MECHANICAL ENGINEERING

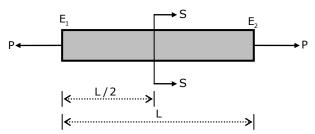
Q. No. 1 - 25 Carry One Mark Each

- 1. The partial differential equation $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \frac{\partial^2 u}{\partial x^2}$ is a
 - (A) Linear equation of order 2
 - (B) Non-linear equation of order 1
 - (C) Linear equation of order 1
 - (D) Non-linear equation of order 2

Answer: (D)

- 2. The eigen values of symmetric matrix are all
 - (A) Complex with non-zero positive imaginary part
 - (B) Complex with non-zero negative imaginary part
 - (C) Real
 - (D) Pure imaginary

Answer: (C)


3. Match the CORRECT pairs:

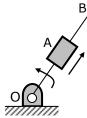
Numerical Integration Scheme

- **P.** Simpson's 3/8 Rule
- Q. Trapezoidal Rule
- **R.** Simpson's 1/3 Rule
- (A) P-2; Q-1; R-3
- (B) P-3; Q-2; R-1
- **Order of Fitting Polynomial**
- 1. First
- 2. Second
- **3.** Third
- (C) P-1; Q-2; R-3
- (D) P-3; Q-1; R-2

Answer: (D)

4. A rod of length L having uniform cross-sectional area A is subjected to a tensile force P as shown in the figure below. If the Young's modulus of the material varies linearly from E_1 to E_2 along the length of the rod, the normal stress developed at the section-SS is

- $(A) \quad \frac{P}{A}$
- (B) $\frac{P(E_1 E_2)}{A(E_1 + E_2)}$
- (C) $\frac{PE_2}{AE_1}$
- (D) $\frac{PE_1}{AE_2}$


Answer: (A)

5. The threaded bolts A and B of same material and length are subjected to identical tensile load. If the elastic strain energy stored in bolt A is 4 times that of the bolt B and the mean diameter of bolt A is 12mm, the mean diameter of bolt B in mm is

- (A) 16
- (B) 24
- (C) 36
- (D) 48

Answer: (B)

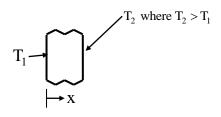
6. A link OB is rotating with a constant angular velocity of 2 rad/s in counter clockwise direction and a block is sliding radially outward on it with an uniform velocity of 0.75 m/s with respect to the rod, as shown in the figure below. If OA = 1m, the magnitude of the absolute acceleration of the block at location A in m/s^2 is

- (A) 3
- (B) 4

- (C) 5
- (D) 6

Answer: (C)

- **7.** For steady, fully developed flow inside a straight pipe of diameter D, neglecting gravity effects, the pressure drop Δp over a length L and the wall shear stress $\,\tau_{_{\! w}}\,$ are related by


 - $(A) \quad \tau_{\rm w} = \frac{\Delta p D}{4 \text{I}} \qquad \qquad (B) \quad \tau_{\rm w} = \frac{\Delta p D^2}{4 \text{I}^2} \qquad \qquad (C) \quad \tau_{\rm w} = \frac{\Delta p D}{2 L} \qquad \qquad (D) \quad \tau_{\rm w} = \frac{4 \Delta p L}{D}$

Answer: (A)

- 8. The pressure, dry bulb temperature, and relative humidity of air in a room are 1bar, 30°C and 70% respectively. If the saturated steam pressure at 30°C is 4.25kPa, the specific humidity of the room air in kg water vapour / kg dry air is
 - (A) 0.0083
- 0.0101 (B)
- (C) 0.0191
- (D) 0.0232

Answer: (C)

9. Consider one-dimensional steady state heat conduction, without heat generation, in a plane wall; with boundary conditions as shown in the figure below. The conductivity of the wall is given by $k = k_0 + bT$; where k_0 and b are positive constants and T is temperature.

As x increases, the temperature gradient (dT/dx) will

- Remain constant (B) Be zero (A)
- (C) Increase
- (D) Decrease

Answer: (D)

- 10. In a rolling process, the state of stress of the material undergoing deformation is
 - (A) Pure compression

(B) Pure shear

(C) Compression and shear (D) Tension and shear

Answer: **(C)**

11.	Match	the	CORRECT	pairs.

	Processes	Characteristics / Application						
P.	Friction Welding	1.	Non-consumable electrode					
Q.	Gas Metal Arc Welding	2.	Joining of thick plates					
R.	Tungsten Inert Gas Welding	3.	Consumable electrode wire					
S.	Electroslag Welding	4.	Joining of cylindrical dissimilar materials					
(A)	P-4;Q-3;R-1;S-2	Į	(B) P-4;Q-2;R-3;S-1					
(C)	P-2;Q-3;R-4;S-1		(D) P-2;Q-4;R-1;S-3					

Answer: (A)

12. A metric thread of pitch 2mm and thread angle 60° is inspected for its pitch diameter using 3-wire method.

The diameter of the best size wire in mm is

- (A) 0.866
- (B) 1.000
- (C) 1.154
- (D) 2.000

Answer: (C)

13. Customers arrive at a ticket counter at a rate of 50 per hour and tickets are issued in the order of their arrival. The average time taken for issuing a ticket is 1min. Assuming that customer arrivals form a Poisson process and service times are exponentially distributed, the average waiting time in queue in minutes is:

- (A) 3
- (B) 4
- (C) 5
- (D) 6

Answer: (C)

14. In simple exponential smoothing forecasting, to give higher weightage to recent demand information, the smoothing constant must be close to

- (A) -1
- (B) zero
- (C) 0.5
- (D) 1

Answer: (D)

	(A)	160	(B)	167.6	(C)	1600	(D)	1675.5
Ans	wer:	(D)						
16.	A cu	be shaped of	casting solidif	es in 5 mi	nutes. The soli	dification t	ime in minutes	s for a cube of the sam
	mate	rial, which	is 8 times heav	ier than th	e original casti	ng will be		
	(A)	10	(B)	20	(C)	24	(D)	40
Ans	wer:	(B)						
17.	For a	ductile ma	terial, toughne	ss is a mea	sure of			
	(A)	Resistance	e to scratching					
	(B)	Ability to	absorb energy	up to fract	ture			
	(C)	Ability to	absorb energy	till elastic	limit			
	(D)	Resistance	e to indentation	n				
Ans	wer:	(B)						
18.	In or	der to have	maximum pov	ver from a	Pelton turbine,	the bucket	speed must be	
	(A)	Equal to the	he jet speed					
	(B)	Equal to h	nalf the jet spec	ed				
	(C)	Equal to t	wice the jet sp	eed				
	(D)	Independe	ent of the jet sp	peed				
Ans	wer:	(B)						
19.	Cons	sider one-di	mensional ste	ady state l	neat conduction	n along x-a	xis $(0 \le x \le L)$), through a plane was

generated uniformly throughout the wall. Choose the CORRECT statement.

	(B)	The maximum temperature inside the wall must be greater than 100°C										
	(C)	The temperature d	The temperature distribution is linear within the wall									
	(D)	The temperature d	listribu	ntion is symmetric al	bout tl	ne mid-plane of the	wall					
Ansv	ver:	(B)										
20.	А су	linder contains 5n	n ³ of	ideal gas at a pres	sure o	of 1 bar. This gas	is con	npressed in a reversible				
	isoth	ermal process till its	s press	ure increases to 5 ba	ar. The	e work in kJ require	d for t	his process is				
	(A)	804.7	(B)	953.2	(C)	981.7	(D)	1012.2				
Ansv	ver:	(A)										
21.	A lo	ng thin walled cylin	ndrical	shell, closed at both	h ends	s, is subjected to an	intern	al pressure. The ratio of				
	the h	oop stress (circumfe	erentia	l stress) to longitudi	nal sti	ress developed in th	e shell	is				
	(A)	0.5	(B)	1.0	(C)	2.0	(D)	4.0				
Ansv	ver:	(C)										
22.	If tw	o nodes are observe	ed at a	frequency of 1800	rpm d	uring whirling of a	simply	y supported long slender				
	rotati	ing shaft, the first ca	ritical	speed of the shaft in	rpm i	S						
	(A)	200	(B)	450	(C)	600	(D)	900				
Ansv	ver:	(A)										
23.	A pla	anar closed kinemat	tic cha	in is formed with ri	gid lir	nks PQ = 2.0m, QR	x = 3.0	m, $RS = 2.5$ m and $SP =$				
	2.7m	with all revolute jo	ints. T	The link to be fixed t	o obta	in a double rocker ((rockei	r-rocker) mechanism is				
	(A)	PQ	(B)	QR	(C)	RS	(D)	SP				
Ansv	ver:	(C)										

(A) The direction of heat transfer will be from the surface at 100°C to surface at 0°C.

(A)	0.5		
(B)	Greater than zero and less than 0.5		
(C)	Greater than 0.5 and less than 1		
(D)	1.0		
ver:	(B)		
Choo	se the CORRECT set of functions, which are	e linea	rly dependent.
(A)	$\sin x$, $\sin^2 x$ and $\cos^2 x$	(B)	cosx, sinx and tan x
(C)	$\cos 2x$, $\sin^2 x$ and $\cos^2 x$	(D)	cos2x, sinx and cosx
ver:	(C)		
	Q. No. 26 – 55 Car	ry Tw	o Marks Each
The	following surface integral is to be evaluated	over a	sphere for the given steady velocity vector field,
F = x	xi + yj + zk defined with respect to a Cartes	sian co	ordinate system having i, j, and k as unit base
vecto	ors.		
$\iint_{s} \frac{1}{4}$	(F.n)dA		
When	re S is the sphere, $x^2 + y^2 + z^2 = 1$ and n is the	ne outw	vard unit normal vector to the sphere. The value of
the si	urface integral is		
	(B) (C) (D) Wer: Chood (A) (C) Wer: The final series of the series	(B) Greater than zero and less than 0.5 (C) Greater than 0.5 and less than 1 (D) 1.0 Wer: (B) Choose the CORRECT set of functions, which are (A) $\sin x$, $\sin^2 x$ and $\cos^2 x$ (C) $\cos 2x$, $\sin^2 x$ and $\cos^2 x$ Wer: (C) Q. No. 26 – 55 Car The following surface integral is to be evaluated $F = xi + yj + zk$ defined with respect to a Cartest vectors. $\iint_s \frac{1}{4} (F.n) dA$	(B) Greater than zero and less than 0.5 (C) Greater than 0.5 and less than 1 (D) 1.0 Wer: (B) Choose the CORRECT set of functions, which are linear (A) $\sin x$, $\sin^2 x$ and $\cos^2 x$ (B) (C) $\cos 2x$, $\sin^2 x$ and $\cos^2 x$ (D) Wer: (C) Q. No. 26 – 55 Carry Two The following surface integral is to be evaluated over a $F = xi + yj + zk$ defined with respect to a Cartesian covectors. $\iint_{s} \frac{1}{4} (F.n) dA$ Where S is the sphere, $x^2 + y^2 + z^2 = 1$ and n is the outwood of the context of the c

(C) $3\frac{\pi}{4}$

(D) 4π

(B) 2π

(A) π

(A)

Answer:

Let X be a nominal variable with mean 1 and variance 4. The probability P(X < 0) is

- The function f(t) satisfies the differential equation $\frac{d^2f}{dt^2} + f = 0$ and the auxiliary conditions, 27. $f(0) = 0, \frac{df}{dt}(0) = 4$. The Laplace transform of f(t) is given by
- (B) $\frac{4}{s+1}$ (C) $\frac{4}{s^2+1}$

Answer:

28. Specific enthalpy and velocity of steam at inlet and exit of a steam turbine, running under steady state, are as given below:

	Specific enthalpy (kJ/kg)	Velocity(m/s)
Inlet steam condition	3250	180
Exit steam condition	2360	5

The rate of heat loss from the turbine per kg of steam flow rate is 5 kW. Neglecting changes in potential energy of steam, the power developed in kW by the steam turbine per kg of steam flow rate, is

- (A) 901.2
- (B) 911.2
- 17072.5
- 17082.5

(A) Answer:

- **29.** Water is coming out from a tap and falls vertically downwards. At the tap opening, the stream diameter is 20mm with uniform velocity of 2 m/s. Acceleration due to gravity is 9.81 m/s². Assuming steady, inviscid flow, constant atmospheric pressure everywhere and neglecting curvature and surface tension effects, the diameter is mm of the stream 0.5m below the tap is approximately
 - (A) 10
- (B) 15
- (C) 20
- 25 (D)

Answer: (B)

30. A steel ball of diameter 60 mm is initially in thermal equilibrium at 1030°C in a furnace. It is suddenly removed from the furnace and cooled in ambient air at 30°C, with convective heat transfer coefficient h=20 W/m²K. The thermo-physical properties of steel are: density $\rho = 7800 \text{ kg/m}^3$, conductivity

 $k = 40 \frac{W}{mK}$ and specific heat c=600 J/kgK. The time required in seconds to cool the steel ball in air from

1030°C to 430°C is

(A) 519

(B) 931

(C) 1195

(D) 2144

Answer:

(D)

31. A flywheel connected to a punching machine has to supply energy of 400 Nm while running at a mean angular speed of 20 radians/s. If the total fluctuation of speed is not to exceed $\pm 2\%$, the mass moment of inertia of the flywheel in $kg-m^2$ is

(A) 25

(B) 50

(C) 100

(D) 125

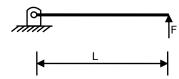
Answer: (A)

32. A compound gear train with gears P, Q, R and S has number of teeth 20, 40, 15 and 20, respectively. Gears Q and R are mounted on the same shaft as shown in the figure below. The diameter of the gear Q is twice that of the gear R. If the module of the gear R is 2 mm, the center distance in mm between gears P and S is

(A) 40

(B) 80

(C) 120


(D) 160

(B)

Answer:

33. A pin jointed uniform rigid rod of weight W and Length L is supported horizontally by an external force F as shown in the figure below. The force F is suddenly removed. At the instant of force removal, the

magnitude of vertical reaction developed at the support is

(A)	zero

(B)
$$\frac{W}{4}$$

(C)
$$\frac{W}{2}$$

Answer: (B)

34. Two cutting tools are being compared for a machining operation. The tool life equations are:

Carbide tool: VT

$$VT^{1.6} = 3000$$

HSS tool:

$$VT^{0.6} = 200$$

Where V is the cutting speed in m/min and T is the tool life in min. The carbide toll will provide higher tool life if the cutting speed in m/min exceeds

(A) 15.0

(B) 39.4

(C) 49.3

(D) 60.0

Answer: (B)

35. In a CAD package, mirror image of a 2D point P(5, 10) is to be obtained about a line which passes through the origin and makes an angle of 45° counter-clockwise with the X-axis. The coordinates of the transformed point will be

(A) (7.5, 5)

(B) (10, 5)

(C) (7.5, -5)

(D) (10, -5)

Answer: (B)

36. A linear programming problem is shown below:

Maximize 3x + 7y

 $3x + 7y \le 10$

Subject to $4x + 6y \le 8$

 $x, y \ge 0$

It has

(A) An unbounded objective function

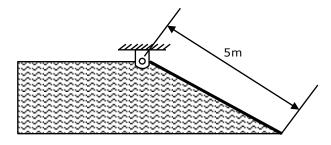
(B) Exactly one optimal solution

(C) Exactly two optimal solutions

(D) Infinitely many optimal solutions

Answer: (B)

37.	Cylin	ndrical pins of	$f 25^{+0.020}$ m	m diameter ar	re electropl	lated in a	shop. Thick	eness of the	plating is
	30+2.	⁰ micron. Neg	glecting ga	ge tolerances	, the size	of the GO	gage in mn	n to inspect	the plated
	comp	ponents is							
	(A)	25.042	(B)	25.052	(C)	25.074	(D)	25.084	
Ansv	ver:	(D)							
38.	Duri	ng the electrocl	nemical ma	chining (ECM) of iron (at	omic weigh	nt=56, valency	=2) at current	of 1000 A
	with	90% current ef	ficiency, th	e material rem	oval rate w	as observed	d to be 0.26 gm	n/s. If Titaniı	ım (atomic
	weig	tht = 48, valence	cy=3) is m	achined by the	e ECM pro	cess at the	current of 20	00 A with 90	0% current
	effic	iency, the expe	cted materia	al removal rate	in gm/s wi	ll be			
	(A)	0.11	(B)	0.23	(C)	0.30	(D)	0.52	
Ansv	ver:	(C)							
39.	A siı	ngle degree of f	freedom sys	stem having m	ass 1 kg an	d stiffness	10kN/m initial	lly at rest is s	ubjected to
	an in	npulse force of	magnitude	5 kN for 10 ⁻⁴	seconds. T	he amplitud	le in mm of the	e resulting fre	e vibration
	is		C			1		C	
	(A)	0.5	(B)	1.0	(C)	5.0	(D)	10.0	
Ansv	wer:	(C)							
40.	A ba	r is subjected t	to fluctuating	ng tensile load	from 20 k	N to 100 k	N. The mater	ial has yield	strength of
	240	MPa and endur	ance limit i	n reversed ber	nding is 160	MPa. Aco	cording to the	Soderberg pr	inciple, the
	area	of cross-section	n in mm² of	the bar for a f	actor of saf	ety of 2 is			
	(A)	400	(B)	600	(C)	750	(D)	1000	
Ansv	wer:	(D)							


- 41. A simply supported beam of length L is subjected to a varying distributed load $\sin\left(3\pi\frac{x}{L}\right)Nm^{-1}$, where the distance x is measured from the left support. The magnitude of the vertical force in N at the left support is
 - (A) zero
- (B) $\frac{L}{3\pi}$
- (C) $\frac{L}{\pi}$
- (D) $\frac{2L}{\pi}$

Answer: (B)

- 42. Two large diffuse gray parallel plates, separated by a small distance, have surface temperatures of 400 K and 300 K. If the emissivities of the surfaces are 0.8 and the Stefan-Boltzmann constant is $5.67 \times 10^{-8} \text{W/m}^2 \text{K}^4$, the net radiation heat exchange rate in kW/m² between the two plates is
 - (A) 0.66
- (B) 0.79
- (C) 0.99
- (D) 3.96

Answer: (A)

43. A hinged gate of length 5 m, inclined at 30° with the horizontal and with water mass on its left, is shown in figure below. Density of water is 1000 kg/m². The minimum mass of the gate in kg per unit width (perpendicular to the plane of paper), required to keep it closed is

- (A) 5000
- (B) 6600
- (C) 7546
- (D) 9623

Answer: (D)

44. The pressure, temperature and velocity of air flowing in a pipe are 5 bar, 500 K and 50 m/s, respectively. The specific heats of air at constant pressure and at constant volume are 1.005 kJ/kgK and 0.718 kJ/kgK,

respectively. Neglect potential energy. If the pressure and temperature of the surroundings are 1 bar and 300 K, respectively, the available energy in kJ/kg of the air stream is

- (A) 170
- (B) 187
- (C) 191
- (D) 213

(B) Answer:

The probability that a student knows the correct answer to a multiple choice question is $\frac{2}{3}$. If the student **45.** does not know the answer, then the student guesses the answer. The probability of the guessed answer being correct is $\frac{1}{4}$. Given that the student has answered the question correctly, the conditional probability that the student known the correct answer is

- (B) $\frac{3}{4}$ (C) $\frac{5}{6}$

Answer: (D)

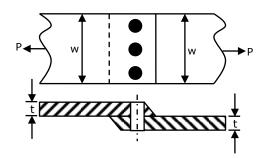
The solution to the differential equation $\frac{d^2u}{dx^2} - k\frac{du}{dx} = 0$ where k is a constant, subjected to the boundary 46. conditions u(0)=0 and u(L)=U, is

(A) $u = U \frac{x}{I}$

(B) $u = U \left(\frac{1 - e^{kx}}{1 - e^{kL}} \right)$

(C) $u = U \left(\frac{1 - e^{-kx}}{1 - e^{-kL}} \right)$

(D) $u = U \left(\frac{1 + e^{-kx}}{1 + e^{-kL}} \right)$


The value of the definite integral $\int_{1}^{e} \sqrt{x} \ln(x) dx$ is

- (A) $\frac{4}{9}\sqrt{e^3} + \frac{2}{9}$ (B) $\frac{2}{9}\sqrt{e^3} \frac{4}{9}$ (C) $\frac{2}{9}\sqrt{e^3} + \frac{4}{9}$ (D) $\frac{4}{9}\sqrt{e^3} \frac{2}{9}$

Answer:

Common Data Questions: 48 & 49

A single riveted lap joint of two similar plates as shown in the figure below has the following geometrical and material details:

Width of the plate w=200 mm, thickness of the plate t=5 mm, number of rivets n=3, diameter of the rivet d_r =10mm, diameter of the rivet hole d_h =11mm, allowable tensile stress of the plate σ_p =200MPa, allowable shear stress of the rivet σ_s =100 MPa and allowable bearing stress of the σ_c =150 MPa

- 48. If the rivets are to be designed to avoid crushing failure, the maximum permissible load P in kN is
 - (A) 7.50
- (B) 15.00
- (C) 22.50
- (D) 30.00

Answer: (C)

- 49. If the plates are to be designed to avoid tearing failure, the maximum permissible load P in kN is
 - (A) 83
- (B) 125
- (C) 167
- (D) 501

Answer: (C)

Common Data Questions: 50 & 51

Water (specific heat, $c_p = 4.18 \, kJ \, / \, kgK$) enters a pipe at a rate of 0.01 kg/s and a temperature of 20°C. The pipe, of diameter 50 mm and length 3m, is subjected to a wall heat flux $q_w^{"}$ in $\frac{W}{m^2}$.

If q _v	y = 2500x, where x	is in n	n and in the directi	on of t	flow (x=0 at the inl	et), the	e bulk mean temperature			
of the water leaving the pipe in °C is										
(A)	42	(B)	62	(C)	74	(D)	104			
ver:	(B)									
If q	$_{\rm w}^{'} = 5000$, and the	convec	ction heat transfer	coeff	icient at the pipe	outlet	is $1000W/m^2K$, the			
temp	erature in °C at the	inner	surface of the pipe	at the o	outlet is					
(A)	71	(B)	76	(C)	79	(D)	81			
wer:	(D)									
		Staten	nent for Linked An	iswer	Questions: 52 & 53	3				
In or	thogonal turning of	a bar	of 100 mm diameter	er with	a feed of 0.25 mm	/rev, d	epth of cut of 4 mm and			
cuttii	ng velocity of 90 m	/min, i	it is observed that t	he mai	n (tangential) cuttii	ng forc	e is perpendicular to the			
fricti	on force acting at the	ne chip	-tool interface. The	e main	(tangential) cutting	force	is 1500 N.			
The	orthogonal rake ang	de of tl	he cutting tool in de	egree is	S					
(A)	Zero	(B)	3.58		5	(D)	7.16			
ver:	(A)									
	(11)									
The	normal force acting	at the	chip-tool interface	in N is						
(A)	1000	(B)	1500	(C)	2000	(D)	2500			
ver:	(B)									
	of the (A) wer: If q temp (A) wer: The (A) wer:	of the water leaving the (A) 42 wer: (B) If $q_w^{"} = 5000$, and the temperature in °C at the (A) 71 wer: (D) In orthogonal turning of cutting velocity of 90 m friction force acting at the The orthogonal rake ang (A) Zero wer: (A) The normal force acting (A) 1000	of the water leaving the pipe in (A) 42 (B) wer: (B) If $q_w^* = 5000$, and the convect temperature in °C at the inner set (A) 71 (B) wer: (D) Staten In orthogonal turning of a bar cutting velocity of 90 m/min, if friction force acting at the chip The orthogonal rake angle of the (A) Zero (B) wer: (A) The normal force acting at the (A) 1000 (B)	of the water leaving the pipe in °C is (A) 42 (B) 62 wer: (B) If q'_w = 5000, and the convection heat transfer temperature in °C at the inner surface of the pipe in (A) 71 (B) 76 wer: (D) Statement for Linked And In orthogonal turning of a bar of 100 mm diameter cutting velocity of 90 m/min, it is observed that it friction force acting at the chip-tool interface. The The orthogonal rake angle of the cutting tool in decomposition (A) Zero (B) 3.58 wer: (A) The normal force acting at the chip-tool interface (A) 1000 (B) 1500	of the water leaving the pipe in °C is (A) 42 (B) 62 (C) wer: (B) If q'_w = 5000, and the convection heat transfer coeffit temperature in °C at the inner surface of the pipe at the C (A) 71 (B) 76 (C) wer: (D) Statement for Linked Answer of the cutting velocity of 90 m/min, it is observed that the main friction force acting at the chip-tool interface. The main the orthogonal rake angle of the cutting tool in degree is (A) Zero (B) 3.58 (C) wer: (A) The normal force acting at the chip-tool interface in N is (A) 1000 (B) 1500 (C)	of the water leaving the pipe in °C is (A) 42 (B) 62 (C) 74 wer: (B) If q _w = 5000, and the convection heat transfer coefficient at the pipe temperature in °C at the inner surface of the pipe at the outlet is (A) 71 (B) 76 (C) 79 wer: (D) Statement for Linked Answer Questions: 52 & 5. In orthogonal turning of a bar of 100 mm diameter with a feed of 0.25 mm cutting velocity of 90 m/min, it is observed that the main (tangential) cutting friction force acting at the chip-tool interface. The main (tangential) cutting The orthogonal rake angle of the cutting tool in degree is (A) Zero (B) 3.58 (C) 5 wer: (A) The normal force acting at the chip-tool interface in N is (A) 1000 (B) 1500 (C) 2000	(A) 42 (B) 62 (C) 74 (D) wer: (B) If $q_w^{'} = 5000$, and the convection heat transfer coefficient at the pipe outlet temperature in °C at the inner surface of the pipe at the outlet is (A) 71 (B) 76 (C) 79 (D) wer: (D) Statement for Linked Answer Questions: 52 & 53 In orthogonal turning of a bar of 100 mm diameter with a feed of 0.25 mm/rev, d cutting velocity of 90 m/min, it is observed that the main (tangential) cutting force friction force acting at the chip-tool interface. The main (tangential) cutting force The orthogonal rake angle of the cutting tool in degree is (A) Zero (B) 3.58 (C) 5 (D) wer: (A) The normal force acting at the chip-tool interface in N is (A) 1000 (B) 1500 (C) 2000 (D)			

Statement for Linked Answer Questions: 54 & 55

In a simple Brayton cycle, the pressure ration is 8 and temperatures at the entrance of compressor and turbine are 300 K and 1400 K, respectively. Both compressor and gas turbine have isentropic efficiencies equal to 0.8. For the gas, assume a constant value of c_p (specific heat at constant pressure) equal to 1 kJ/kgK and ratio of specific heats as 1.4. Neglect changes in kinetic and potential energies.

54.	The power required by the compressor in kW/kg of gas flow rate is							
	(A)	194.7	(B)	243.4	(C)	304.3	(D)	378.5
Ansv	ver:	(C)						
55.	The	thermal efficiency			e (%) 1s			
	(A)	24.8	(B)	38.6	(C)	44.8	(D)	53.1
Ansv	ver:	(A)						
				GENERA	L APTI	TUDE		
			9	Q. No. 56 – 60 C	arry On	e Mark Each		
56.	Com	plete the sentence) :					
	Univ	ersalism is to par	ticularisr	n as diffuseness i	s to			
	(A)	specificity	(B)	neutrality	(C)	generality	(D)	adaptation
Ansv	wer:							
57.	Wor	e you a bird, you .		in the sky				
31.		•		in the sky.	(P)	1 11 0		
	(A)	would fly			(B)	shall fly		
	(C)	should fly			(D)	shall have flown		
Ansv	ver:	(A)						

58.	Which one of the following options is the closest in meaning to the word given below?								
	Nadi	ir							
	(A)	Highest	(B)	Lowest	(C)	Medium	(D)	Integration	
Ansv	ver:	(B)							
59.	Choo	ose the grammatical	ly INC	CORRECT sentence	»:				
	(A)	He is of Asian ori	gin						
	(B)	They belonged to	Africa	l					
	(C)	She is an Europea	ın						
	(D)	They migrated from	om Ind	ia to Australia					
Ansv	ver:	(C)							
60.	Wha	t will be the maxim	um sui	m of 44, 42, 40,?	?				
	(A)	502	(B)	504	(C)	506	(D)	500	
Ansv	ver:	(C)							
			2). No. 61 – 65 Carr	ry Two	o Marks Each			
61.	Out	of all the 2-digit int	tegers	between 1 and 100.	, a 2-d	igit number has to	be sele	ected at random. What is	
	the p	robability that the s	elected	d number is not divi	isible t	y 7?			
	(A)	13/90	(B)	12/90	(C)	78/90	(D)	77/90	
Ansv	ver:	(D)							
62.								bus at 30 km/h and the	
		•		verage of the touris		-			
	(A)	36	(B)	30	(C)	24	(D)	18	
Ansv	ver:	(C)							

63. Find the sum of the expression

$$\frac{1}{\sqrt{1}+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \dots + \frac{1}{\sqrt{80}+\sqrt{81}}$$

- (A) 7
- (B) 8
- (C) 9

(D) 10

Answer: (B)

64. The current erection cost of a structure is Rs. 13,200. If the labour wages per day increase by 1/5 of the current wages and the working hours decrease by 1/24 of the current period, then the new cost of erection in Rs. is

- (A) 16,500
- (B) 15,180
- (C) 11,000
- (D) 10,120

Answer: (B)

65. After several defeats in wars, Robert Bruce went in exile and wanted to commit suicide. Just before committing suicide, he came across a spider attempting tirelessly to have its net. Time and again the spider failed but that did not deter it to refrain from making attempts. Such attempts by the spider made Bruce curious. Thus, Bruce started observing the near-impossible goal of the spider to have the net. Ultimately, the spider succeeded in having its net despite several failures. Such act of the spider encouraged Bruce not to commit suicide. And then, Bruce went back again and won many a battle, and the rest is history.

Which one of the following assertions is best supported by the above information?

- (A) Failure is the pillar of success
- (B) Honesty is the best policy
- (C) Life begins and ends with adventures
- (D) No adversity justifies giving up hope

Answer: (D)