(n2log n)
f (n) = O(n2.5)
f (n) = O(n3)
f (n) = O(n4) … so on.

Chapter 1  •  Asymptotic Analysis  |  3.87

Example 2:  Let f (n) = 5.5n2 – 7n, verity whether f (n) is
O(n2)

Solution: Let C be a constant such that

5 5 7
7

5 5
2 2. ,

.
n n Cn n

c
− ≥

−
≤ or

Fix C = 9, to get n ≥ 2
So our n

0
 = 2 and C = 9

This shows that there exists, positive constants C = 9 and n
0

= 2 such that
0 ≤ f (n) ≤ Cn2, ∀ n ≥ n

0

Example 3:

h(n) = 3n3 + 10n + 1000 log n ∈ O(n3)

h(n) = 3n3 + 10n + 1000 log n ∈ O(n4)

•• Using O-notation, we can describe the running time of
an algorithm by inspecting the algorithm’s overall struc-
ture. For example, the doubly nested loop structure of the
insertion sort algorithm yields an O(n2) upper bound on
the worst-case running time. The cost of each iteration of
the inner loop is bounded from above by O(1) (constant),
the inner loop is executed almost once for each of the n2
pairs.

•• O(n2) bound on worst-case running time of insertion sort
also applies to its running time on every input.

•• The q(n2) bound on the worst-case running time of inser-
tion sort, however, does not imply a q(n2) bound on the
running time of insertion sort on every input, when the
input is already sorted, insertion sort runs in q(n) time.

W (omega)-notation

n0 n

Cg(n)

f (n)

The W-notation is used for asymptotically lower bound-
ing a function. We would use Ω(big-omega) notation to
represent a set of functions that lower bounds a particular
function.

Definition  We say that a function f (n) is big-omega of g(n)
written as f (n) = Ω(g(n)) if there exists positive constants C
and n

0
 such that

0 ≤ Cg(n) ≤ f (n) , ∀ n ≥ n
0

The intuition behind Ω-notation is shown in the above
figure. For all values ‘n’ to the right of n

0
, the value of f (n)

is on or above Cg(n). For any 2 functions f (n) and g(n) we
have f (n) = q(g(n)) if f (n) = O(g(n)) and f (n) = Ω(g(n)).
From the above statement we can say that, an2 + bn + c =
q(n2) for any constants a, b and c, where a > 0, immediately
implies that

\ an2 + bn + c = Ω(n2)

\ an2 + bn + c = O(n2)

Example 4:  Let f (n) = 5.5n2 - 7n.
Verity whether f (n) is W(n2)

Solution:  Let C be a constant such that 5.5n2 – 7n ≥ Cn2 or

n
C

≥
−
7

5 5.
.Fix C = 3, to get n ≥ 2.8. So, our n

0
 = 2.8 and

C = 3
This shows that there exists positive constants C = 3 and

n
0
 = 2.8, such that 0 ≤ Cn2 ≤ f (n), ∀n ≥ n

0
.

n0

0 ≤ f (n) ≤ Cg(n), ∀ n ≥ n0

f (n)

Cg(n)

(a)  f (n) = O(g(n))

n0

0 ≤ Cg(n) ≤ f (n), ∀ n ≥ n0

f (n)

Cg(n)

(b)  f (n) = W(g(n))

n0

0 ≤ C2g(n) ≤ f (n) ≤ C1g(n), ∀ n ≥ n0

C1g(n)

C2g(n)

f (n)

(c)  f (n) = q(g(n))
Figure 7  A diagrammatic representation of the asymptotic notations
O, W and q

•• W-notation describes a lower bound; it is used to bound
the best-case running time of an algorithm. The best-case
running time of insertion sort is W(n). The running time
of insertion sort falls between W(n) and O(n2), since it
falls anywhere between a linear function of ‘n’ and a
quadratic function of ‘n’.

3.88  |  Unit 3  •  Algorithms

•• When we say that the running time of an algorithm is
W(g(n)), we mean that no matter what particular input of
size ‘n’ is chosen for each value of n, the running time on
that input is at least a constant times g(n), for sufficiently
large ‘n’.

O-notation
The asymptotic upper bound provided by O-notation may
or may not be asymptotically tight. The bound 2n3 = O(n3)
is asymptotically tight, but the bound 2n = O(n2) is not.
We use O-notation to denote an upper bound that is not
asymptotically tight.

ω -notation
By analogy, w-notation is to W-notation as o-notation is to
O-notation. We use w-notation to denote a lower bound that
is not asymptotically tight.

It is defined as
f (n) ∈ w(g(n)) if and only if g(n) ∈ o(f (n))

Comparison of functions
Transitivity

	 1.	 f (n) = q(g(n)) and g(n) = q(h(n))
		 ⇒ f (n) = q(h(n))
	 2.	 f (n) = O(g(n)) and g(n) = O(h(n))
		 ⇒ f (n) = O(h(n))
	 3.	 f (n) = W(g(n)) and g(n) = W(h(n))
		 ⇒ f (n) = W(h(n))
	 4.	 f (n) = o(g(n)) and g(n) = o(h(n))
		 ⇒ f (n) = o(h(n))
	 5.	 f (n) = w(g(n)) and g(n) = w(h(n))
		 ⇒ f (n) = w(h(n))

Reflexivity
	 1.	 f (n) = q(f (n))
	 2.	 f (n) = O(f (n))
	 3.	 f (n) = W(f (n))

Symmetry
f (n) = q(g(n)) if and only if g(n) = q(f (n))

Transpose symmetry
1. f (n) = O(g(n)) if and only if g(n) = W (f (n))
2. f (n) = o(g(n)) if and only if g(n) = w(f (n))

Notations and Functions

Floor and Ceil
For any real number ‘x’, we denote the greatest integer less
than or equal to x by x  called as floor of x and the least
integer greater than or equal to x by x  called as ceiling of x.

x x x x x− <   ≤ ≤   < +1 1 for any integer n,

n n
n

2 2






+ 





= ,

For any real number n ≥ 0 and integer a, b > 0

n
a
b

n

ab

























= 





n
a
b

n

ab

























= 





Polynomials
Given a non-negative integer k, a polynomial in n of degree

‘k’ is a function p(n) of the form p n a ni
i

i

k

() =
=
∑

0

Where the constants a
0
, a

1
, … a

k
 are the coefficients of

the polynomial and a
k
 ≠ 0.

For an asymptotically positive polynomial p(n) of degree
k, we have p(n) = q(nk)

Exponentials
For all real a > 0, m and n, we have the following identities:

a0 = 1
 a1 = a

a
a

− =1 1

(am)n = amn

(am)n = (an)m

aman = am+n

e x
x x x

i
x

i

i

= + + + + =
=

∞

∑1
2 3

2 3

0! ! !
�

•• For all real x, we have inequality ex ≥ 1 + x
•• If x = 0, we have 1 + x ≤ ex ≤ 1 + x + x2

Logarithms
lg n = log

2
n (binary logarithm)

ln n = log
e
n (natural logarithm)

lgk n = (log n)k (exponentiation)
lg lg n = lg (lg n) (composition)
For all real a > 0, b > 0, c > 0 and n,
log

c
 (ab) = log

c
a + log

c
b

Chapter 1  •  Asymptotic Analysis  |  3.89

 log logb
n

ba n a=

log

log

logb
c

c

a
a

b
=

log
b
 (1/a) = –log

b
a

log

logb
a

a
b

= 1

 a cb
c

b
alog log=

Factorials
n! is defined for integers n ≥ 0 as

n
n

n n n
!

()!*
=

=
− >





1 0

1 0

if

A weak upper bound on the factorial function is n! ≤ nn
since each of the n terms in the factorial product is almost n.

n! = o(nn)
n! = w(2n)

lg (n!) = q(n log n)

Iterated Logarithm
The notation lg*n is used to denote the iterated logarithm.
Let ‘lg(i) n’ be as defined above, with f (n) = lg n. The log-
arithm of a non-positive number is undefined, ‘lg(i) n’ is
defined only if lg(i–1) n > 0;

The iterated logarithm function is defined as lg*n = min
{i ≥ 0 : lg(i) n ≤ 1}. This function is a very slowly growing
function.

lg*2 = 1
lg*4 = 2
 lg*16 = 3

		 lg*65536 = 4
		 lg*(265536) = 5

Recurrences
When an algorithm contains a recursive call to itself,
its running time can often be described by a recurrence.
A recurrence is an equation that describes a function in
terms of its value on smaller inputs. For example, the
worst-case running time T(n) of the merge-sort can be
described as

T(n) =	q (1)	 if n = 1
	 2T (n/2) + q (n)	 if n > 1

The time complexity of merge-sort algorithm in the worst-
case is T(n) = q(n log n)

There are 3 methods to solve recurrence relations:

	 1.	 Substitution method
	 2.	 Recursion-tree method
	 3.	 Master method

Substitution Method
In this method one has to guess the form of the solution.
It can be applied only in cases when it is easy to guess the
form of the answer. Consider the recurrence relation

T(n) = 2T(n/2) + n

We guess that the solution is T(n) = O(n log n) we have
to prove that

T(n) ≤ c n log n  (\ c > 0)

Assume that this bound holds for n/2 
	 T(n/2) ≤ c(n/2). log (n/2) + n
	 T(n) ≤ 2(c(n/2 log (n/2)) + n

 ≤ cn log n – cn log2 + n
≤ cn log n – cn + n

		 ≤ cn log	 (\ c ≥ 1)

Recursion-tree Method
In a recursion-tree, each node represents the cost of single
sub problem somewhere in the set of recursive function
invocations. We sum the costs within each level of the tree
to obtain a set of per-level costs, and then we sum all the
per-level costs to determine the total cost of all levels of
the recursion. Recursion trees are useful when the recur-
rence describes the running time of a divide-and-conquer
algorithm.

Example:
Consider the given recurrence relation

T(n) = 3T (n/4) + q(n2)

We create a recursion tree for the recurrence

T(n) = 3T(n/4) + Cn2

Cn2

T (n/4) T (n/4) T (n/4)

The Cn2 term at the root represents the cost at the top level
of recursion, and the three sub trees of the root represent the
costs incurred by the sub problems of size n/4.

Cn2

C(n/4)2
C(n/4)2

C(n/4)2

T (n/16) T (n/16)
T (n/16)

T (n/16) T (n/16)
T (n/16)T (n/16) T (n/16)

T (n/16)

Figure 8  Recursion tree for T(n) = 3T (n/4) + cn2

3.90  |  Unit 3  •  Algorithms

Cn 2

C (n /4)2

C (n /16)2 C (n /16)2 C (n /16)2 C (n /16)2 C (n/16)2 C (n /16)2 C (n /16)2 C (n /16)2 C (n /16)2

C (n /4)2 C (n /4)2

T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1)

Figure 9  Expanded Recursion tree with height log4
n (\ levels log4

n + 1)

The sub-problem size for a node at depth ‘i’ is n/4i, at this
depth, the size of the sub-problem would be n = 1, when n/4i
= 1 or i = log

4
n, the tree has log

4
n+1 levels.

•• We have to determine the cost at each level of the tree.
Each level has 3 times more nodes than the level above,
so the number of nodes at depth ‘i’ is 3i.

•• Sub problem sizes reduce by a factor of ‘4’ for each level
we go down from the root, each node at depth i, for i = 0,
1, 2 … log4

n–1, has a cost of c(n/4i)2.

Total cost over all nodes at depth i, for i = 0, 1, … log
4

n–1

= 





= 





3
4

3

16

2
2i

i

i

c
n

cn*

The last level, at depth log
4
n has 3i nodes = 3log

4
n = nlog

4
3 each

contributing cost T(1), for a total cost of nlog
4

3 T(1), which is
q (nlog

4
3) cost of the entire tree is equal to sum of costs over

all levels.

T n cn cn cn() = + + 





+ +2 2
2

23

16

3

16
�

3

16

4
1

2
4

3





 + +

−log
log()

n

cn n� θ

= 





 +

=

−

∑ 3

160

2
4

3
4

1 i

i

n

cn n
log

log()θ

< 





 +

=

∞

∑ 3

160

2
4

3
i

i

cn nθ ()log

=
− 







+
1

1
3

16

2
4

3()logcn nθ

= + =
16

13
2

4
3 2() ()logcn n O nθ

Master Method
Let a ≥ 1 and b > 1 be cons-tants, let f (n) be a function
and let T(n) be defined on the non-negative integers by the
recurrence

T(n) = aT(n/b) + f (n)

T(n) can be bounded asymptotically as follows

	 1.	 If f (n) = O(nlog
b

a–∈) for some constant ∈ > 0, then T(n)
= q(nlog

b
a)

	 2.	 If f (n) = q(nlog
b

a) then T(n) = q(nlog
b

a. log n)

	 3.	 If f (n) = W(nlog
b

a+∈) for some constant ∈ > 0, and
if af (n/b) ≤ cf (n) for some constant c < 1 and all
sufficiently large n, then T(n) = q (f (n)).

Note: In the first case, not only must f (n) be smaller than n
log

b
a, it must be polynomially smaller. That is, f (n) must be

asymptotically smaller than nlog
b

a by a factor of n∈, for some
constant ∈ > 0.

In the third case, not only must f (n) be larger than nlog
b
a,

it must be polynomially larger and in addition satisfy the
regularity condition af (n/b) ≤ Cf (n).

Example:  Consider the given recurrence relation T(n)
= 9T(n/3) + n.
To apply master theorem, the recurrence relation must be in
the following form:

T(n) = aT(n/b) + f (n)

a = 9, b = 3, f (n) = n

nlog
b

a = nlog
3

9 = n2

Since f (n) = O(nlog
3

9–∈), where ∈ = 1
We can apply case 1 of the master theorem and the solution
is T(n) = q(n2).

Chapter 1  •  Asymptotic Analysis  |  3.91

Exercises

Practice Problems 1
Directions for questions 1 to 15:  Select the correct alterna-
tive from the given choices.
	 1.	 What is the time complexity of the recurrence relation

T n T
n

n() ?= 





+2
2

2

	 (A)	 q(n2)	 (B)	 q(n)
	 (C)	 q(n3)	 (D)	 q(n log n)

	 2.	 What is the time complexity of the recurrence relation

by using masters theorem T n T
n

n() ?= 





+2
2

	 (A)	 q(n2)	 (B)	 q(n)
	 (C)	 q(n3)	 (D)	 q(n log n)

	 3.	 What is the time complexity of the recurrence relation

by using master theorem, T n T
n

n() .= 





+2
4

0 51

	 (A)	 q(n2)	 (B)	 q(n)
	 (C)	 q(n3)	 (D)	 (n0.51)

	 4.	 What is the time complexity of the recurrence relation

using master theorem,T n T
n

n() ?= 





+7
3

2

	 (A)	 q(n2)	 (B)	 q(n)
	 (C)	 q(n3)	 (D)	 (log n)

	 5.	 Time complexity of f (x) = 4x2 - 5x + 3 is
	 (A)	 O(x)	 (B)	 O(x2)
	 (B)	 O(x3/2)	 (D)	 O(x0.5)

	 6.	 Time complexity of f (x) = (x2 + 5 log
2
 x)/(2x + 1) is

	 (A)	 O(x)	 (B)	 O(x2)
	 (C)	 O(x3/2)	 (D)	 O(x0.5)

	 7.	 For the recurrence relation, T n T n n() lg ,=  ()+2
which is tightest upper bound?

	 (A)	 T(n) = O(n2)	 (B)	 T(n) = O(n3)
	 (C)	 T(n) = O(log n)	 (D)	 T(n) = O(lg n lg lg n)

	 8.	 Consider T(n) = 9T(n/3) + n, which of the following is
TRUE?

	 (A)	 T(n) = q(n2)	 (B)	 T(n) = q(n3)
	 (C)	 T(n) = W(n3)	 (D)	 T(n) = O(n)

	 9.	 If f (n) is 100 * n seconds and g(n) is 0.5 * n seconds then
	 (A)	 f (n) = g(n)	 (B)	 f (n) = W(g(n))
	 (C)	 f (n) = w(g(n))	 (D)	 None of these

	10.	 Solve the recurrence relation using master method:
T(n) = 4T (n/2) + n2

	 (A)	 q(n log n)	 (B)	 q(n2 log n)
	 (C)	 q(n2)	 (D)	 q(n3)

	11.	 Arrange the following functions according to their
order of growth (from low to high):

	 (A)	 n n n n n3 4 3 20 001 3 1 3 2, . , ,+ +

	 (B)	 3 2 0 001 3 12 3 4 3n n n n n, , , . + +

	 (C)	 2 3 0 001 3 12 3 4 3n nn n n, , , . + +

	 (D)	 n n nn n3 2 4 32 3 0 001 3 1, , , . + +

	12.	 The following algorithm checks whether all the ele-
ments in a given array are distinct:

		 Input: array A[0 … n – 1]

		 Output: true (or) false

		 For i ← 0 to n – 2 do

		 For j ← i + 1 to n – 1 do

		 if A[i] = A[ j] return false

		 return true
		 The time complexity in worst case is
	 (A)	 q(n2)	 (B)	 q(n)
	 (C)	 q(log n)	 (D)	 q(n log n)

13.	 The order of growth for the following recurrence rela-
tion is T(n) = 4T(n/2) + n3, T(1) = 1

	 (A)	 q(n)	 (B)	 q(n3)
	 (C)	 q(n2)	 (D)	 q(log n)

14.	 Time complexity of T n T
n

() = 





+2
4

3 is

	 (A)	 q (log)n n 	 (B)	 q (log)n n

	 (C)	 q ()n 	 (D)	 q(n2)

15.	 Consider the following three claims
	 (I)  (n + k)m = θ(nm), where k and m are constants
	 (II) 2n + 1 = O(2n)
	 (III)  22n + 1 = O(2n)
		 Which one of the following is correct?
	 (A)	 I and III	 (B)	 I and II
	 (C)	 II and III	 (D)	 I, II and III

Practice Problems 2
Directions for questions 1 to 15:  Select the correct alterna-
tive from the given choices.
	 1.	 Arrange the order of growth in ascending order:
	 (A)	 O(1) > O(log n) > O(n) > O(n2)
	 (B)	 O(n) > O(1) > O(log n) > O(n2)
	 (C)	 O(log n) > O(n) > O(1) > O(n2)
	 (D)	 O(n2) > O(n) > O(log n) > O(1)

	 2.	 n n= Ω(log) means

	 (A)	 To the least n is log n
	 (B)	 n is log n always

	 (C)	 n is at most log n
	 (D)	 None of these

	 3.	 Which of the following is correct?
	 (i)	 q (g(n)) = O(g(n)) ∩ W(g(n))
	 (ii)	 q (g(n)) = O(g(n)) ∪ W(g(n))

3.92  |  Unit 3  •  Algorithms

	 (A)	 (i) is true (ii) is false 	 (B)	 Both are true
	 (C)	 Both are false 	 (D)	 (ii) is true (i) is false

	 4.	 2n2 = x (n3), x is which notation?
	 (A)	 Big-oh	 (B)	 Small-oh
	 (C)	 W – notation 	 (D)	 q – notation

	 5.	 Master method applies to recurrence of the form T(n)
= a T(n/b) + f (n) where

	 (A)	 a ≥ 1, b > 1	 (B)	 a = 1, b > 1
	 (C)	 a > 1, b = 1	 (D)	 a ≥ 1, b ≥ 1

	 6.	 What is the time complexity of the recurrence relation
using master method?

T n T
n

n() = 





+4
2

	 (A)	 q(n2)	 (B)	 q(n)
	 (C)	 q(log n)	 (D)	 q(n log n)

	 7.	 Use the informal definitions of O, q W to determine these
assertions which of the following assertions are true.

	 (A)	 n(n + 1)/2 ∈ O(n3)	 (B)	 n(n + 1)/2 ∈ O(n2)
	 (C)	 n(n + 1)/2 ∈ W(n)	 (D)	 All the above

	 8.	 Match the following:

(i) Big-oh (A) ≥

(ii) Small-o (B) ≤

(iii) Ω (C) =

(iv) θ (D) <

(v) ω (E) >

	 (A)	 (i) – D, (ii) – A, (iii) – C, (iv) -B , (v) – E
	 (B)	 (i) – B, (ii) – D, (iii) – A, (iv) – C, (v) – E
	 (C)	 (i) – C, (ii) – A, (iii) – B, (iv) – E, (v) – D
	 (D)	 (i) – A, (ii) – B, (iii) – C, (iv) – D, (v) – E

	 9.	 Which one of the following statements is true?
	 (A)	� Both time and space efficiencies are measured as

functions of the algorithm input size.
	 (B)	� Only time efficiencies are measured as a function

of the algorithm input size.
	 (C)	� Only space efficiencies are measured as a function

of the algorithm input size.
	 (D)	� Neither space nor time efficiencies are measured

as a function of the algorithm input size.

	10.	 Which of the following is true?
	 (A)	� Investigation of the average case efficiency is con-

siderably more difficult than investigation of the
worst case and best case efficiencies.

	 (B)	� Investigation of best case is more complex than
average case.

	 (C)	� Investigation of worst case is more complex than
average case.

	 (D)	 None of these

	11.	 Time complexity of T(n) = T(n/3) + T(2n/3) + O(n) is
	 (A)	 O(1)
	 (B)	 O(n log n)
	 (C)	 O(log n)
	 (D)	 O(n2)

12.	 Solve the recurrence relation to find T(n): T(n) = 4(n/2)
+ n

	 (A)	 q(n2)	 (B)	 q(log
2
n)

	 (C)	 q(n2 log
2
n)	 (D)	 q(n3)

13.	 What is the worst case analysis for the given code?
		 int search (int a[], int x, int n)
		 {
		 int i;
		 for (i = 0 ; i < n; i ++)
		 if (a [i] = = x)
		 return i;
		 return –1;
		 }
	 (A)	 O(n)	 (B)	 O(n log n)
	 (C)	 O(log n)	 (D)	 O(n2)

14.	 Find the time complexity of the given code.
		 void f (int n)
		 {
		 if (n > 0)
		 {
		 f (n/2);
		 f (n/2);
		 }
		 }
	 (A)	 θ(n2)
	 (B)	 θ(n)
	 (C)	 θ(n log n)
	 (D)	 θ(2n)

15.	 The running time of the following algorithm procedure
A(n)

		 if n ≤ 2
		 return (1)
		 else
		 return (())A n
		 is described by

	 (A)	 O n n(log)

	 (B)	 O(log n)

	 (C)	 O(log log n)
	 (D)	 O(n)

Chapter 1  •  Asymptotic Analysis  |  3.93

Previous Years’ Questions

 	1.	 The median of n elements can be found in O(n) time.
Which one of the following is correct about the com-
plexity of quick sort, in which median is selected as
pivot?� [2006]

	 (A)	 q(n)	 (B)	 q(n log n)
	 (C)	 q(n2)	 (D)	 q(n3)

	 2.	 Given two arrays of numbers a
1
 … a

n
 and b

1
 … b

n
 where

each number is 0 or 1, the fastest algorithm to find the
largest span (i, j) such that a

i
 + a

i
+ 1 + … + a

j
 = b

i
 + b

i
 +

1 + … + b
j
, or report that there is not such span,� [2006]

	 (A)	� Takes O(3n) and W(2n) time if hashing is permit-
ted

	 (B)	� Takes O(n3) and W(n2.5) time in the key compari-
son model

	 (C)	 Takes Q(n) time and space

	 (D)	� Takes O n() time only if the sum of the 2n ele-
ments is an even number

	 3.	 Consider the following segment of C-code:
		 int j, n;
			 j = 1;

			 while (j <=n)

		 j = j*2;

		 The number of comparisons made in the execution of
the loop for any n > 0 is:� [2007]

	 (A)	   +log2 1n 	 (B)	 n

	 (C)	  + log2 n 	 (D)	   +log2 1n

	 4.	 In the following C function, let n ≥ m.
		 int gcd(n,m)
		 {
		 if (n%m = =0) return m;
		 n = n%m;
		 return gcd(m,n);
		 }

		 How many recursive calls are made by this function?
� [2007]

	 (A)	 Θ(log)2 n 	 (B)	 Ω()n

	 (C)	 Θ(log log)2 2 n 	 (D)	 Θ()n

	 5.	 What is the time complexity of the following recursive
function:

		 int DoSomething (int n) {
		 if (n <= 2)
			 return 1;
		 else

		 return(DoSomething (floor(sqrt(n)))+ n);}� [2007]

	 (A)	 Θ()n2 	 (B)	 Θ(log)n n2

	 (C)	 Θ(log)2 n 	 (D)	 Θ(log log)2 2 n

	 6.	 An array of n numbers is given, where n is an even
number. The maximum as well as the minimum of

these n numbers needs to be determined. Which of the
following is TRUE about the number of comparisons
needed?� [2007]

	 (A)	� At least 2n – c comparisons, for some constant c,
are needed.

	 (B)	 At most 1.5n − 2 comparisons are needed.
	 (C)	 At least n log

2
 n comparisons are needed.

	 (D)	 None of the above.

	 7.	 Consider the following C code segment:�

		 int IsPrime(n)

			 {

			 int i,n;

			 for(i=2; i<= sqrt(n); i ++)

			 if (n%i = =0)

			 {printf(“Not Prime\n”); return 0;}

			 return 1;

		 }

		 Let T(n) denote the number of times the for loop is exe-
cuted by the program on input n. Which of the following
is TRUE?� [2007]

	 (A)	 T n n T n n() () () ()= =Ο Ωand

	 (B)	 T n n T n() () () ()= =Ο Ωand 1

	 (C)	 T n n T n n() () () ()= =Ο Ωand

	 (D)	 None of the above

	 8.	 The most efficient algorithm for finding the number
of connected components in an undirected graph on
n vertices and m edges has time complexity� [2008]

	 (A)	 Q(n)	 (B)	 Q(m)	
	 (C)	 Q(m + n)	 (D)	 Q(mn)

	 9.	 Consider the following functions:

		 f (n) = 2n

		 g(n) = n!

		 h(n) = nlogn

		 Which of the following statements about the asymp-
totic behavior of f (n), g(n), and h(n) is true?� [2008]	
(A)	 f (n) = O(g(n)); g(n) = O(h(n))

	 (B)	 f (n) = W(g(n)); g(n) = O(h(n))
	 (C)	 g(n) = O(f (n)); h(n) = O(f (n))
	 (D)	 h(n) = O(f (n)); g(n) = W(f (n))

	10.	 The minimum number of comparisons required to
determine if an integer appears more than n/2 times
in a sorted array of n integers is� [2008]

	 (A)	 Q(n)	 (B)	 Q(log n)
	 (C)	 Q(log * n)	 (D)	 Q(1)

	11.	 We have a binary heap on n elements and wish to
insert n more elements (not necessarily one after
another) into this heap. The total time required for this
is� [2008]

3.94  |  Unit 3  •  Algorithms

	 (A)	 Q(log n)	 (B)	 Q(n)
	 (C)	 Q(n log n)	 (D)	 Q(n2)

	12.	 The running time of an algorithm is represented by
the following recurrence relation:� [2009]

T n

n n

T
n() =
≤







 +








3

3
cn otherwise

		 Which one of the following represents the time com-
plexity of the algorithm?

	 (A)	 q(n)	 (B)	 q(n log n)
	 (C)	 q(n2)	 (D)	 q(n2 log n)

	13.	 Two alternative packages A and B are available for
processing a database having 10k records. Package A
requires 0.0001 n2 time units and package B requires
10n log

10
 n time units to process n records. What is

the smallest value of k for which package B will be
preferred over A?� [2010]

	 (A)	 12	 (B)	 10
	 (C)	 6	 (D)	 5

	14.	 An algorithm to find the length of the longest mono-
tonically increasing sequence of numbers in an array
A[0 : n - 1] is given below.

		 Let L denote the length of the longest monotonically
increasing sequence starting at index in the array.

		 Initialize L
n-1

 = 1,

		 For all i such that 0 ≤ i ≤ n - 2

		
Li L A i A ii = 1 + , if [] < [+ 1],

1 otherwise

+1{

		 Finally the length of the longest monotonically
increasing sequence is Max (L

0
, L

1
,…L

n–1
)

	 Which of the following statements is TRUE?� [2011]
	 (A)	� The algorithm uses dynamic programming para-

digm.
	 (B)	� The algorithm has a linear complexity and uses

branch and bound paradigm.
	 (C)	� The algorithm has a non-linear polynomial com-

plexity and uses branch and bound paradigm.
	 (D)	 The algorithm uses divide and conquer paradigm.
	15.	 Which of the given options provides the increasing

order of asymptotic complexity of functions f
1
, f

2
, f

3

and f
4
?� [2011]

		 f
1
(n) = 2n

		 f
2
(n) = n3/2

		 f
3
(n) = n log

2
n

		 f n n n
4

2() log=
	 (A)	 f

3
, f

2
, f

4
, f

1
	 (B)	 f

3
, f

2
, f

1
, f

4

	 (C)	 f
2
, f

3
, f

1
, f

4
	 (D)	 f

2
, f

3
, f

4
, f

1

	16.	 Let W(n) and A(n) denote respectively, the worst-
case and average-case running time of an algorithm

executed on input of size n. Which of the following is
ALWAYS TRUE?� [2012]

	 (A)	 A(n) = W(W(n))	 (B)	 A(n) = Q(W(n))
	 (C)	 A(n) = O(W(n))	 (D)	 A(n) = o(W(n))
	17.	 The recurrence relation capturing the optimal execu-

tion time of the Towers of Hanoi problem with n discs
is � [2012]

	 (A)	 T(n) = 2T(n – 2) + 2	
	 (B)	 T(n) = 2T(n – 1) + n
	 (C)	 T(n) = 2T(n/2) + 1
	 (D)	 T(n) = 2T(n – 1) + 1
	18.	 A list of n strings, each of length n, is sorted into

lexicographic order using the merge sort algorithm.
The worst-case running time of this computation is
� [2012]

	 (A)	 O(n log n)	 (B)	 O(n2log n)
	 (C)	 O(n2 + log n)	 (D)	 O(n2)
	19.	 Consider the following function:

		 int unknown (int n) {

			 int i, j, k = 0;

			 for (i = n/2; i < = n; i++)

				 for (j = 2; j < = n; j = j*2)

					 k = k + n/2;

		 return (k);

		 }

		 The return value of the function is� [2013]
	 (A)	 Θ(n2)	 (B)	 Θ(n2log n)
	 (C)	 Θ(n3)	 (D)	 Θ(n3log n)
	20.	 The number of elements that can be sorted in Θ(log n)

time using heap sort is � [2013]
	 (A)	 Θ(1)

	 (B)	 Θ(log)n

	 (C)	 Θ log

log log

n

n











	 (D)	 Θ(log n)

	21.	 Which one of the following correctly determines the
solution of the recurrence relation with T(1) = 1

		 T n T
n

n() log ?= 





+2
2

� [2014]

	 (A)	 q(n)	 (B)	 q(n log n)
	 (C)	 q(n2)	 (D)	 q(log n)

	22.	 An algorithm performs (log N)1/2 find operations, N
insert operations, (log N)1/2 delete operations, and (log
N)1/2 decrease-key operations on a set of data items
with keys drawn from a linearly ordered set. For a
delete operation, a pointer is provided to the record
that must be deleted For the decrease – key opera-
tion, a pointer is provided to the record that has its
key decreased Which one of the following data struc-
tures is the most suited for the algorithm to use, if the

Chapter 1  •  Asymptotic Analysis  |  3.95

goal is to achieve the best total asymptotic complexity
considering all the operations?� [2015]

	 (A)	 Unsorted array
	 (B)	 Min-heap
	 (C)	 Sorted array
	 (D)	 Sorted doubly linked list

	23.	 Consider the following C function.

	 int fun1(int n) {
			 int i, j, k, p, q=0;
			 for (i=1; i<n; ++i) {
				 p=0;
				 for (j=n; j>1; j=j/2)
					 ++p;
				 for (k=1; k<p; k=k*2)
					 ++q;
				 }
				 return q;
			 }

		 Which one of the following most closely approxi-
mates the return value of the function fun1?� [2015]

	 (A)	 n3	 (B)	 n(log n)2

	 (C)	 n log    n	 (D)	 n log(log n)

	24.	 An unordered list contains n distinct elements. The
number of comparisons to find an element in this list
that is neither maximum nor minimum is� [2015]

	 (A)	 θ(n log n)	 (B)	 θ(n)
	 (C)	 θ(log n)	 (D)	 θ(1)

	25.	 Consider a complete binary tree where the left and the
right subtrees of the root are max-heaps. The lower
bound for the number of operations to convert the tree
to a heap is � [2015]

	 (A)	 Ω(log n)	 (B)	 Ω(n)
	 (C)	 Ω(n log n)	 (D)	 Ω(n2)

	26.	 Consider the equality i
i

n
3

0

=
=
∑ and the following

choices for X
	 1.	 θ(n4)
	 2.	 θ(n5)
	 3.	 O(n5)
	 4.	 Ω(n3)

		 The equality above remains correct if X is replaced by
� [2015]
	 (A)	 Only 1
	 (B)	 Only 2
	 (C)	 1 or 3 or 4 but not 2
	 (D)	 2 or 3 or 4 but not 1

	27.	 Consider the following array of elements

<89, 19, 50, 17, 12, 15, 2, 5, 7, 11, 6, 9, 100>

		 The minimum number of interchanges needed to con-
vert it into a max-heap is [2015]

	 (A)	 4	 (B)	 5
	 (C)	 2	 (D)	 3

	28.	 Let f(n) = n and g(n) = n(1 + sin n), where n is a positive
integer. Which of the following statements is/are cor-
rect?� [2015]

		 I.	 f(n) = O(g(n))

		 II.	 f(n) = Ω(g(n))
	 (A)	 Only I	 (B)	 Only II
	 (C)	 Both I and II	 (D)	 Neither I nor II

	29.	 A queue is implemented using an array such that
ENQUEUE and DEQUEUE operations are per-
formed efficiently. Which one of the following state-
ments is CORRECT (n refers to the number of items
in the queue)?� [2016]

	 (A)	 Both operations can be performed in O(1) time.
	 (B)	� At most one operation can be performed in O(1)

time but the worst case time for the other opera-
tion will be Ω (n).

	 (C)	� The worst case time complexity for both opera-
tions will be Ω (n).

	 (D)	� Worst case time complexity for both operations
will be Ω (logn).

	30.	 Consider a carry look ahead adder for adding two n -
bit integers, built using gates of fan - in at most two.
The time to perform addition using this adder is

� [2016]

	 (A)  Θ(1)	 (B)  Θ(log(n))

	 (C)  Θ n() 	 (D)  Θ(n)

	31.	 N items are stored in a sorted doubly linked list. For a
delete operation, a pointer is provided to the record to
be deleted. For a decrease - key operation, a pointer is
provided to the record on which the operation is to be
performed.

		 An algorithm performs the following operations on
the list in this order: Q (N) delete, O (logN) insert,
O (log N) find, and Q (N) decrease - key. What is the
time complexity of all these operations put together?

� [2016]
	 (A)	 O (log2N)	 (B)	 O(N)
	 (C)	 O(N2)	 (D)	 Q (N2logN)

	32.	 In an adjacency list representation of an undirected
simple graph G = (V,E), each edge (u,v) has two adja-
cency list entries:[v] in the adjacency list of u, and
[u] in the adjacency list of v. These are called twins of
each other. A twin pointer is a pointer from an adja-
cency list entry to its twin. If |E| = m and |V| = n, and
the memory size is not a constraint, what is the time
complexity of the most efficient algorithm to set the
twin pointer in each entry in each adjacency list?

� [2016]
	 (A)	 Θ(n2)	 (B)	 Θ(n + m)
	 (C)	 Θ(m2)	 (D)	 Θ(n4)

3.96  |  Unit 3  •  Algorithms

	33.	 Consider the following functions from positive inte-
gers to real numbers:

10, n , n, log
2
n,

100
n

.

		 The CORRECT arrangement of the above functions
in increasing order of asymptotic complexity is:
� [2017]

	 (A)	 2

100
log , ,10, ,n n n

n

	 (B)	 2

100
 ,10, log , ,n n n

n

	 (C)	 2

100
10, , , log ,n n n

n

	 (D)	 2
100

 , log , 10, ,n n n
n

	34.	 Consider the recurrence function

() ()2 1 2

2, 0 2

T n n
T n

n

 + >= < ≤

		 Then T(n) in terms of Θ notation is� [2017]
	 (A)	 Θ (log log n)	 (B)	 Θ (log n)

	 (C)	 ()nΘ 	 (D)	 Θ (n)

	35.	 Consider the following C function.
int fun (int n) {

int i, j;
for(i = 1; i <= n; i++) {

for (j = l; j < n; j += i) {
printf{“ %d %d”,i, j);
}

}

}

		 Time complexity of fun in terms of Θ notation is
� [2017]

	 (A) ()n nΘ 	 (B) Θ(n2)

	 (C) Θ(n log n)	 (D) Θ(n2 log n)

	36.	 A queue is implemented using a non-circular sin-
gly linked list. The queue has a head pointer and a
tail pointer, as shown in the figure. Let n denote the
number of nodes in the queue. Let enqueue be imple-
mented by inserting a new node at the head, and
dequeue be implemented by deletion of a node from
the tail.

head tail

		 Which one of the following is the time complexity
of the most time-efficient implementation of enqueue
and dequeue, respectively, for this data structure?	
� [2018]

	 (A)	 q(1), θ(1)	 (B)	 θ(1), θ(n)
	 (C)	 θ(n), θ(1)	 (D)	 θ(n), θ(n)

	37.	 Consider the following C code. Assume that unsigned
long int type length is 64 bits.

	 unsigned long int fun (unsigned long int n) {
	 unsigned long int i, j = 0, sum = 0;
	 for (i = n; i > 1. i = i/2) j++;
	 for (; j > 1; j = j/2) sum++;
	 return (sum);
	 }

	� The value returned when we call fun with the input 240
is:� [2018]

	 (A)	 4	 (B)	 5
	 (C)	 6	 (D)	 40

Chapter 1  •  Asymptotic Analysis  |  3.97

Answer Keys

Exercises

Practice Problems 1
	 1.  A	 2.  D	 3.  D	 4.  A	 5.  B	 6.  A	 7.  D	 8.  A	 9.  A	 10.  B
11.  A	 12.  A	 13.  B	 14.  A	 15.  B

Practice Problems 2
	 1.  A	 2.  A	 3.  A	 4.  B	 5.  A	 6.  A	 7.  D	 8.  B	 9.  A	 10.  A
11.  B	 12.  A	 13.  A	 14.  B	 15.  C

Previous Years’ Questions
	 1.  B	 2.  C	 3.  A	 4.  C	 5. 	 6.  B	 7.  B	 8.  C	 9.  D	 10.  A
	11.  B	 12.  A	 13.  C	 14.  A	 15.  A	 16.  C	 17.  D	 18.  B	 19.  B	 20.  C
	21.  A	 22.  A	 23.  D	 24.  D	 25.  A	 26.  C	 27.  D	 28.  D	 29.  A	 30.  B
	31.  C	 32.  B	 33.  B	 34.  B	 35.  C	 36.  B	 37.  B

	Unit 3: Programming and Data Structures
	PART B: Algorithms
	Chapter 1: Asymptotic Analysis
	Algorithm
	Set Representation
	Graph Representation
	Tree Representation
	Data Structure
	Asymptotic Notations
	Notations and Functions
	Exercises
	Previous Years’ Questions
	Answer Keys

