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CHAPTER HIGHLIGHTS

Dimensional Analysis
It is a mathematical technique which involves the study of 
dimensions for solving engineering problems. Each physi-
cal phenomenon can be expressed by an equation which 
relates several dimensions and non-dimensional quantities.

Buckingham’s ∏–Theorem
If there are n variables in a dimensionally homogenous (i.e., 
each additive term has the same dimensions) equation and 
if these variables contain m fundamentals (basic or primary) 
dimensions, then the variables can be arranged into (n–m) 
dimensionless terms (or parameters ) called –terms and 
the equation can be written in terms of these (n–m) �terms.

Dimensionless Numbers
Reynolds Number (Re)
It is defi ned as the ratio of inertia force to the viscous force.

R
VL

e =
ρ
μ

Where  and  are the density and viscosity of the fl uid 
respectively. V is a characteristic velocity and L is a charac-
teristic length.

For pipe fl ow, characteristic length is equal to the diam-
eter of the pipe (D) and hence

R
VD

e  pipe flow =
ρ
μ

Froude Number (Fr)
It is defi ned as the square root of the ratio of inertia force to 
the gravity force

F
V

Lg
r =

Euler Number (Eu)
It is defi ned as the square root of the ratio of inertia force to 
the pressure force.

Eu
V

P
=

ρ

  Where  p is the pressure diff erence 
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Weber Number (we)
It is defined as the square root of the ratio of inertia force to 
the surface tension force.

W
V L

e =
ρ
σ

2

 
i.e., W

V

L

e =
σ
ρ

Where  is the surface tension

Match Number (ma)
It is defined as the square root of the ratio of inertia force to 
the elastic force.

Ma
V

C
=

Where C is the velocity of sound in the fluid.

Average Velocity (Vavg)
It is defined as the average speed through a cross-section 
and is defined as

V
u r dA

A
A

avg =
∫ ρ

ρ

( )

Where  is the fluid density, A is the cross-sectional area, 
u(r) is the velocity at any radius ‘r’ (referred to the pipe 
centre) the distance from the pipe centerline.

For incompressible flow in a circular pipe of radius R,

V
R

U r rdr
O

R

avg = ∫
2

2
( )

Laminar, Transitional and Turbulent Flows
The three flow regimes that can be identified are: (1) lami-
nar (2) transitional and (3) turbulent. Laminar flow is char-
acterized by smooth streamlines and it is a highly ordered 
motion. Turbulent flow is characterized by velocity fluctua-
tions and it is a highly disordered motion. In transitional 
flow, the flow fluctuates between laminar and turbulent in a 
highly disordered manner.

Critical Reynold’s Numbers
	 1.	 For flow in a circular pipe, Reynold’s number is given 

by R
V D

e
AV=

ρ
μ

,

		  where,
		   = density of fluid flowing inside the pipe
		  VAV = average velocity of flow inside the pipe
		  D = diameter of the pipe and
		   = dynamic viscosity of the fluid inside the pipe.
	 2.	 For flow through ducts (or non-circular cross-section 

pipes), Reynold’s number is based on the hydraulic 
mean diameter (Dm) instead of D.

		   For non-circular pipes, R
V D

e
AV m=

ρ
μ

,  where

D
A

P
m

w

= =hydraulicdiameter of duct
4

		  Here, A = Area of flow and
		  Pw = wetted perimeter of duct

		  For example, for a rectangular duct of width a and 
height b shown in figure,

b

a

		  Hydraulic mean diameter, 

D
A

P

ab

a b

ab

a b
m

w

= =
+

=
+

4 4

2

2

( ) ( )

	 3.	 For flow over flat plate, Reynold’s number is given by

R
Vx

e =
ρ
μ

,  

		  where x = distance of the point on the plate from where 
the solid surface starts (measured in the direction of 
flow),

		    The Reynolds’s number at and below which the 
flow remains laminar (i.e., all turbulences are damped 
down), is called lower critical Reynolds’s number.

		    The Reynolds’s number at and above which the flow is 
turbulent (i.e., flow cannot remain laminar) is called the 
upper critical reynolds’s number. In between these two 
critical values of Reynolds’s number, flow is transitory.

		    The lower critical Reynolds’s number and upper 
critical Reynolds’s number for various types of flows 
are tabulated below.

Sl. 
No

Flow 
Condition Laminar Transitional Turbulent

1 Flow in 
circular 
pipes

Re  2000 2000 < Re 
< 4000

Re  4000

2 Open 
channel 
flow

Re  500 500 < Re 
< 1000

Re  1000

3 Flow over 
plate

Re < 5  105  Re > 5  105

Entrance Region and Fully Developed Flow
When a fluid enters a circular pipe at a nearly uniform veloc-
ity, a velocity gradient develops along the pipe. A boundary 
layer (flow region in which effects of the viscous shearing 
forces caused by the fluid viscosity are significant) is pro-
duced which grows in thickness to completely fill the pipe. 
At a point further down stream, the velocity becomes fully 
developed and the region from the pipe inlet to this point 
is called the entrance region whose length is called the 
entrance length ‘Le’.
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The region beyond the entrance region in which the velocity 
profile is fully developed and remains unchanged in the flow 
direction is called the ‘fully developed region’

VAvg
VAvg

Boundary layer
region

94

Developing
velocity profile

X

Irrotational
(core) flow
region

hypothetical
boundary
surface

Entrance region

Fully developed
velocity profile

Fully
developed
region

At the irrotational (core) flow region, viscous effects are 
negligible and velocity remains essentially constant in the 
radial direction. This region is separated from the boundary 
layer region by a hypothetical boundary surface.

The effect of the entrance region is to increase the aver-
age friction factor for the entire pipe. the increase being sig-
nificant for short pipes but negligible for long pipes.

Entrance Length

In laminar flow = ≈
Le

D
Re0 06.

In turbulent flow, Le

D
Re4 4

1

6.

Le

D
is sometimes referred to as the dimensionless entrance 

length.

Entrance length for turbulent flow

is much shorter than for  laminar flow

Relationship Between Shear Stress 
and Pressure Gradient
Let us consider a fluid element whose velocity distribution 
is shown in the following figure, where the shear stresses () 
acting on the two fluid layers is also shown.









+ dy¶y
¶tt









+ dy¶y
¶Tt

dy

t

t

x

y

Velocity
profile

The motion of the fluid element will be resisted by shearing 
or frictional forces which must be overcome by maintaining 
a pressure gradient in the direction of flow. Here,

∂
∂

=
∂
∂

τ
y

P

x

i.e., the pressure gradient 
∂
∂

⎛
⎝⎜

⎞
⎠⎟

p

x
in the direction of flow 

(steady and uniform) is equal to the shear gradient 
∂
∂

⎛
⎝⎜

⎞
⎠⎟

τ
y

in the direction normal to the direction of flow. The above 
equation holds for all flow conditions and geometries

Laminar Flow in Horizontal 
Pipes
The following discussion is based on the steady laminar 
incompressible flow of a fluid with constant properties in 
the fully developed region of a straight circular pipe unless 
stated other wise.

	 1.	 A fully developed laminar pipe flow is merely a bal-
ance between pressure and viscous forces. For the 
steady fully developed laminar flow of a fluid through 
a horizontal circular pipe of radius R, the shear stress 
distribution is given by 

                    τ =
−∂
∂

⋅
p

x

r

2
� (1)

		    Here x is the distance along the pipe.

		    The pressure gradient in the x-direction ∂
∂
p

x
 is larger 

in the entrance region than in the fully developed 

region where it is a constant, ∂
∂

=
−p

x

p

L

Δ  where  p is 

the pressure drop over a flow section of length L.

τ =
Δp

L

r

2

		  Few highlighting points that can be deciphered from 
equation (1) are 

		    (i) �Flow will occur only if a pressure gradient exists 
in the flow.

		   (ii) �Pressure decreases in the direction of flow due to 
viscous effects

		  (iii) �Shear stress varies linearly across the flow section 
with a value of zero at the centre of the pipe (r = 0) 

and with a maximum value =
−∂
∂

=⎛
⎝⎜

⎞
⎠⎟

p

x

R p

L

R

2 2

Δ
at 

the pipe wall.

		  The shear stress at the pipe wall is called the wall shear 
stress .

≈
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τω =
Δp

L

R

2

τ τω=
r

R

		  The wall shear stress is highest at the pipe inlet and it 
decreases gradually to the fully developed value. In a 
steady fully developed flow, wall shear stress remains 
constant. The above four equation are valid for turbu-
lent flow also.

		    The equations stated in the following section rest on 
the following two assumptions:

		   (i)	 Fluid is Newtonian
		  (ii)	� No slip of fluid particles occurs at the boundary 

(no-slip condition), i.e., fluid particles adjacent to 
the pipe will have zero velocity.

	 2.	 Velocity profile (u (r)): In a fully developed laminar 
flow, there is no motion in the radial direction and thus 
the velocity component in the direction normal to the 
pipe axis is every where zero.

		    For a steady fully developed pipe flow,

		  (i)	�
∂
∂

= ⇒ =
u

x
r x u u r( , ) ( ).0 Velocity contains only 

an axial component, which is a function of only 
the radial component.

		  (ii)	� Acceleration experienced by the fluid is zero Local 
acceleration is zero as the flow is steady and con-
vective acceleration is zero as the flow is fully 
developed.

		  The velocity profile is given by

              u r
R p

L

r

R
( ) = ⎛

⎝⎜
⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

2 2

24
1

μ
Δ

� (2)

Velocity profile of a fully developed

laminar flow in a pipee is parabolic while

for a fully developed turbulent flow,   it is

much flatter.

		    The velocity profile has a maximum value 

u
R p

L
max = ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

2

4μ
Δ

at the pipe centerline and a mini-

mum value (= zero) at the pipe wall.

u r u
r

R
( ) max= − ⎛

⎝⎜
⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟1

2

In a fully developed laminar pipe flow  the

average velocit

,

yy is one half of the maximum

velocity i.e., avgu Vmax = 2

u r V
r

R
( ) = − ⎛

⎝⎜
⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟2 1

2

avg

tw

r

Shear stress
distribution

Laminar
velocity
profile

Ideal
(in viscid)
velocity profile

R

Kinetic Energy Correction Factor ()
Kinetic energy correction factor is defined as the ratio of 
the kinetic energy of flow per second based on actual veloc-
ity across a section to the kinetic energy of flow per second 
based on average velocity across the same section. This factor 
is introduced to account for the non-uniformity of the veloc-
ity profile across an inlet or outlet due to viscosity of fluid.

Kinetic energy correction factor,

α =
⎛

⎝⎜
⎞

⎠⎟∫
1

3

A

V

V
dA

avg

,

where 
V = local velocity at any point in the cross-section

Vavg = average velocity across the cross-section.

For uniform velocity distribution,  = 1.0

For laminar flow through a pipe,  = 2.0

For turbulent flow through a pipe,  = 1.01 to 1.33

Momentum Correction Factor
The momentum correction factor is defined as the ratio 
of momentum of the flow per second based on the actual 
velocity to the momentum of the flow per second based on 
the average velocity across a cross-sectional area. This fac-
tor is introduced to account for the non-uniformity of the 
velocity across an inlet or outlet and it is defined by

β
ρ

=
⋅∫ � � �
��

v v n dA

m v

( )

avg

If the density is uniform over the inlet or outlet and
�
v is 

the same direction as
�
vavg , then

β
ρ

=
⋅∫ v v n dA

mV

( )
� �

�
avg

 

=
⋅∫ v v n dA

v A

( )
� �

avg
2
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If the control surface slices normal to the inlet or outlet area, 
i.e., ( )

� �
v n dA vdA⋅ = then

β =
⎛

⎝⎜
⎞

⎠⎟∫
1

2

A

v

v
dA

avg

The factor  is always greater than or equal to one. For 

a fully developed laminar pipe flow, β =
4

3
 and for a fully 

developed turbulent pipe flow, 1.01    1.2.

At an inlet or outlet  if the flow is uniform

then 1 and

,

β = =�v ��
vavg

Pressure Drop (P)
∆P  

Vavg

D

L

(1) (2)

The pressure drop (between sections1 and 2) across a 
length L of a flow section in a horizontal circular pipe of 
diameter D, 

ΔP
LV

D
=

32
2

μ avg

The pressure drop for all type of flow, developed pipe flow 
(laminar or turbulent flows, circular or non-circular pipes, 
smooth or rough surfaces, horizontal or inclined pipes),

ΔP f
L

D

V
=

ρ avg
2

2

Where f is the Darcy friction factor or Darcy  weis-
bach friction factor or simply the friction factor

f
V

=
8

2

τ
ρ

ω

avg

The skin friction coefficient or the coefficient of friction 
or the Fanning friction factor. (Cf ) is defined as:

C
V

f =
2

2

τ
ρ

ω

avg

C
f

f =
4

For a fully developed laminar flow Darcy s friction

factor 

’

ff
Re

=
64

and hence the friction factor for the

flow is a functtion of only the Reynolds number and

is independent of the  roughness of the pipe surface

Friction factor is maximum for a fully

developed turbulent fflow

Head Loss (hL )
The pressure drop ( P) due to viscous effects or friction 
represents an irreversible pressure loss and is generally 
called as pressure loss due to friction ( PL). Head loss 
(hL) in general refers to any energy loss associated with the 
flow but here it is stated loss to refer to the pressure losses 
expressed in terms of an equivalent fluid column height.

h
P

f
L

D

V

g
L

L

g

= =
Δ
ρ

avg
2

2

h
L

gr

L

gD
L = =

2 4τ
ρ

τ
ρ

ω

Equation (3) called the Darcy–Weisbach equation, is 
valid for laminar and turbulent flows in both circular and 
non-circular pipes. The head loss represents the additional 
height that the fluid needs to be raised by a pump in order 
to overcome the frictional losses in the pipe. In equation 
(3), pressure drop is taken to be equivalent to the pressure 
loss and this is valid only under the assumptions by which 
the equivalency can be derived from Bernoulli’s equation. 
The variable hL is generally referred to as the head loss due 
to friction. It is to be noted that PL and hL both represent 
losses over the length of the pipe.

For the flow of an ideal in

viscid fluid  

(

) , hL = 0

Required Pumping Power (Wpump, L)
The required pumping power to overcome the pressure loss,

W QDP m g hL L L

� �
pump, = =

Volumetric Flow Rate (Q)
The average velocity for laminar flow in a horizontal circu-
lar pipe,

V
PD

L
avg =

Δ 2

32 μ

º
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Volumetric flow rate for laminar flow through a horizon-
tal pipe of diameter D and length L,

Q V A
P D

L
= =avg

Δ π
μ

4

128

The above equation is called the Poiseuille’s law or the 
Hagen–Poiseuille equation. The steady laminar viscous 
flow in a channel or tube from a region of high pressure to a 
region of low pressure is called Poiseuille flow.

Q U R=
π
2

2
max

Solved Example

Example 1:  In a horizontal circular pipe of length 20 m, 
a fluid (density = 850 Kg/m3, viscosity = 9 poise) flows in 
a steady fully developed laminar manner. If the head loss 
and the wall shear stress associated with the flow are 5 m 
and 104 N/m2 respectively, then the Darcy friction factor 
for the flow is
(A)	 0.5	 (B)	 0.0073
(C)	 0.1167	 (D)	 1.868

Solution:
Given L = 20 m
         = 850 Kg/m3

         = 0.9 Pa. sec
       hL = 5 m
      = 104 N/m2

It is presumed here that all the assumptions for the pres-
sure loss to be equal to the pressure drop are valid.

 P = h1 g = 5  850  9.81 = 41692.5 Pa

Now τω = ×
ΔP

L

R

2

 Radius of the pipe, R
L

P
=

2 τω
Δ

=
× ×

=
2 20 104

41692 5
0 1

.
. m

Now ΔP
V L

D
=

32
2

μ avg

               
=

8
2

μV L

R
avg

∴ =
×

× ×
=Vavg  m/s

41692 5 0 1

8 0 9 20
2 895

2. ( . )

.
.

Now,  f
V

=
8

2

τ
ρ

ω

avg

=
×
×

8 104

850 2 8952.

= 0.1167

Example 2:  The mass flow rate of the steady fully 
developed laminar flow of a fluid (density = 900 Kg/m3, 
viscosity = 9 poise) in a horizontal pipe of diameter 0.5 m is 
212.06 Kg/s. The perpendicular distance from the pipe wall 
at which the velocity is 0.432 m/s is 
(A)	 0.0236 m	 (B)	 0.4527 m
(C)	 0.0472 m	 (D)	 0.2264 m

Solution:

Given  �m = 212.03 Kg/s

        = 900 Kg/m3

      D = 0.5 m

      V = 0.432 m/s

      
m AV
�
= ρ avg

   
Vavg =

×
× ×

212 06 4

900 0 52

.

.π
          = 1.2 m/s

It is known that for the flow condition given, the velocity 
profile of the flow is given by:

V V
r

R
= −

⎛
⎝⎜

⎞
⎠⎟max 1

2

2

Here maximum velocity 

Vmax = 2  Vavg

∴ = × −
⎛
⎝⎜

⎞
⎠⎟

V V
r

R
2 1

2

2avg

0 432 2 1 2 1
0 25

2

2
. .

.
= × × −

⎛
⎝⎜

⎞
⎠⎟

r

r = 0.2264 m

 �The perpendicular distance from the pipe wall at 
which the velocity is 0.432 m/s is 

= R  r = 0.25  0.2264
= 0.0236 m

Example 3:  A circular pipe of diameter 0.07 m and length 
300 m is inclined at an angle 30° with the horizontal. The 
volumetric flow rate of the steady fully developed laminar 
flow of the fluid (viscosity = 8 poise, density = 800 Kg/m3) 
in the pipe is 7 litre/sec. The minimum power of a pump 
with efficiency 70% that can maintain this flow is:

(A)	 40.28 W	 (B)	 40.28 kW
(C)	 28.196 kW	 (D)	 48.89 kW

Solution:
The energy equation is given by:

  
P

g

v

g
Z h

P

g

V

g
Z h hp

L
t L

1 1 1
2

1 2
2
2

2
2 2ρ
α

ρ
α+ + + = + + + + � (1)
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300 m
1

2

30°

Since no pump and turbine is involved in the flow section 
considered, hp = h = 0.

The level Z1 is considered as datum i.e., Z1 = 0. Hence, 

Z2 = L  sin 30 = × =300
1

2
150 m

Although the velocity is not uniform across a pipe cross-
section, the velocity profile does not change from section 1 
to section 2 due to the fully developed flow

 1 = 2
Now V1 = V2 (from continuity equation)

Therefore, equation (1) becomes

P P

g
hL

1 2 150
−

= +
ρ

= +150
32

2

μ
ρ

LV

D g
avg  (it is assumed that 

PL  P)

= + ×150
32

4

2 2

μ
ρ π

L

D g

Q

D

= +
× ×
× ×

×
×

150
32 0 8 300

0 07 800 9 81

0 007

0 07

4

2 2

.

. .

.

.π

= 513.26

Or P1  P2 = 513.26  800  9.81

                   = 4.028 MN/m2

Power of the pump =
× −Q P P( )1 2

η

		       
=

× ×0 007 4 025 10

0 7

6. .

.

		        = 40280 w = 40.28 kw.

Example 4:  The velocity distribution in a pipe is given as 

u u
r

R
= − ⎛

⎝⎜
⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟max 1

3

when umax is the maximum velocity at 

the centre of the pipe, u is the velocity at a diameter r from 
the pipe centerline and R is the pipe radius. The ratio of the 
average velocity to the maximum velocity is
(A)	 1 : 2	 (B)	 3 : 10
(C)	 1 : 1	 (D)	 3 : 5

Solution:

Given u u
r

R
= − ⎛

⎝⎜
⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟max .1

3

 Consider an elementary ring 

of thickness dr and at a distance r from the pipe centre. The 
discharge through this elementary ring is given by

dQ = u  2 rdr

     

= − ⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟u

r

R
r drmax �1 2

3

π

 The discharge through the pipe is 

Q dQ
O

R

= ∫ = − ⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟∫ u

r

R
rdr

O

R

max 1 2
3

π

= ×πR u2 3

5
max

Now Q = R2 uavg

⇒ = ×π πR U R u2 2 3

5
avg max .

Flow of a Viscous Fluid Between 
Two Parallel Plates
Couette Flow
The laminar flow of a viscous fluid between two parallel 
plates, one of which is moving relative to the other, is called 
a couette flow. Consider a couette flow where the lower 
plate is at rest and the upper plate moves uniformity with a 
constant velocity u as shown in the figure below.

Upper plate
u

x

yb

Lower plate

The velocity distribution is given by

u y
u

b
y

p

x
by y( ) ( )= −

∂
∂

⎛
⎝⎜

⎞
⎠⎟

−
1

2
2

μ

Case 1: 
∂
∂

=
p

x
0,  i.e., zero pressure gradients in the direction 

of motion. Then in this case, u y
u

b
y

( ) =  which is a linear 

velocity distribution. This particular case is known as simple 
or plain couette flow or simple shear flow. This type of flow 
is usually used to model the lubricant motion in a journal 
bearing with a rotating shaft. Where the velocity of the 
lubricant is assumed to be linear.

Case 2: ∂
∂

<
p

x
0,  i.e., negative pressure gradient in the direc-

tion of motion. In this case, velocity is positive over the 
whole gap between the plates 
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Case 3: 
∂
∂

>
p

x
0,  i.e., positive pressure gradient in the direc-

tion of motion. In this case, velocity over a portion of the 
gap between the plates can be negative.

Let K
b

u

p

x
=
− ∂

∂
⎛
⎝⎜

⎞
⎠⎟

2

2μ

K < –1		

K < 0		

K = 0		

K > 0		

The discharge per unit width of the plates is given by

q
ub b p

x
= −

∂
∂

⎛
⎝⎜

⎞
⎠⎟2 12

3

μ

The shear stress distribution where the fluids is 
Newtonian is given by

τ μ=
− ∂

∂
⎛
⎝⎜

⎞
⎠⎟

−
1

2
2

p

x
b y( )

Plane Poiseuille Flow
The laminar flow of a viscous fluid between two paral-
lel plates, both of which are stationery, is called a plane 
Poiseuille flow. Consider a plane Poiseuille flow as shown 
in the following figure.

b

x

y

The velocity distribution is given by

u y
p

x
by y( ) ( )=

− ∂
∂

⎛
⎝⎜

⎞
⎠⎟

−
1

2
2

μ

The discharge per unit with is given by

q
b p

x
= −

∂
∂

3

12μ

The shear stress distribution (where the fluid is a 
Newtonian fluid) is given by

τ =
∂
∂

⎛
⎝⎜

⎞
⎠⎟

−
1

2
2

p

x
b y( )

The velocity profile for a plane Poiseuille flow

will be a ssymmetric parabolic velocity profile

For a plane Poiseuille flow  the ratio of the 

average flui

,

dd velocity to the maximum fluid

velocity is 2 3:

Direction for questions 5 and 6: A Newtonian fluid of vis-
cosity 1 poise flows in a steady and laminar manner between 
two stationery parallel horizontal plates separated by a per-
pendicular distance of 5 mm. The pressure gradient in the 
horizontal direction (x  direction) is determined to be 
–5 KN/m2.

Example 5:  The maximum shear associated with the flow 
is
(A)	 0 N/m2	 (B)	 25 N/m2

(C)	 12.5 N/m2	 (D)	 12.5  103 N/m2

Solution:

The shear stress distribution is

τ =
− ∂

∂
⎛
⎝⎜

⎞
⎠⎟

−
1

2
2

p

x
b y( )

The maximum shear stress occurs at y = 0

At y = 0, τ =
− ∂

∂
⎛
⎝⎜

⎞
⎠⎟

1

2

p

x
b

Given b = 5  103 m

∂
∂

= − ×
p

x
5 103  N/m2

∴ =
−

× − × × × −τ 1

2
5 10 5 103 3( )

       = 12.5 N/m2
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Example 6:  The maximum velocity of the fluid is 
(A)	 0.1563 m/s	 (B)	 0.1042 m/s
(C)	 0.0782 m/s	 (D)	 0.1172 m/s

Solution:

u y
p

x
by y( ) ( )=

− ∂
∂

⎛
⎝⎜

⎞
⎠⎟

−
1

2
2

μ

Since the velocity profile of this plane Poiseuille flow is a 
symmetric parabolic one, the maximum velocity will occur 

at y
b

=
2

∴ = ⎛
⎝⎜

⎞
⎠⎟
=
− ∂

∂
⎛
⎝⎜

⎞
⎠⎟

U U
b b p

x
max

2 8

2

μ

      
=
− ×

×
× − ×

−( )

.
( )

5 10

8 0 1
5 10

3 2
3

         = 0.1563 m/s

For the plane Poiseuille flow

 and friction fact
avg

,

R
V b

e =
ρ

μ
oor

f
Re

=
48

Example 7:  A laminar flow of an oil (viscosity = 20 poise) 
takes place between two parallel plates which are 150 mm 
apart. If the average velocity of flow is 1.5 m/s, then the 
shear stress at vertical distance of 37.5 mm from the lower 
plate is:
(A)	 40 N/m2	 (B)	 160 N/m2

(C)	 90 N/m2	 (D)	 60 N/m2

Solution:
Given  = 2 Pa.sec, b = 0.15 m, Vavg = 1.5 m/s

The maximum velocity for a plane Poiseuille flow is 
given by:

V
b p

x
max =

− ∂
∂

⎛
⎝⎜

⎞
⎠⎟

2

8μ

Also for this flow

V

V
avg

max

=
2

3

∴ =
− ∂

∂
⎛
⎝⎜

⎞
⎠⎟

V
b p

x
avg

2

12μ

∴
∂
∂

⎛
⎝⎜

⎞
⎠⎟
=
− × ×

= −
p

x

1 5 12 2

0 15
00

2

.

( . )
16  N/m3

Now τ =
− ∂

∂
⎛
⎝⎜

⎞
⎠⎟

−
1

2
2

p

x
b y( )

 At y = 0.0375 m

τ =
−

× − × − ×
1

2
1600 0 15 2 0 0375( ) ( . . )

        = 60 N/m2.

Example 8:  In a Couette flow, the two parallel identical 
plates are at a distance b meters apart and the upper plate 
moves with a constant velocity of u m/s with the lower plate 
stationary. The fluid flows between the plates such that the 
shear stress at the lower plate is zero and the discharge 
for this flow per unit width of the plates is given by q. If 
the viscosity of the fluid and the pressure gradient in the 
horizontal direction (x  direction) are doubled, then the 
discharge per unit width becomes:
(A)	 q	 (B)	 0.5 q
(C)	 0.75 q	 (D)	 2 q

Solution:

Here τ μ= −
∂
∂

⎛
⎝⎜

⎞
⎠⎟

−
u

b

p

x
b y

1

2
2( )

Given at y = 0,  = 0

⇒ = −
∂
∂

⎛
⎝⎜

⎞
⎠⎟

0
1

2
μ u

b

p

x
b   or 

1

2 2μ
∂
∂

⎛
⎝⎜

⎞
⎠⎟
=

p

x

u

b

Now q
ub b p

x
= −

∂
∂

⎛
⎝⎜

⎞
⎠⎟2 12

3

μ

    
= − ×

ub b u

b2 6

3

2

    
= − =

ub ub ub

2 6 3
.

Flow of Lubricant in a Journal Bearing
The flow of the lubricant in a journal bearing is usually 
modeled as a simple (or plain) couette flow. The velocity, 

u r
ur

d
( ) =

Radial clearance
(filled with lubricant)

Bearing

Shaft

r

d

w
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Where r is the radial distance from the outer surface of the 
shaft to the bearing, d is the radial clearance and u is the sur-
face speed of the shaft. If the shaft is rotating at N r.p.m. then:

U r
r R

d

r NR

d
( ) = =

ω π2

60

Where  and R are the angular velocity and radius of the 
shaft respectively. The Reynolds number for the lubricant 
flow is defined as:

R
ud

e =
ρ
μ

The flow condition in the bearing is said to

be laminar if RR

R
e

e

<
>

5  and turbulent if

5

00

00

Turbulent Flow in Pipes
Turbulent flow is characterized by swirling regions of fluid 
called eddies which greatly enhance mass, momentum and 
heat transfer compared to laminar flow. Turbulence in a flow 
can be generated by
	 1.	 Frictional forces at the boundary solid walls
	 2.	 Flow of fluid layers, with different velocities, adjacent 

to one another.

Turbulence can be classified as:

	 1.	 Wall turbulence: turbulence generated and continuity 
impacted by the boundary walls.

	 2.	 Free turbulence: turbulence generated by two adjacent 
fluid layers in the absence of walls.

	 3.	 Convective turbulence: turbulence generated at regions 
where there is conversion of potential energy to kinetic 
energy by the process of mixing.

Property Values in a Turbulent Flow
At a specified location in a turbulent flow field, properties 
such as velocity, pressure, temperature, etc; Fluctuate with 
time about an average value. For a property P, the instanta-

neous value of the property ( ( , ))P s t�  at the specified loca-

tion s (= f (x, y, z) in Cartesion coordinates) is given by:

P s t P s P s t�( , ) ( ) ( , )= + 1

where P s( ) the time average or temporal mean value and P1 

(s, t) is the fluctuating component. The term P s( ) is a con-
stant with respect to time.

P s
T

P s t dt

T

T

( ) lim ( )=

→

∫
1

1

0

�

α

Where T is the integration time over which the indicated 
time  averaging takes place. The time average of the tur-
bulent fluctuating component is zero i.e.,

lim ( , ) ( )
1

01
0

1
1

T
P s t dt P s t

T

T
= =

→

∫
α

t

P1(s, t)
P(s1t )

P(s1t )

P(s, t)
∧

Shear Stress in a Turbulent Flow
The total shear (total) in a turbulent flow is given by:

τ τ τtotal lam turb= +

Where lam is the laminar shear stress and turb is the 
turbulent shear stress.

τ μlam =
du

dy

Where u is the x-component of the instantaneous 

velocity V u� and  is the time average (or time mean) 

value of u.

tlam
tturb

ttotal
y

0

τ ρturb = − u v1 1

Where u v1 1
 is the time average of the product of the 

fluctuating velocity component u1 and V1. The term u v1 1  

can be non-zero even if u v1 10 0= =and

The term   is usually found to be a

negative quantity a

u v1 1

nnd hence shear stress

is greater in turbulent flow than in  laminar

flow.

In laminar flow  

such that 

, u v

u v

1 1

1 1

0

0

= =

=
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Terms such as − −ρ ρu V or u1 1 1 2( ) or −ρ ωV1 1 are called 
as Reynolds stress or turbulent stresses. Here, V and  are 

the y and z components of the instantaneous velocity V�

Boussinesq Approximation 
or Hypothesis

τ ρ μturb = − =u V
du

dy
t

1 1

Where t is the eddy viscosity or turbulent viscosity.

τ μ μtotal = +( )t
du

dy

   

τ ρtotal = ∞ +∞( )t
du

dy

Where ∞ =t
tμ
ρ

is the kinematic eddy viscosity or kin-

ematic turbulent viscosity or eddy diffusivity of momentum. 
Kinematic eddy viscosity depends on flow conditions and it 
decreases towards the wall where it becomes zero.

Prandtl’s Mixing Length Theory

In this theory, the eddy viscosity is μ ρt ml
du

dy
= 2

τ ρ ρturb = − =
⎛
⎝⎜

⎞
⎠⎟

U V
du

dy
m

1 1 2

2

�

Where m is the mixing length defined as the average lat-
eral distance through which a small mass of fluid particles 
would move from one larger to the adjacent layer before 
acquiring the velocity of the new layer.

For the steady fully developed turbulent flow of a fluid 
in a horizontal pipe, Re total shear stress varies linearly with 
the pipe radius.

τ τωtotal =
r

R

Where o ≤ r ≤ R

At the wall  velocity gradients and thus 

wall shear stress

,

  are much larger for

turbulent flow than for laminar flow.

Relative Roughness

Boundary

Î

The variable , referred to as absolute roughness, 
denotes the mean height of irregularities of the surface of 
a boundary. A boundary is generally said to be rough if the 
value of  is high and smooth if  is low. For a pipe, rela-

tive roughness =
∈
D

,  where D is the diameter of the pipe.

Turbulent Velocity Profile
Several empirical velocity profile units for turbulent pipe 
flow and among these the best known is the power – low. 
Velocity profile defined as follows:

u

u

y

R

r

R

n n

max

= ⎛
⎝⎜

⎞
⎠⎟

= −⎛
⎝⎜

⎞
⎠⎟

1 1

1

Where n is a constant and whole value increases as Reynolds 
number increases. Many turbulent flows in practice is 
approximated using the one–seventh power low velocity 
profile where n = 7. Note that the power–low velocity pro-
file cannot be used to calculate the wall shear stress, as a 
velocity gradient obtained will be infinity. This law is appli-
cable to smooth pipes.

Velocity distribution are more uniform in

turbulent flow thaan in laminar flow.

y

r

R

R

0

u(y)

Friction Factor in  
Turbulent Flow
The friction factor in a fully developed turbulent pipe flow 
depends on the Reynolds number and the relative roughness 
(/D). The friction factor is a minimum for a smooth pipe 
and increases with roughness. For laminar flow, the friction 
factor decreases as Reynolds number increases and is inde-
pendent of surface roughness.

Moody Chart
It presents the Darcy friction factor for pipe flow as a func-
tion of Reynolds number and relative roughness. This chart 
can be used for circular pipes and non-circular (taking into 
consideration the hydraulic diameter) pipes.

f

Re

=
Î
D 0.01

=
Î
D

0.0001
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At very large Reynolds number, Re friction factor curves 
in the moody chart are nearly horizontal and thus the fric-
tion factor are independent of the Reynolds number. 

Intensity of Turbulence 
in a Flow
It is also called as degree of turbulence in a flow which is 
described by the relative magnitude of the root mean square 
value of the fluctuating components (u′, v′, and ′) with 
respect to the time averaged velocity ( )V

I
u v

V
=

′ + ′ + ′1

3
2 2 2(( ) ( ) ( ) )ω

If the turbulence is Isotropic, then u′ = v′ = ′.

Example 9:  A liquid flows turbulently in a horizontal pipe 
with a pressure gradient of 3 kPa/m. The wall shear stress 
developed is 112.5 N/m2. If the laminar shear stress is 10 N/m2 
at a radius of 35 mm, then the turbulent shear stress at this 
radius would be
(A)	 52.5 N/m2	 (B)	 10 N/m2

(C)	 42.5 N/m2	 (D)	 95 N/m2

Solution:

Given 
ΔP

L

P

m
a= ×3 103

         = 112.5 N/m2

The following equations are applicable for turbulent 
flows.

τ

τ τ

ω

ω
ω

=

=

ΔP

L

R

r

R

2

From equation (1), we get 112 5 3 1 3. = × ×0
2

R

 Radius of the pipe, R = 0.075 m

Now at radius, r = 0.035 m

τ = ×112 5
0 035

0 075
.

.

.

= 52.5 N/m2

Here  is the total shear stress i.e., total = 52.5 N/m2

At this radius,

 lam = 10 N/m2

total = lam + turb

total = 52.5  10 = 42.5 N/m2

Example 10: A fluid (density = 950 Kg/m3, viscosity = 0.1 
poise) flows with an average velocity of 1m/s in a 100 m 
long horizontal pipe having an absolute roughness of 0.175 
mm. The magnitude of the pressure loss due to friction is 

obtained by multiplying the friction factor with 19  105. A 
set of friction factor (f) values for some given combination 
of Reynolds number (Re) and relative roughness (RR) 
values are given in the following table. The friction factor 
associated with the flow is

Re RR f

9800 0.00175 0.0338

9500 0.0035 0.0361

19000 0.00175 0.0296

19000 0.0035 0.0325

(A)	 0.0338	 (B)	 0.0361
(C)	 0.0296	 (D)	 0.0325

Solution:
For turbulent or laminar flow, we have 

ΔP
f V L

D
L =

2 2ρ

Gives 
2

19 10
2

5ρV L

D
= ×

or D =
× × ×

×
2 950 1 100

19 10

2

5
 = 0.1 m

Gives t = 0.175 mm

 Relative roughness = =
t

D

0 175

100

. = 0.00175

R
VD

e = =
× ×ρ

μ
950 1 0 1

0 01

.

.
= 9500

For Re = 9500 and RR = 0.00175 friction factor f = 0.0338

Example 11: A force F1 Newtons is required as the 
frictionless piston in a syringe to discharge 1944 mm3/s of 
water through a needle as shown in the following figure. The 
force is determined by assuming fully developed laminar 
viscous flow through the needle. If ideal flow is assumed, 
then the force required on the piston to achieve the same 
discharge would be F2 Newtons. The difference F1  F2 
neglecting losses in the syringe is equal to:
(A)	 0.0251 N	 (B)	 0.2765 N
(C)	 0.7856 N	 (D)	 0.4836 N

Piston

Syringe

1.5 mm

100 mm

x
F1

2

1

15 mm

(1)

(2)
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Solution:

Consider two points 1 and 2 such that both points are in the 
same horizontal plane and point 1 lies in the centre of the pis-
ton cross-section while point 2 lies in the centre of the needle 
exit cross-section.

The energy balance equation with suitable assumption 
can be reduced to:

      
P

g

V

g
Z

P

g

V

g
z hL

1 1 1
2

1
2
2

2 2
2

2
2 2ρ

α
ρ

α
+ + = + + + � (1)

Here, Z1 = Z2

P P
F

A
1

1

1

= +atm

P2 = Patm

1 = 2 (uniform velocity assumed across any cross- 
section)

 Equation (1) becomes:

F
V V

A h A gL1
2
2

1
2

1 1
2

=
−⎛

⎝⎜
⎞
⎠⎟

+ρ ρ

When ideal flow is assumed, hL = 0

	     F1  F2 = hLA1 g

		    
= × ×f

L

D

V

g
A g

2

2
2

1
2

ρ

		    
= × ×f

L

D

V
A

2

2
2

1
2

ρ

	              Q = 1944 mm3/s

		    = 1944  109 m3/s

A D1 1
2 2

4 4
0 015= × = ×

π π
( . )

                           = 1.767  104 m2

 
A D2 2

2 2

4 4
0 0015= × = ×

π π
( . )

                          = 1.767  106 m2

      
U

Q

A
2

2

9

6

1944 10

1 767 10
1 1= =

×
×

=
−

−.
.  m/s

Reynolds number of flow in the needle

 
R

D V
e =

×ρ
μ

2 2

=
× ×1000 0 0015 1 1

0 001

. .

.

= 1650

 
f

Re

= = =
64 64

1650
0 0388.

 F1F2 =
×

× × × ×−0 0388 0 1

0 0015

1 1

2
1 767 10 1000

2
4. .

.

.
.

= 0.2765 N

Example 12:  Water is flowing at a volumetric flow rate 
of 0.08 m3/s in a horizontal pipe of length 15 m and 
diameter (D) varies along its length () according to 
the linear relationship: D = 0.25  0.01 l. If the friction 
factor is taken to be constant for the whole pipe and equal 
to 0.02, then the head loss due to friction in the pipe 
is
(A)	 0.6441 m	 (B)	 2.0611 m
(C)	 10.3059 m	 (D)	 2.5764 m

Solution:

Head loss due to friction,

h f
L

D

V

g
L =

2

2

Where L is the whole length of the pipe. For a differential 
length of the pipe, the differential head loss due to friction 
can be written as:

dh
f

D

V

g
dL =

2

2
�

       
= ×

× ×
× ×

f

D

Q d

g

2

2 4

16

10 2

�
π

= ×
.8 2

2 5

fQ

g

d

Dπ
�

=
−

0 08263
0 25 0 01

2
5

.
( . . )

fQ
d�

�

Integrating the above equation we have

dh fQ
d

Lo

h

o

L∫ ∫=
−

0 08263
0 25 0 01

2
5

15
.

( . . )

�
�

i.e., hL = 2.5764 m

Loss of Energy (or Head) in Pipes
When a fluid flows in a pipe, its motion experiences some 
resistance due to which the available head reduces. This loss 
of energy or head is classified as

Major Energy Losses
These are energy losses due to friction and the loss of head 
due to friction (hL) is calculated using Darcy Weisbach 
equation given earlier.

In terms of the flow and resistance R, hL can be written 
as

h RQL = 2
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Flow Through Pipes with Side Tapings
Consider the flow through a pipe when a fluid is withdrawn 
from closely spaced side tappings along the length of the 
pipe as shown in the following figure.

q

Q0

Let the fluid be removed at a uniform rate q per unit 
length of the pipe. Let the volume flow rate into the pipe be 
Q0 and let L and D be the length and diameter of the pipe. If 
f is the friction factor assumed to be constant over the length 
of the pipe, then

h
Q

D g

qL

Q

q L

Q
f

fL= − +
⎡

⎣
⎢

⎤

⎦
⎥

8
1

1

3
0

2

2 5
0

2 2

0
2π

If the entire flow is drained off over the length L, then

h f
L

D
V

g
f =

1

3

1

20
2

Where V
Q

D
0

0

4
2

= π . The above equation indicates that the 

loss of head due to friction over a length L of a pipe, where 
the entire flow is drained off uniformly from the side tap-
pings, becomes one  third of that in a pipe of same length 
and diameter but without side tappings

Minor Energy Loses
The minor energy losses include the following cases: 

Loss of head due to sudden enlargement (he  )

V1

1

1
2

2

V2

h
V V

g
e =

−( )1 2
2

2

Loss of head due to sudden contraction (hc  )

1

1 C

Ac A2, V2

C 1

2

h
V

g C
c

c

= −
⎛
⎝⎜

⎞
⎠⎟

2
2 2

2

1
1

Where C
A

A
c

c=
2

 is the coefficient of contraction. If the 

value of Cc is not known, then loss of head due to contrac-

tion may be taken as 0 5
2

2
2

.
V

g

Loss of head due to obstruction in pipe (hobs )

h
A

C A a

V

g
obs

c

=
−

⎡

⎣
⎢

⎤

⎦
⎥( )

2 2

2

Where A is the area of the pipe, a is the maximum area of 
obstruction and V is the velocity of liquid in the pipe.

Loss of head at the entrance to pipe (hi )

h
V

g
i = 0 5

2

2

.

Where V is the velocity of liquid in pipe.

Loss of head at the exit of a pipe (ho )

ho
V

g
=

2

2

Where V is the velocity at outlet of pipe

Loss of head due to bend in the pipe (hb )

h
KV

g
b =

2

2

Where V is the mean velocity of flow of liquid and K is the 
coefficient of bend

Loss of head in various pipe fittings (hfittings )

h
KV

g
fittings =

2

2
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Where V is the mean velocity of flow in the pipe and K is 
the value of the coefficient that depends on the type of pipe 
fitting.

These losses (hb and hfittings) are sometimes expressed 
in terms of an equivalent length (Le) of an unobstructed 
straight pipe in which an equal loss would occur for the 
same average flow velocity.

L
DK

f
e =

For a sudden expansion in a pipe flow, if D1 and D2 are the 
diameter of the pipe before and after the expansion respec-

tively, the pressure rise is maximum when  D

D
1

2

1

2
=  and 

the maximum pressure rise would be 0 5

2
1
2. ρgV

g

NOTE

Example 13:  Water flows at the rate of 0.06 m3/s in a pipe 
involving a sudden contraction where the pipe diameter 
decreases from 250 mm to 160 mm, as shown in the 
following figure. The coefficient of contraction is

Mercury

40 mm

Flow

1 2

(A)	 0.655	 (B)	 0.543

(C)	 0.792	 (D)	 0.125

Solution:

P P

g
h

m1 2 1
−

= −
⎛
⎝⎜

⎞
⎠⎟ρ

ρ
ρ

Where  (density of water) = 1000 Kg/m3 and m (den-
sity of mercury) = 13600 k/m3 and h = 40 mm

∴
−

= −⎛
⎝⎜

⎞
⎠⎟

P P

g
1 2 0 04

13600

1000
1

ρ
.

	  	         = 0.504

The energy balance with suitable assumption can be 
reduced to

P

g

V

g
Z

P

g

V

g
Z hL

1 1
2

1
2 2

2

2
2 2ρ ρ

+ + = + + +

Here the head loss (hL) is equal to the head loss due to 
contraction:

h h
V

g C
L c

c

= = −
⎛
⎝⎜

⎞
⎠⎟

2
2 2

2

1
1

Z1 = Z2 (as the points 1 and 2 same horizontal plane):

∴
−

= + −
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
−

P P

g

V

g C

V

gc

1 2 2
2 2

1
2

2
1

1
1

2ρ

Or 0.504  2  9.81 = 

0 06 4

0 16
1

1
1

0 06 4

0 252

2 2
.

( . )

.

( .

×
×

⎛
⎝⎜

⎞
⎠⎟

+ −
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
−

×
×π πCc ))2

2⎛
⎝⎜

⎞
⎠⎟

Or Cc = 0.655

Flow Through Syphon
When two reservoirs, one at a higher level and another at 
a lower level are separated by a high level ground or hill, 
a long bend pipe which is used to transfer liquid from the 
higher altitude reservoir to the lower altitude reservoir is 
called a syphon.

Syphons are also used to (i) empty a channel not pro-
vided with any outlet orifice (ii) to take out liquid from a 
tank not provided with any outlet.

(2)

(3)

(1)
h

(Z
1 

− 
Z

2)

RA

RS

A syphon used for transferring liquid from a high altitude 
reservoir RA to a low altitude reservoir RB is shown in figure. 
The highest point of the syphon (2) is called the summit, 
while (1) and (2) are the free liquid surface in reservoir RA 
and RB respectively. The height difference between (1) and 
(2) is (Z1 – Z3). Since (1) and (3) are open to atmosphere, 
the corresponding pressures are p1 = p3 = pa, where pa = 
atmospheric pressure. Since (2) at a higher level than (1), 
pressure at (2) (i.e., p2) is less than p1 i.e. p2 < p1 (p1 = pa).

Atmospheric pressure pa = 10.3 m of water column. 
Hence theoretically, for water flow, the pressure at summit p2 
can be 10.3 m of water but practically it must be between 
7.6 m to 8.0 m. Hence the vertical height difference (h) 
between (2) and (1) must be restricted to (10.3 – 8.0 = 2.3 m) 
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to (10.3  7.6 = 2.7 m), so that the pressure at summit (p2) 
is in the range of 2.3 m to 2.7 m absolute. If the pressure 
at summit becomes less than this value, dissolved air and 
gases will come out of water and accumulate at the summit, 
hindering the flow of water.

If  is the density of liquid, V1 = velocity of flow at (1), 
V3 = velocity of flow at (3), then by applying Bernoulli’s 
equation between points (1) and (3), we get

P

g

V

g
Z

p

g

V

g
Z hf

1 1
2

1
3 3

2

3
2 2ρ ρ

+ + = + + +

Where hf = head loss due to friction in syphon =
4

2

2f LV

gd
Here
L = length of syphon pipe,
 d = diameter of siphon pipe,
V = average velocity of flow in the syphon pipe,
 F = friction coefficient for syphon pipe.
We have p1 = p3 = pa and V1 = V2 = 0 ( RA and RB are 

large tanks)

Hence,

              ( )Z Z h
fLV

gd
f1 3

24

2
− = = � (1)

If (Z1  Z3) is known, d and L are known, and then V2 
can be calculated.

Once V is known, discharge Q d V=
π
4

2 will give the dis-
charge through the syphon.

It must be noted that in the above calculation, we have 
considered all minor losses as negligible.

Now by applying Bernoulli’s equation between points (1) 
and (2), we get

p

g

V

g
Z

p

g

V

g
Z hf

1 1
2

1
2 2

2

2
1

2 2ρ ρ
+ + = + + +

Here V2 = V (as calculated earlier)

′ =h
f L V

gd
f

4

2
1

2

,  where L1 = length of siphon pipe from 

tank RA to summit (2)

′ = ×h h
L

L
f f

1

Also p1 = pa = 0, V1 = 0

⇒ + + + − =
p

g

V

g

f L V

gd
Z Z2

2
1

2

2 1
2

4

2
0

ρ
( )

i.e., 
p

g

V

g

f L V

gd
h Z Z h2

2
1

2

2 1
2

4

2
0

ρ
+ + + = − =( )∵

From the above equation, minimum pressure at summit p2 
can be calculated. If minimum pressure p2 is known, the 
maximum height h can be calculated.

NOTE

Example 14:  A large water tank empties by gravity through 
a syphon. The difference in levels of the high altitude 
and low altitude tanks is 3 m and the highest point of the 
siphon is 2 m above the free surface of water in the high 
altitude tank. The length of syphon pipe is 6 m and its bore 
is 25 mm. Also the length of syphon pipe from inlet to the 
highest point is 2.5 m. The friction coefficient for the pipe is 
0.007 and all other losses a negligible. Calculate the volume 
flow rate of water through the syphon and the pressure head 
at the highest point in the pipe.

Solution:
Given Z1  Z3 = 3 m
L = 6 m
 d = 25 mm = 25  103 m
  f = 0.007

we have ( )Z Z
f LV

gd
1 3

24

2
− =

⇒ =
−

V
Z Z gd

f L
2 1 32

4

( )

  
⇒ =

−
V

Z Z gd

f L

( )1 3

2

          
=

× × ×
× ×

−3 9 81 25 10

2 0 007 6

3.

.

           = 2.96 m/s

Hence speed of flow of water in syphon is 2.96 m/s 

Q = Discharge = Area  velocity

= = × × ×−π π
4 4

25 10 2 962 3 2d V ( ) .

= 1.453  103 m3/s
= 1.453 litre/s ( 103 m3 = 1 litre)

 Volume flow rate through the syphon is 1.453 litre/s
Given, (Z2  Z1) = 2 m
L1 = length of pipe from inlet to summit

     = 2.5 m

∴ ′ =h
f L V

gd
f

4

2
1

2

     
=

× × ×
× × × −

4 0 007 2 5 2 96

2 9 81 25 10

2

3

. . ( . )

.

          = 1.25 m

Applying Bernoulli’s equation between inlet (1) and 
summit (2), we get

p

g

v

g
Z

p

g

v

g
Z hf

1 1
2

1
2

2

2
1

2 2ρ ρ
+ + = + + +

But p1 = 0 ( atmospheric pressure)

      V1 = 0 ( large tank)
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⇒ + + ′ + − =
p

g

v

g
h Z Zf

2
2

2 1
2

0
ρ

( )

⇒ = − − − ′ −
p

g
Z Z h

v

g
f

2
2 1

2

2ρ
( )

= − − −
×

( ) ( . )
.

.
2 1 25

2 96

2 9 81

2

= 2  1.25  0.45
=  3.70 m of water

 Pressure head at the highest point in the syphon is 
3.70 m of water (i.e., 3.7 m of water absolute)

Equivalent Pipe
An equivalent pipe is defined as the pipe of uniform diam-
eter having loss of head and discharge equal to the loss of 
head and discharge of a compound pipe (pipe in series) con-
sisting of several pipes of different lengths and diameters. 
The uniform diameter of the equivalent pipe is known as 
equivalent diameter of the pipes in series.

Consider n pipes in series where the length, diameter and 
friction factor associated with the i th pipe are Li, Di and fI 
respectively. If L, D and f are the length, diameter and fric-
tion factor associated with the equivalent pipe, then neglect-
ing minor losses we have:

f L

D

f L

D
i i

i
i

n

5 51
=

=∑

If the friction factor fi is equal to f, then:

L

D

L

D
i

i
i

n

5 51
=

=∑

The above equation is called the Dupit’s equation.

Example 15:  A piping system consists of a pipe of length 
L which can be replaced by an equivalent pipe of length Le, 
diameter De and friction factor fe. The length of the pipe is 
increased by amount L. The new pipe can be replaced by 
an equivalent pipe of length Le, diameter 0.5 De and friction 
factor 0.5 fe. If the increase in length has led to the friction 
factor of the new pipe being a quadruple of the old pipe, 
then L is equal to:
(A)	 15 L	 (B)	 3 L
(C)	 4 L	 (D)	 7 L

Solution:

Let D and f be the diameter and friction factor of the old pipe.

                ∴ =
Lf

D

L f

D
e e

e
5 5

� (1)

for the new pipe,

( ) .

( . )

L L f

D

L f

D
e e

e

+ ×
=

×Δ 4 0 5

0 55 5

                         = 1
5

6
L f

D
e e

e

� (2)

Substituting equation (1) in (2), we have

( )L L f

D

Lf

D

+ ×
= ×

Δ 4
16

5 5

                 L +  L = 4 L
                      L = 3 L

Example 16: A piping system consists of a series of [pipes 
in which a 20 m long pipe of diameter 250 m ( f = 0.025), 
containing a value (K = 1.0), suddenly expands to a 500 mm 
diameter pipe ( f = 0.02) of length 40 m. If the velocity of 
flow in the 250 mm diameter pipe is 4 m/s, then the length 
of an equivalent pipe ( f = 0.02) of diameter 500 mm for the 
piping system would be

(A)	 1090 m	 (B)	 865 m
(C)	 1065 m	 (D)	 1050 m

Solution:

Equivalent length for the 250 mm diameter pipe,

h
f L

D

D

f
e

e

e
1

2 2

2
5

5

= ×

                 
=

×
× =

0 025 20

0 25

0 5

0 02
800

5

5.

( . )

( . )

.
m

Equivalent length for the value

h
KD

f
e2

1 0 0 5

0 02
25= =

×
=

. .

.
m

Velocity of flow in the 500 mm diameter pipe 

= ⎛
⎝⎜

⎞
⎠⎟

× =
0 25

0 5
4 1

2
.

.
 m/s

Head loss due to expansion

h
V V

g
L =

−
=

−
×

( ) ( )

.
1 2

2 2

2

4 1

2 9 81

= 0.4587 m

Let Le3 be the equivalent length for the sudden expansion.

Then f
L

D

V

g
he

e

e
L

3 2
2

2
× =

i.e., Le3
0 4587 2 9 81

0 5

0 02 1 2
= × × ×

×
. .

.

. ( )

	     = 225 m

Equivalent length for the 500 mm diameter pipe of 
length 40 m,

Le4 = 40 m

Total equivalent length = Le1 + Le2 + Le3 + Le4 = 800 
+ 25 + 225 + 40 = 1090 m.
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Pipes in Parallel
For the parallel pipe system shown below, the rate of dis-
charge in the

 Q

Q

Q1

Q2

D1, L1, V1

D2, L2, V2

Mainline

Pipe 1

Pipe 2

Main line is equal to the sum of the discharge in the 
pipes.

i.e., 		      Q Q Q= +1 2

When pipes are arranged in parallel the head loss in each 
pipe is the same.

i.e.,   Loss of head in pipe 1 Loss of head in pipe 2=

Pipe Network
BA

C

The pipe structure shown above can be converted into a pipe 
network (or hydraulic circuit) with nodes (or junctions) and 
links. Here Q denotes the flow rate and R denotes the flow 
resistance.

Q1 Q1, R2 Q5, R5 

Q4, R4 
Q3, R3 

Q6, R6 

A B

C

In the above network, the algebraic sum of the flow 
rates at any node must be zero, i.e., the total mass flow rate 
towards the junction must be equal to the total mass flow 
rate away from it.

At a node,

Q Q in  out∑ = Σ

For example, at node A, Q1 = Q2 + Q3

Also in the above network, the algebraic sum of the prod-
ucts of the flux (Q2) and the flow resistance (the sense being 
determined by the direction of flow) must be zero in any 
closed loop or hydraulic circuit.

In a closed loop,

                R Q Qi i i =∑ 0 � (1)

For example, considering the loop ABC, we can write

R2 (Q2)
2  R4 (Q4)

2  R3 (Q3)
2 = 0

The term R4 | Q4 | Q4 gets converted to the negative quan-
tity—R4 (Q4)

2 because in the link BC, the considered loop 
direction (from B to C) is opposite to the flow direction 
(from C to B). Equation (1) is referred to as the pressure 
equation of the circuit. Since hL = RQ2, equation (1) can be 
rewritten as

hLi
=∑ 0

where the correct sign values are assigned to the hL value.

Power Transmission Through Pipes

Reservoir 

PipelineH

Turbine
+

In the above system, hydraulic power is transmitted by a 
pipeline (through conveyance of the liquid) to a turbine. 
Here, the hydrostatic head of the liquid is transmitted by 
the pipeline

Potential head of liquid in the reservoir = H (difference 
in the liquid level in the reservoir and the turbine center).

Head available at pipe exit (or the turbine entry) = H hL 
(neglecting minor losses), where hL is loss of head in the 
pipeline due to friction.

Power transmitted by the pipeline (or available of the exit 
of the pipeline),

P gQ H hf= −ρ ( )

Efficiency of power transmission,

η =
−

×
H h

H
f

100

Power transmitted will be maximum when

h
H

f =
3

Maximum power transmission efficiency or

efficiency of tra

(

nnsmission at the condition of

maximum power delivered  is)
2000

3
66 67% . %or

Water Hammer in Pipes
In a long pipe , when the flow velocity of water is suddenly 
brought to zero (by closing a value), there will be a sudden rise 
in pressure due to the momentum of water being destroyed. 
A  pressure wave is transmitted along the pipe. A sudden 
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pressure rise brings about the effect of a hammering action on 
the walls of the pipe. This phenomenon of sudden rise in pres-
sure is known as water hammer or hammer blow.

The magnitude of pressure rise depends on

	 1.	 Speed at which valve is closed
	 2.	 Velocity of flow
	 3.	 Length of pipe and 
	 4.	 Elastic properties of the pipe material as well as that of 

the flowing fluid.

Boundary Layer Theory
When a viscous fluid flows past a stationary solid bound-
ary, in a small layer of fluid adjacent to the boundary, the 
velocity of flowing fluid increase rapidly from zero at the 
boundary surface and approaches the velocity of the main 
stream. This layer is called the boundary layer. A bound-
ary layer is formed when there is relative motion between a 
solid boundary and the fluid in contact with it.

Boundary Layer on a Flat Plate

y

u
Laminar
boundary
layer

Transition Turbulent

Boundary
layer

Trailing edgeFlat plate

x

Leading
edge

The above figure shows a boundary layer formed on a flat 
plate kept parallel to the flow of fluid of velocity u. Here u is 
called as the free stream velocity, sometimes denoted as u .
The edge of the plate facing the direction of flow is called as 
the leading edge while its rear edge is called the trailing edge.

Near the leading edge of a flat plate, the boundary layer 
is laminar with a parabolic velocity distribution. In the tur-
bulent boundary layer, the velocity distribution is given by 
the log law or Prandtl’s one–seventh power law.

Characteristics of a boundary layer are
	 1.	 The boundary layer thickness () increases as the dis-

tance  from the leading edge (x) decreases
	 2.	  decreases as u increases
	 3.	  increases as kinematic viscosity (v) increases

	 4.	 The wall shear stress τ μω = =
∂
∂

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

u

y
y 0 decreases 

as x increases. In the turbulent boundary layer,  shows 
a sudden increase and then decreases with increasing x.

Boundary layer is laminar when

and turR
ux

ex =
⎛
⎝⎜

⎞
⎠⎟
< ×

ρ
μ

5 105 bbulent when 5 1 5> × 0 .

Boundary Layer Thickness ()
Boundary layer thickness is defined as that distance from 
the boundary in which the velocity reaches 99 % of the free 
stream velocity (u = 0.99 u  )

For greater accuracy, boundary layer thickness is defined 
in terms of the displacement thickness (*), momentum 
thickness () and energy thickness (e)

Displacement Thickness (*)

δ
δ

* = −⎛
⎝⎜

⎞
⎠⎟∫ 1

0

u

U
dy

Momentum Thickness ()

θ
δ

= −⎛
⎝⎜

⎞
⎠⎟∫

u

U

u

U
dy1

0

Energy Thickness (e )

δ
δ

e
u

U

u

U
dy= −

⎛
⎝⎜

⎞
⎠⎟∫ 1

2

20

Note that the difference (U – u) is called the velocity of 
defect

Shape factor

S =
δ
θ

*

Where S is called the shape factor 

Energy loss  The energy loss per unit width of the plate due 
to the boundary layer,

E u uL e= ×
1

2
2( )ρδ

Mass flow  The mass flow in the boundary layer at a posi-
tion where the boundary thickness is , is given by

m udy= ∫ ρ
δ

0

The mass entrainment (m) between two sections where 
the boundary layer thickness are 1 and 2 respectively is 
given by

Δ

Δ

m m m

m udy udy

= −

= − ∫∫
1 2

00

21 ρ ρ
δδ

Reynolds Number for the Plate
If L is the length of a plate, then Reynolds number for the 

whole plate =
ρ
μ
uL

 Reynolds number for the front half of 

the plate =
ρ
μ
uL

2
.
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Von Karman Momentum Equation
For a fluid flowing over a thin plate (placed at zero incidence) 
with a free stream velocity equal to u,

τ
ρ
ω θ

v

d

dx2
=

The above equation is called as the Von Karman momen-
tum equation for boundary layer flow. It is used to determine 
the frictional drag on a smooth flat plate for both laminar 
and turbulent boundary layers.

Boundary Conditions for 
a Velocity Distribution
The following boundary conditions must be satisfied for any 
assumed velocity distribution in a boundary layer over a plate:

	 1.	 At the plate surface
		  y = 0, u = 0
	 2.	 At the outer edge of boundary layer
		  (i)	 y = , u = U

		  (ii)	 y d
du

dy
= =, 0

Drag Force on the Plate
The drag force acting on a small distance dx of a plate is 
given by

ΔF B dxD = × ×τω

where B is the width of the plate.
Total drag force acting on a plate of length L on one side,

F F B dxD D

LL
= = × ×∫∫ Δ τω00

Local co-efficient of drag (CD
*)

C
u

D
* =

τ

ρ

ω
1

2
2

This coefficient is also sometimes called as co-efficient of 
skin friction

Average Co-efficient of Drag (CD)

C
F

Au
D

D=
1

2
2ρ

Laminar Boundary Layer Over a Flat 
Plate
From the solution of the Blasius equation for the laminar 
boundary layer on a flat plate, the following results are 
obtained.

δ =
5x

Rex

C
R

D
ex

* .
=

0 664

C
R

D
eL

=
1 328.

Where  R
uL

eL
=

ρ
μ

,  L being the length of the plate.

Summary of Fluid Frictional 
Resistance 
Fluid frictional resistance is the opposition force (or resist-
ance) experienced by a fluid in motion. It exists both in 
streamline flow and in turbulent flow.

Fluid Friction in Streamline 
Flow (Laminar Flow)
	 1.	 The viscous forces predominate the inertial force in 

this type of flow, which occurs at low velocities.
	 2.	 Frictional resistance is proportional to the velocity of 

flow, contact surface area and temperature.
	 3.	 The entrance length (Le), which is the length of pipe 

from its entrance to the point where flow attains fully 
developed profile and remains unaltered beyond that 
point is given by  Le = 0.07 Re D,  where Re = Reynolds’s 

number for flow and D = diameter of pipe
	 4.	 The Darcy’s friction factor in smooth pipes (as per 

Blassius) is given by f =
64

Re

Fluid Friction in Turbulent Flow
	 1.	 As per Darcy–Weisbach equation, the head loss due to 

friction is h
f LV

gD
f =

2

2
,

		  where,
		  L = length of pipe
		  D = diameter of pipe
		  V = mean velocity of flow
		  f = friction factor (0.02 to 0.04 for metals)
		  Hence frictional resistance is proportional to square of 

velocity.
	 2.	 The frictional resistance does not depend upon the 

pressure but it varies slightly with temperature.
	 3.	 The frictional resistance is proportional to the density 

of the fluid.
	 4.	 The entrance length (Le)  50 D. Also  Le = 0.7 ReD. 
		  Where,
		  Re = Reynold’s number of flow and
		  D = diameter of pipe.
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	 5.	 Darcy’s friction factor in smooth pipes (as per Blassius) 

is f

Re

=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

0 3164
1

4

.
for turbulent flow.

Variation of Pipe Roughness with Aging

The relative smoothness of a pipe =
R

k
, where R = radius 

of pipe and k = average height of irregularities. For  rough 

pipes, friction factor depends only on 
R

k

⎛
⎝⎜

⎞
⎠⎟

and not on 

Reynold’s number (Re). The relative roughness, of pipe is 
k

R
(which is the reciprocal of the relative smoothness).

The average height of irregularities (i.e., k), which is a 
measure of the roughness of pipe, depends upon the age of 
pipe. The relation is k = k0 + t,

where,

k0 = value of pipe roughness for new pipe
t = age of pipe (in year)
 = a constant
k = value of pipe roughness after t years. 

Exercises

Practice Problems 1
Direction for questions 1 to 20: Select the correct alterna-
tive from the given choices.

Direction for questions 1 and 2: The volumetric flow rate 
of the steady fully developed laminar flow of a fluid in a 
horizontal circular pipe of radius 0.02 m and length 50 m is 
2.64 litre/sec. The pressure drop across the ends of the pipe 
is 2000 kN/m2

	 1.	 The frictional drag over the entire length of the pipe is: 
	 (A)	 1256.64 N	 (B)	 0.5 N
	 (C)	 5 N	 (D)	 2513.27 N

	 2.	 The power required to maintain the flow is:
	 (A)	 5277.87 W
	 (B)	 10057.13 W
	 (C)	 21119.97 W
	 (D)	 2513.27 W

Direction for questions 3 and 4: The velocity gradient at 
the wall of a horizontal circular pipe, in which a steady fully 
developed laminar flow of a Newtonian fluid (viscosity = 8 
poise, density = 900 Kg/m3) occurs, is 250 S–1. The shear 
stress is 80 N/m2 at a perpendicular distance of 0.01 m from 
pipe’s centerline. 

	 3.	 The velocity of flow at a perpendicular distance of 0.01 
m from the pipe wall is: 

	 (A)	 2.625 m/s	 (B)	 2 m/s
	 (C)	 1.33 m/s	 (D)	 1.6 m/s

	 4.	 If L is the length of the pipe, then the head loss associ-
ated with the flow is: 

	 (A)	 1.812 L	 (B)	 1.208 L
	 (C)	 0.725 L	 (D)	 17.78 L

	 5.	 For a couette flow, the velocity distribution is: given by 

u y
U

b
y

p

x
by y( ) ( )= +

− ∂
∂

⎛
⎝⎜

⎞
⎠⎟

−
1

2
2

μ
where U is the velocity 

with which the upper plate moves and b is the distance 
between the plates. A variable K is defined such that 

K
b

U x
=

− ∂
∂

⎛
⎝⎜

⎞
⎠⎟

2

2μ
ρ

.  If K = 1, then, the maximum velocity 

of the fluid in the couette flow is:

	 (A)	 2 U	 (B)	 0.5 U
	 (C)	 U	 (D)	 zero

	 6.	 A fluid (density = 900 Kg/m3 and viscosity = 3 × 10–3 

Kg/ms) flows upwards between two inclined paral-
lel identical plate at a volumetric rate of 3 /s per unit 
width in meters of the plates. The plates are inclined 
at an angle of 30° with the horizontal and the plates 
are 20 mm wide apart. The pressure difference between 
two sections that are 15 meters apart is: 

	 (A)	 66218 N/m2

	 (B)	 66420 N/m2

	 (C)	 203 N/m2

	 (D)	 132638 N/m2

	 7.	 A jet of water discharges through a pipe of length 500 m 
and diameter120 mm. In order to obtain the maximum 
power at out let, considering a coeff of friction of 0.02, 
the diameter of the nozzle to attach at the end of the 
pipe is:

	 (A)	 48 mm	 (B)	 40 mm
	 (C)	 32 mm	 (D)	 24 mm

	 8.	 Water is flowing in a penstock pipe 2500 m long, with 
a flow velocity of 5 m/s. Due to the sudden closure of a 
valve in the line a pressure wave is generated at it fluid 
with a velocity of 1500 m/s. Then the maximum pres-
sure rise in the pipe is:

	 (A)	 7 5.  MN/m2 	 (B)	 9 5.  MN/m2

	 (C)	 10 2.  MN/m2 	 (D)	 12 MN/m2
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	 9.	 Through a galvanized steel horizontal pipe of length 
250 m and diameter 500 mm, water flows at the rate 
of 0.03 m3/s. The friction factor ( r) values for a set 
of Reynolds number (Re) and relative roughness (RR) 
values are given in the following table. If the average 
surface roughness for galvanized steel is 0.2 mm, then 
the pumping power required to maintain the flow is: 

	 (A)	 27.51 W	 (B)	 27.25 W
	 (C)	 3.62 W	 (D)	 5.806 W

Re RR f

7635 0.0004 0.0332

7635 0.2 0.1573

76350 0.0004 0.0207

76350 0.2 0.1558

	10.	 In a horizontal plane, water flows through a pipe of 
200 mm diameter and 20 km length. At a point M, as 
shown in the following figure, the pipe is branched off 
into two identical parallel pipes of diameter 100 mm 
and length 10 km. The friction factor for all pipes is to 
be taken to be equal to 0.015. If in the pipe MQ, water 
is completely drained off from closely spaced side tap-
pings at a constant rate of 0.01 liter/s per meter length 
of the pipe, then the discharge in MN (Q1) is; 

	 (A)	 0.1577 m3/s	 (B)	 0.0577 m3/s
	 (C)	 0.1 m3/s	 (D)	 0.0264 m3/s

A

Q

Q2

Q1

O

M

N

	11.	 A main line branches into two equal length (= 150 m) 
pipes A and B pipe A (f = 0.02) has a diameter of 300 mm 
while pipe B (f = 0.015) has a diameter of 277 mm. 
A valve present in pipe A ensures that the discharge in 
pipe A is one–half the discharges in the main line. If 
the k values for a full, three fourth, half and one fourth 
open valve are 0.2, 1.15, 5.6 and 24 respectively, then 
which one of the following statements is only connect?

	 (A)	 Valve is fully open
	 (B)	 Valve is almost one fourth open 
	 (C)	 Valve is almost half open
	 (D)	 Valve is almost three fourth open 

	12.	 In the following pipe network 

 

10

3

7
Q1

R1 = 1

R2 = 2 R3 = 3Q2

Q3

A

B

C

		  Q and R denote the flow rates and flow resistances 
respectively. For the closed loop ABC the equation 
16 R2 + R3 – 36 R1 = 0 could be written. The flow resist-
ances are in the ratio such as R3 : R2 : R1 = 3 : 2 : 1. 
If hf denotes the head loss due to friction, then the ratio 
hf1 : hf2 : hf3 is equal to

	 (A)	 3 : 32 : 36	 (B)	 36 : 32 : 3
	 (C)	 32 : 36 : 3	 (D)	 36 : 3 : 32

Direction for questions 13 and 14: In a boundary layer, 

the velocity distribution is given by:
u

U

y
=
δ

, where u is 

the velocity of a perpendicular distance y from the plate, 
U is the free stream velocity and d is the boundary layer 
thickness.

	13.	 The ratio of the displacement thickness to the energy 
thickness is:

	 (A)	 0.5	 (B)	 2/3
	 (C)	 1.5	 (D)	 2

	14.	 The ratio of the momentum thickness to the energy 
thickness is: 

	 (A)	 2	 (B)	 1.5
	 (C)	 2/3	 (D)	 0.5

	15.	 A second order polynomial such as u = a + by + cy2 is 
claimed to represent the velocity distribution in a lami-
nar boundary layer over a flat plate. If d represents the 
boundary layer thickness, then the term b/c would be 
equal to: 

	 (A)	 –2	 (B)	 –2d
	 (C)	 0	 (D)	 2d
	16.	 A person is walking over a long plate over which a 

laminar boundary layer has developed. On walking a 
certain distance form the leading edge of the plate, he 
observes the boundary layer to be 1 mm thick. If the 
walks the same distance further downstream, he will 
observe the boundary layer thickness to be:

	 (A)	 2  mm 	 (B)	 2 mm
	 (C)	 4 mm	 (D)	 1 mm

	17.	 The velocity (u) and boundary layer thickness (d) 
for the flow by a Newtonian fluid over a flat plate is 
expressed as:

		
u

U

y

Rex

= ⎛
⎝⎜

⎞
⎠⎟

=sin ;
.

.
π
δ

δ π
2

4 795
If the wall shear stress is 

1.5 N/m2 at x = 1.5 m, then at x = 3.5 m, the wall shear 
stress will be:

	 (A)	 1.5 N/m2	 (B)	 0.75 N/m2

	 (C)	 0.982 N/m2	 (D)	 3 N/m2

	18.	 For the flow of a fluid (viscosity = m, density = r) over 
a plate of length L and width B, the wall shear stress 

τ μ
w ex

U

x
R= 0 327. , when U is the free stream veloc-

ity. For this flow, the average coefficient of drag would 
be:
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	 (A)	
1 46.

ReL

	 (B)	
1 372.

ReL

	 (C)	
1 272.

ReL

	 (D)	
1 31.

ReL

	19.	 A 7 m long and 4 m wide plate is at zero incidence to a 
stream of air flowing with a velocity of 5 m/s. If the den-
sity of air is 1.21 Kg/m3 and the viscosity is 1.45 × 10–5 
m2/s, then the total drag force on both sides of the portion 
of the plate where the boundary layer is laminar is:

	 (A)	 1.59 N	 (B)	 0.0544 N
	 (C)	 0.1361 N	 (D)	 0.2722 N

	20.	 A flat plate is kept at zero incidence in a stream of fluid 
having uniform velocity. If the boundary layer devel-
oped over the whole plate is laminar, then the ratio of 
the drag force on the front half to the drag force on the 
rear half of the plate is: 

	 (A)	 2.414	 (B)	 0.414
	 (C)	 0.707	 (D)	 0.293

Practice Problems 2
Direction for questions 1 to 30:  Select the correct alterna-
tive from the given choices.

	 1.	 A phenomenon or process is modeled using m dimen-
sional variables (or physical quantities) with k primary 
or fundamental dimensions. The number of non-dimen-
sional parameters or variables is:

	 (A)	  m – k	 (B)	 m + k
	 (C)	  m × k	 (D)	 m /k

	 2.	 Match the following:

A: Pipe flow P: Froude number

B: Free surface Flow Q: Weber number

C: Inertia force/Gravity Force R: Euler number

D: Compressible Flow S: Reynolds number

E: �Pressure differ-ence/
dynamic pressure

T: Mach number

	 (A)	 A : S,  B : T,   C : P ,  D : Q,  E : R
	 (B)	 A : S,  B : Q,  C : R,  D : T,   E : P
	 (C)	 A : P ,  B : Q,  C : S,  D : T,  E : R
	 (D)	 A : S,    B : Q,  C : P,  D : T,  E : R

	 3.	 The Reynolds number for the flow of a fluid in a hori-
zontal circular tube of constant diameter is 1200. If the 
diameter of the tube and the kinematic viscosity of the 
fluid are doubled and that the discharge at the pipe exit 
is unchanged, then the new Reynolds number for the 
flow in the tube will be

	 (A)  4800    (B)  300    (C)  1200    (D)  600

	 4.	 The Darcy friction factor for a fully developed laminar 
flow in a horizontal circular pipe is 0.032. If the inertia 
force acting on a fluid particle is 4 kN, then the viscous 
force acting on the same fluid particle is:

	 (A)	 4000 N	 (B)	 2 N
	 (C)	 8 × 106 N	 (D)	 4 N

	 5.	 The velocity profile for a steady fully developed lami-
nar flow in a horizontal pipe of diameter D is given 

by u(r) = u
r

D
m 0 5

2 2

2
. ,−

⎛
⎝⎜

⎞
⎠⎟

where r is the radial distance 

from the centerline of the pipe. If the fluid viscosity is 
m, then the wall shear stress is:

	 (A)	
8 mum

D
	 (B)	

4 mum

D

	 (C)	
16 mum

D
	 (D)	

2 mum

D

	 6.	 Horizontal circular pipes A and B have the respective 
length of 10 m and 20 m. In both the pipes, the same 
Newtonian fluid flows in a steady fully developed lami-
nar manner. Even though the pressure difference across 
the ends of Pipe A is four times of that across the ends 
of pipe B, the maximum shear stress remains the same 
in both the pipes. The ratio of the Reynolds numbers of 
the flow in pipe A to the flow in pipe B is: 

	 (A)	 64 : 1	 (B)	 8 : 1
	 (C)	 1 : 64	 (D)	 1 : 8

	 7.	 The volumetric flow rate of the steady fully developed 
laminar flow of a fluid (density = 900 Kg/m3, viscosity 
= 1 poise) in a horizontal circular pipe is 16.493 litre/
sec. The Reynolds number for the flow is determined 
to be 1890. If the pressure difference across the ends of 
the pipe is 1344 Pa, then the length of the pipe is:

	 (A)	 1 m	 (B)	 2 m
	 (C)	 3 m	 (D)	 4 m

	 8.	 For a couette flow, the velocity distribution is given by 

u y
uy

b

p

x
by y( ) ( ).= −

∂
∂

⎛
⎝⎜

⎞
⎠⎟

−
1

2
2

μ
Where u is the veloc-

ity with which the upper plate moves and b is the dis-
tance between the plates. A variable K is defined such 

that K
b

u

p

x
=
− ∂

∂
⎛
⎝⎜

⎞
⎠⎟

2

2μ
.

		    If K= -2, then the minimum velocity of the fluid in 
the couette flow is:

	 (A)	 0	 (B)	
−2

3

u

	 (C)	
−u

4
	 (D)	

−u

8
	 9.	 An oil (viscosity = 0.8 Kg/ms and density = 1400 Kg/

m3) flows in a laminar manner between two parallel 
inclined plates 15 mm apart and inclined at 45° to the 
horizontal. The pressure at two points 1.5 m vertically 
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apart is 100 kN/m2 and 300 kN/m2. If the upper plate 
moves at a velocity of 2.5 m/s but in a direction oppo-
site to the flow, then the velocity of the flow at a dis-
tance of 5 mm from the lower plate is:

	 (A)	 2.51 m/s	 (B)	 1.23 m/s
	 (C)	 2.42 m/s	 (D)	 1.58 m/s

	10.	 A shaft of radius 0.05 m rotates at 955 r.p.m in a journal 
bearing of radial clearance 5 mm. If the viscosity and 
density of the lubricant used in the bearing are 0.01 Pa. 
sec and 750 Kg/m3 respectively, then which combina-
tion of the following statement about the bearing is 
ONLY correct?

	 P:	 Flow condition in the bearing is turbulent.
	 Q:	 Reynolds number of the lubricant flow is 1875.
	 R:	 Surface speed of the shaft is 6 m/s.
	 S:	 Flow condition in the bearing is laminar.
	 (A)	 P, R	 (B)	 P, Q
	 (C)	 R, S	 (D)	 Q, S

	11.	 Assuming no-slip condition of the inner wall of a pipe 
in which the fully developed turbulent flow of a liquid 
occurs, which one of the following statements is ONLY 
correct about the conditions at the wall?

	 (A)	 Total shear stress is zero. 
	 (B)	 Friction factor is zero.
	 (C)	 Reynolds stresses are non-zeros.
	 (D)	 Turbulent shear stress is zero.

	12.	 A liquid flows turbulently in a horizontal pipe of diame-
ter 150 mm. The wall shear stress developed is 70 N/m2 
and the maximum fluid velocity in the flow is 3 m/s. If 
it is assumed that the velocity profile follows the one–
seventh power-law, then the ratio of the turbulent shear 
stress to the laminar shear stress at radius of 35 mm is: 

	 (A)	 0.428	 (B)	 2.335
	 (C)	 3.336	 (D)	 1.428

	13.	 In a rectangular duct, a fluid of density 900 Kg/m3 is 
flowing in a turbulent manner with an average velocity 
of 10 m/s. The width of the duct is two times the height 
while the length of the duct is eight times the height. 
If the pressure loss due to friction is 1485 Pa, then the 
friction factor associated with the flow is: 

	 (A)	 0.0055	 (B)	 0.011
	 (C)	 0.0092	 (D)	 0.055

	14.	 A fluid flows in the converging section of a circular 
horizontal pipe where the diameter narrows down from 
40 cm to 20 cm along a length of 4 meter. If the friction 
factor for the section is 0.02, then the frictional head 
loss (neglecting entrance and exit head losses and iner-
tia effects) for a flow of 0.1 m3/s is:

	 (A)	 0.0484 m	 (B)	 0.1936	
	 (C)	 0.0968 m	 (D)	 0.0272 m

	15.	 A centrifugal pump draws a liquid of SG 1.6 at the rate 
0.001 m3/s from a tank, by means of a horizontal pipe 
of diameter 40 mm. The delivery pipe of the pump is 

also horizontal with diameter 25 mm. If the pump sur-
passes an energy equivalent to 15 m of liquid head, the 
pressure differences across the pump is:

	 (A)	 163.5 kPa	 (B)	 187.6 kPa
	 (C)	 216.9 k Pa	 (D)	 245.2 kPa

	16.	 A pipe of diameter 150 mm and length 1500 m con-
nects two reservoirs having differences of water level 
20 m. If coefficient of friction is 0.015, the discharge 
through the pipe is:

	 (A)	 0.0485 m3/s	 (B)	 0.0411 m3/s
	 (C)	 0.0281 m3/s	 (D)	 0.0143 m3/sec 

	17.	 Water in a tank of length 20 m in and width 10 m is 
drained using a pipe of diameter 200 mm and length 
10 m as shown in the figure below. The friction factor 
associated with the pipe is 0.02 if the height of water in 
the tank is 7 m, then the time required to empty the tank 
is:

Tank

Pipe

10 m

7 m

	 (A)	 8738 secs	 (B)	 4369 secs
	 (C)	 2184 secs	 (D)	 6553 secs

	18.	 Two reservoirs are connected by a series of pipes as 
shown in the following figure. The coefficient of fric-
tion is the same for all the three pipes and is equal to 
f. In the figure, D and L denote the pipe diameter and 
length respectively and V denotes the average flow 
velocity in the pipe. If D1 = D3 and D2 = 0.5 D1, then 
the difference in level of the liquid in the two tanks (H) 
neglecting minor losses is:

D1, L1, V1

D2, L2, V2

D3, L3, V3

H

	 (A)	
f

D

V
L L L

g1

1
2

1 2 3
2

32( )+ +

	 (B)	
f

D

V
L L L

g1

1
2

1 2 3
2

8( )+ +

	 (C)	
4

2
32

1

1
2

1 2 3
f

D

V
L L L

g

( )+ +

	 (D)	
4

2
8

1

1
2

1 2 3
f

D

V
L L L

g

( )+ +
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	19.	 A piping system consists of a series of pipes in which a 
500 mm diameter pipe (f = 0.021) of length 30 m sud-
denly contracts to a 200 mm diameter pipe (f = 0.021) 
of length 50 m. A 90° bend (k = 0.5) is present in the 
500 mm diameter pipe. If the velocity of fluid in the 
500 mm diameter pipe is 2 m/s, then the length of an 
equivalent pipe (f = 0.021) of diameter 500 mm for the 
piping system would be: 

	 (A)	 4883 m	 (B)	 4853 m
	 (C)	 4304 m	 (D)	 4895 m

	20.	 Two pipes A and B are connected parallel to a main line 
that is supported with 9 × 10-3 m3/s of water from a 
pump. Pipe A is 110 m long and has a diameter of 55 cm . 
Pipe B is 850 m long. The volumetric flow rates in both 
the pipes are same. If the friction coefficient for both 
the pipes is 0.025, then the diameter of pipe B, assum-
ing that the pipes are on the same level ground, is:

	 (A) 425 cm	 (B) 83 cm
	 (C) 109 cm	 (D)	 92 cm.

	21.	 In the following pipe network

A

B

D

C

100
30R4 = 4

Q5 = 20.6

R3 = 1,
Q3 = 32.7

R5

R220

50

hf1 = 6704.82,
R1 = 2

		  Q, R, hf denote the flow rates, flow resistance and head 
losses due to friction respectively. The value of the flow 
resistance R2 respectively is:

	 (A)	 5.91	 (B)	 0.907
	 (C)	 4.93	 (D)	 1.89

	22.	 Two pipes having a set of diameter, length and fric-
tion factor values such as (D1, L1, and f1) and (D2, L2, 
f2) are connected in parallel between two points in a 
pipeline. If an equivalent pipe of diameter, length and 
friction factor values such as De, Le and fe respectively 
can replace the parallel pipes, then which one of the 
following relations would definitely hold TRUE?

	 (A)	
f L

D

f L
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	 (C)	 f L
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	23.	 For a boundary layer, a relation between the shape fac-
tor (s) and the layer thickness ( )δ is written in the form: 
s = k nδ .  If the boundary layer has a velocity distribu-

tion given by:
u

U

y
= ⎛
⎝⎜

⎞
⎠⎟δ

1

2
, then the values of k and n 

respectively are:

	 (A)	 7/9 and 1	 (B)	 9/7 and 1
	 (C)	 7/9 and 0	 (D)	 9/7 and 0

	24.	 The velocity distribution in the boundary layer over 
the face of a spillway was observed to have the form: 

u

U

y
= ⎛
⎝⎜

⎞
⎠⎟δ

0 22.

.
 
At a certain section AA¢, the boundary 

layer thickness was estimated to be 70 mm. If the energy 
loss per meter length of the spillway is 325.64 kNm/s, 
then the free stream velocity of the section AA¢ is:

	 (A)	 28 m/s	 (B)	 35 m/s	
	 (C)	 21 m/s	 (D) 207 m/s

	25.	 If the cubic polynomial u = a + by + cy3 is claimed to 
represent the velocity distribution in laminar boundary 
layer over a flat plate, then it would have the form (with 
U being the free stream velocity and δ the boundary 
layer thickness) such as:

	 (A)	 u
U

y
U

y= −
3

28 283
3 	 (B)	 u

U
y=

δ

	 (C)	 u y y= −
2 1

3
3

δ δ
	 (D)	 u

U y
= +
δ δ

3

3

	26.	 An incompressible fluid flows over a flat plate at a zero 
incidence angle. The boundary layer thickness, at a 
location where the Reynolds number is 1000, is 2 mm. 
At a location where the Reynolds number is 4000, the 
boundary layer thickness will be:

	 (A)	 1 mm	 (B)	 2 mm
	 (C)	 4 mm	 (C)	 8 mm

	27.	 The velocity (u) and boundary layer thickness (δ ) for 
the flow of a fluid over a flat plate is expressed as:

		  u

U

y y x

x

= ⎛
⎝⎜

⎞
⎠⎟
− ⎛
⎝⎜

⎞
⎠⎟

=2
5 48

2

δ δ
δ;

.

Re
.

		  The free stream velocity of the fluid (viscosity = 0.01 
Pa.sec) is 1.5 m/s. If the wall shear stress at x = 1.5 m is 
1.644 N/m2 then the density of the Newtonian fluid is:

	 (A)	 800 Kg/m3	 (B)	 700 Kg/m3

	 (C)	 1000 Kg/m3	 (D)	 900 Kg/m3

	28.	 Air flowing over a smooth flat plate forms a bound-
ary layer over the plate where the maximum thick-
ness of the laminar boundary layer is 2.652 mm. If the 
kinematic viscosity of air is 0.15 stokes, then the free 
stream air velocity is:

	 (A)	 1.31 mm/s	 (B)	 20 m/s
	 (C)	 3.2 cm/s	 (D)	 1.8 mm/s
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	29.	 At location x1, the thickness of the laminar boundary 
layer, formed by air flowing at a velocity of 2 m/s over a 
flat plate, is 6.45 mm. At another location x2, the laminar 
boundary layer thickness is 8.17 mm. The velocity dis-

tribution for the boundary layer is: 
u

U

y y
= − ⎛

⎝⎜
⎞
⎠⎟

3

2

1

2

3

δ δ
		  If the density of air is 1.19 Kg/m3, then the mass 

entrainment between the locations x2 and x1 is: 

	 (A)	 2.56 × 10-3 Kg/s	 (B)	 12.15 × 10-3 Kg/s
	 (C)	 9.59 × 10-3 Kg/s	 (D)	 21.74 × 10-3 Kg/s

	30.	 A flat plate kept at zero incidence in a stream of fluid 
with uniform velocity develops a turbulent boundary 
layer over the whole of the plate. If the average coef-
ficient of drag for the whole plate having a turbulent 

boundary layer is given by C
R

D
eL

=
0 072

0 2

.

( )
,

.  then the 

ratio of the drag force on the rear half of the plate to the 
drag force on the front half of the plate is:

	 (A)	 1.349	 (B)	 0.4256	
	 (C)	 0.7411	 (D)	 0.5743 

Previous Years’ Questions
	 1.	 For air flow over a flat plate, velocity (U) and bound-

ary layer thickness (d) can be expressed respectively, 

as U

U

y y x

x∞
= − ⎛

⎝⎜
⎞
⎠⎟

=
3

2

1

2

4 64
2

δ δ
δ;

.

Re
.

		    If the free stream velocity is 2 m/s,and air has kine-
matic viscosity of 1.5 × 10-5 m2/s and density of 1.23 
Kg/m3, the wall shear stress at X = 1 m, is� [2004]

	 (A)	 2.36 × 102 N/m2

	 (B)	 43.6 × 10–3 N/m2

	 (C)	 4.36 × 10–3 N/m2

	 (D)	 2.18 × 10–3 N/m2

	 2.	 A centrifugal pump is required to pump water to an 
open tank situated 4 km away from the location of 
the pump through a pipe of diameter 0.2 m having 
Darcy’s friction factor of 0.01. The average speed of 
water in the pipe is 2 m/s. If it is to maintain a con-
stant head of 5 m in the tank, neglecting other minor/
losses, the absolute discharge pressure at the pump 
exit is:� [2004]

	 (A)	 0.449 bar	 (B)	 5.503 bar
	 (C)	 44.911 bar	 (D)	 55.203 bar

	 3.	 The velocity profile in fully developed laminar flow in 
a pipe of diameter D is given by u = u0 (1 – 4r2/D2), 
where r is the radial distance from the center. If the 
viscosity of the fluid is m, the pressure drop across a 
length L of the pipe is:� [2004]

	 (A)	
mu0L

D  
	 (B)	

4 mu0L

D

	 (C)	
8 mu0L

D
	 (D)	

16 mu0L

D

	 4.	 A siphon draws water from a reservoir and discharges 
it out at atmospheric pressure. Assuming ideal fluid 
and the reservoir is large, the velocity at point P in the 
siphon tube is:� [2005]

h2

h1

P

	 (A)	 2 1gh 	 (B)	 2 2gh

	 (C)	 2 2 1g h h( )− 	 (D)	 2 2 1g h h( )+

Direction for questions 5 and 6:  A smooth flat plate with 
a sharp leading edge is placed along a gas stream flowing 
at U = 10 m/s. The thickness of the boundary layer at sec-
tion r - s is 10 mm, the breadth of the plate is 1 m (into the 
paper) and the density of the gas P = 1.0 Kg/m3. Assume 
that the boundary layer is thin, two-dimensional, and fol-
lows a linear velocity distribution, u = U(y/d), at the section  
r - s, where y is the height from plate.

Flat plate

U

Uq r

p
s

d

	 5.	 The mass flow rate (in Kg/s) across the section q - r 
is:� [2005]

	 (A)	 zero	 (B)	 0.05
	 (C)	 0.10	 (D)	 0.15

	 6.	 The integrated drag force (in N) on the plate, between 
p - s, is:� [2005]

	 (A)	 0.67	 (B)	 0.33
	 (C)	 0.17	 (D)	 zero

	 7.	 Consider an incompressible laminar boundary layer 
flow over a flat plate of length L, aligned with the 
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direction of an oncoming uniform free stream. If F is 
the ratio of the drag force on the front half of the plate 
to the drag force on the rear half, then� [2006]

	 (A)	 F < 1/2	 (B)	 F = 1/2
	 (C)	 F = 1	 (D)	 F > 1

	 8.	 Consider steady laminar incompressible axisymmet-
ric fully developed viscous flow through a straight 
circular pipe of constant cross-sectional area at a 
Reynolds number of 5. The ratio of inertia force to 
viscous force on a fluid particle is:� [2006]

	 (A)	 5	 (B)	 1/5
	 (C)	 0	 (D)	 ∞

Direction for questions 9 and 10:  Consider a steady 
incompressible flow through a channel as shown below.

d

d

mo

H

y

XBA

Vm

		  The velocity profile is uniform with a value of uo at 
the inlet section A. The velocity profile at section B 
downstream is

		

u

V
y

y

V y H

V
H y

H y H

m

m

m

=

≤ ≤

≤ ≤ −
−

− ≤ ≤

⎧

⎨

⎪
⎪

⎩

⎪
⎪

δ
δ

δ δ

δ
δ

,

,

,

0

	 9.	 The ratio Vm/uo is� [2007]

	 (A)	

1

1 2− ⎛
⎝⎜

⎞
⎠⎟

δ
H

	 (B)	 1

	 (C)	

1

1− ⎛⎝⎜
⎞
⎠⎟

δ
H

	 (D)	
1

1+ ( )δ
H

	10.	 The ratio 
p p

pu

A B

o

−
1

2
2

 

(where pA and pB are the pressures 

at section A and B, respectively, and r is the density of 
the fluid) is� [2007]

	 (A)	
1

1
1

2
2

− ( )( )
−

δ
H

	 (B)	

1

1
2

− ⎛⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

δ
H

	 (C)	

1

1

1
2

− ⎛⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

−
δ
H

	 (D)	

1

1+ ⎛⎝⎜
⎞
⎠⎟

δ
H

 

	11.	 Water at 25°C is flowing through a 1.0 km long G.I 
pipe of 200 mm diameter at the rate of 0.07 m3/s. If 
value of Darcy friction factor for this pipe is 0.02 and 
density of water is 1000 Kg/m3, the pumping power 
(in kW) required to maintain the flow is� [2008]

	 (A)	 1.8	 (B)	 17.4
	 (C)	 20.5	 (D)	 41.0

	12.	 The velocity profile of a fully developed laminar flow 
in a straight circular pipe, as shown in the figure, is 

given by the expression u r
R dp

dx

r

R
( ) = − ⎛

⎝⎜
⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

2 2

24
1

μ
 

where 
dp

dx
 is a constant. The average velocity of fluid 

in the pipe is� [2008]

u(r ) R
x

r

	 (A)	 − ⎛
⎝⎜

⎞
⎠⎟

R dp

dx

2

8μ
	 (B)	 − ⎛

⎝⎜
⎞
⎠⎟

R dp

dx

2

4μ

	 (C)	 − ⎛
⎝⎜

⎞
⎠⎟

R dp

dx

2

2μ
	 (D)	 − ⎛

⎝⎜
⎞
⎠⎟

R dp

dx

2

μ
	13.	 The maximum velocity of a one-dimensional incom-

pressible fully developed viscous flow, between two 
fixed parallel plates, is 6 ms–1. The mean velocity (in 
ms–1) of the flow is� [2008]

	 (A)	 2	 (B)	 3
	 (C)	 4	 (D)	 5

	14.	 Oil flows through a 200 mm diameter horizontal cast 
iron pipe (friction factor, f = 0.0225) of length 500 m. 
The volumetric rate is 0.2 m3/s. The head loss (in m) 
due to friction is (assume g = 9.81 m/s2)� [2009]

	 (A)	 116.18	 (B)	 0.116
	 (C)	 18.22	 (D)	 232.36

	15.	 An incompressible fluid flows over flat plate with zero 
pressure gradient. The boundary layer thickness is 1 
mm at a location where the Reynolds number is 1000. 
If the velocity of the fluid alone is increased by a fac-
tor of 4, then the boundary layer thickness at the same 
location, in mm will be� [2009]

	 (A)	 4	 (B)	 2
	 (C)	 0.5	 (D)	 0.25

	16.	 For steady, fully developed flow inside a straight pipe 
of diameter D, neglecting gravity effects, the pressure 
drop ∆ p over a length L and the wall shear stress τw 
are related by� [2010]

	 (A)	 τw
pD

L
=
Δ
4

	 (B)	 τw
pD

L
=
Δ 2

24
 

	 (C)	 τw
pD

L
=
Δ
2

	 (D)	 τw
pD

L
=

4

4

Δ
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17.	 Water flows through a pipe having an inner radius of 
10 mm at the rate of 36 Kg/hr at 25°C. The viscosity 
of water at 25°C is 0.001 Kg/m.s. The Reynolds num-
ber of the flow is � [2011]

	18.	 For a fully developed flow of water in a pipe having 
diameter 10 cm, velocity 0.1 m/s and kinematic vis-
cosity 10–5 m2/s, the value of Darcy friction factor  
is � [2011]

19.	 Water flows through a 10 mm diameter and 250 m 
long smooth pipe at an average velocity of 0.1 m/s. 
The density and the viscosity of water are 997 Kg/m3 

and 855 × 10–6 N . s/m2, respectively. Assuming fully–
developed flow, the pressure drop (in Pa) in the pipe is 

� [2012]

	20.	 Consider laminar flow of water over a flat plate of 
length 1 m. If the boundary layer thickness at a dis-
tance of 0.25 m from the leading edge of the plate 
is 8 mm, the boundary layer thickness (in mm), at a 
distance of 0.75 m, is � [2013]

	21.	 Consider the turbulent flow of a fluid through a cir-
cular pipe of diameter, D. Identify the correct pair of 
statements.

		    I.  The fluid is well-mixed

		   II.  The fluid is unmixed

		  III.  ReD < 2300

		  IV.  ReD > 2300� [2014]
	 (A)	 I, III	 (B)	 II, IV
	 (C)	 II, III	 (D)	 I, IV

	22.	 A siphon is used to drain water from a large tank as 
shown in the figure below. Assume that the level of 
water is maintained constant. Ignore frictional effect 
due to viscosity and losses at entry and exist. At the 
exit of the siphon, the velocity of water is:� [2014]

Q

O

ZR

ZQZP

ZO

R

P

Datum

	 (A)	 2g Z ZQ R( )− 	 (B)	 2g Z Zp R( )−

	 (C)	 2g Z Zo R( )− 	 (D)	 2gZQ

	23.	 A fluid of dynamic viscosity 2 × 10-5 Kg/ m.s and 
density 1 Kg/m3 flows with an average velocity of 
1 m/s through a long duct of rectangular (25 mm × 
15 mm) cross-section. Assuming laminar flow, the 

pressure drop (in Pa) in the fully developed region per 
meter length of the duct is: � [2014]

	24.	� Consider fully developed flow in a circular pipe with 
negligible entrance length effects. Assuming the mass 
flow rate, density and friction factor to be constant, if 
the length of the pipe is doubled and the diameter is 
halved, the head loss due to friction will increase by a 
factor of� [2015]

	 (A)	 4			   (B)	 16
	 (C)	 32			   (D)	 64

	25.	� The Blausius equation related to boundary layer the-
ory is a� [2015]

	 (A)	 third-order linear partial differential equation
	 (B)	 third-order nonlinear partial differential equation
	 (C)	� second-order nonlinear ordinary differential 

equation
	 (D)	� third-order nonlinear ordinary differential 

equation

	26.	� For flow through a pipe of radius R, the velocity and 
temperature distribution are as follows: u(r, z) = C1, 

and T(r, x) = C
r

R
2

3

1−⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, where C1 and C2 are 

constants.

		�  The bulk mean temperature is given by Tm 

= ∫
2

2
0

U Rm

R

u(r, x)T(r, x) rdr, with Um being the 

mean velocity of flow. The value of Tm is:� [2015]

	 (A)	
0 5 2. C

Um
	 (B)	 0.5C2

	 (C)	 0.6C2	 (D)	
0 6 2. C

Um

	27.	� Within a boundary layer for a steady incompressible 
flow, the Bernoulli equation:� [2015]

	 (A)	 holds because the flow is steady
	 (B)	 holds because the flow is incompressible
	 (C)	 holds because the flow is transitional
	 (D)	 does not hold because the flow is frictional

	28.	� The total emissive power of a surface is 5000 W/m2 at 
a temperature T1 and 1200 W/m2 at a temperature T2, 
where the temperature are in Kelvin. Assuming the 
emissivity of the surface to be constant, the ratio of 

the temperatures 
T

T
1

2

is:� [2015]

	 (A)	 0.308	 (B)	 0.416
	 (C)	 0.803	 (D)	 0.875

	29.	� The head loss for a laminar incompressible flow 
through a horizontal circular pipe is h1. Pipe length 
and fluid remaining the same, if the average flow 
velocity doubles and the pipe diameter reduces to half 
its previous value, the head loss is h2. The ratio h2/h1 
is:� [2015]
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	 (A)	 1	 (B)	 4
	 (C)	 8	 (D)	 16

	30.	� For a fully developed laminar flow of water (dynamic 
viscosity 0.001 Pa-s) through a pipe of radius 5 cm, 
the axial pressure gradient is –10 Pa/m. The magni-
tude of axial velocity (in m/s) at a radial location of 
0.2 cm is _____.� [2015]

	31.	� Three parallel pipes connected at the two ends have 
flow-rates Q1, Q2 and Q3 respectively, and the cor-
responding frictional head losses are hL1, hL2, and hL3 
respectively. The correct expressions for total flow 
rate (Q) and frictional head loss across the two ends 
(hL) are:� [2015]

	 (A)	 Q = Q1 + Q2 + Q3; hL = hL1 + hL2 + hL3
	 (B)	 Q = Q1 + Q2 + Q3; hL = hL1 = hL2 = hL3
	 (C)	 Q = Q1 = Q2 = Q3; hL = hL1 + hL2 + hL3
	 (D)	 Q = Q1 = Q2 = Q3; hL = hL1 = hL2 = hL3

	32.	� Oil (kinematic viscosity, uoil = 1.0 × 10–5 m2/s) flows 
through a pipe of 0.5 m diameter with a velocity of 
10  m/s. Water (kinematic viscosity, uw = 0.89 × 
10–6 m2/s) is flowing through a model pipe of diam-
eter 20 mm. For satisfying the dynamic similarity, the 
velocity of water (in m/s) is _______.� [2016]

	33.	� A steady laminar boundary layer is formed over a flat 
plate as shown in the figure as given on next page. 
The free stream velocity of the fluid is Uo. The veloc-
ity profile at the inlet a-b is uniform, while that at the 
downstream location c-d given by

	 u

	 

= ⎛
⎝⎜

⎞
⎠⎟
− ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

U
y y

o 2
2

δ δ

		�  The ratio of the mass flow rate, �mbd ,  leaving through 
the horizontal section b-d to that entering through the 
vertical section a-b is ______.� [2016]

bdm
•

y

d Uo

ca

b

 
Uo δ

	34.	� Consider fluid flow between two infinite horizontal 
plates which are parallel (the gap between them being 
50 mm). The top plate is sliding parallel to the station-
ary bottom plate at a speed of 3 m/s. The flow between 
the plates is solely due to the motion of the top plate. 
The force per unit area (magnitude) required to main-
tain the bottom plate stationary is ______ N/m2.
� [2016]

		  Viscosity of the fluid
	 µ	= 0.44 kg/m-s and density
	 ρ	= 88 kg/m3.

	35.	� Consider a fully developed steady laminar flow of an 
incompressible fluid with viscosity µ through a circu-
lar pipe of radius R. Given that the velocity at a radial 
location of R/2 from the centerline of the pipe is U1, 
the shear stress at the wall is Kµ U1/ R, where K is 
________.� [2016]

Answer Keys

Exercises
Practice Problems 1
	 1.  D	 2.  A	 3.  B	 4.  A	 5.  C	 6.  B	 7.  D	 8.  A	 9.  C	 10.  B
11.  D	 12.  B	 13.  D	 14.  C	 15.  B	 16.  A	 17.  C	 18.  D	 19.  D	 20.  A

Practice Problems 2
	 1.  A	 2.  D	 3.  B	 4.  B	 5.  D	 6.  C	 7.  B	 8.  D	 9.  C	 10.  B
11.  D	 12.  B	 13.  A	 14.  A	 15.  C	 16.  D	 17.  B	 18.  C	 19.  A	 20.  B
21.  A	 22.  D	 23.  D	 24.  B	 25.  A	 26.  C	 27.  D	 28.  B	 29.  A	 30.  C

Previous Years’ Questions
	 1.  C	 2.  B	 3.  D	 4.  C	 5.  B	 6.  C	 7.  D	 8.  A	 9.  A	 10.  C
11.  B	 12.  A	 13.  C	 14.  A	 15.  C	 16.  A	 17.  635 to 638	 18.  0.06 to 0.07
19.  6800 to 6900	 20.  13.5 to 14.2	 21.  D	 22.  B	 23.  1.7 to 2		  24.  D	 25.  D
	26.  C	 27.  D	 28.  C	 29.  C	 30.  6.2 to 6.3		  31.  B		  32.  22 to 22.5
	33.  0.32 – 0.34	 34.  26.4	 35.  2.6 – 2.7
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