Perfect Square

A natural no. is perfect sq. if it is sq. of some natural no. e.g. 36 is perfect sq because it is the sq. of 6

Properties of perfect square

- 1. No. ending with 2,3,7,8 never be a perfect square
- 2. No. ending with odd no of zero never be a perfect sq.
- 3. Diff of square of two consecutive natural no. is equal to their sum. $(n+1)^2 n^2 = (n+1) + (n)$
- 4. Pythogorean triplet (x,y,z) if $z^2 = x^2 + y^2$

Ex. Square by diagonal method.

Square by column method

Ex. To find 25^2 , take a = 2, b = 5

a²	2ab	b ²
2 ²	$2 \times 2 \times 5$	5 ²
4 +2 <u>6</u>	20 +2 -22	2 <u>5</u>

$$25^2 = 625$$

Square Root

Square root of no x, in that no whose square is x.

Ex. Sq. root of 64 is 8 because
$$8^2 = 64 \Rightarrow \sqrt{64} = 8$$
.

Prime factorization

Q. Find sq. root of 36.

Sol.
$$\sqrt{36} = \sqrt{2 \times 2 \times 3 \times 3}$$
 $2 \mid 36$
= $2 \times 3 = 6$ $2 \mid 18$
 $3 \mid 9$
 $3 \mid 3$
 1

Square and Square Roots

When a number is multiplied with it self e.g. Square of 7 is $7 \times 7 = 49$.

Long Division method.

Q. Find sq. root 58081.

241		
2	58081	
2	4	
44	180	
+4	176	
481	481	
	481	
×		
$\sqrt{58081} = 241$		

Square root of fraction

$$\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$$

$$\sqrt{\frac{a}{b}} = \sqrt{\frac{a}{b}}$$

Ex.
$$\sqrt{\frac{529}{841}} = \sqrt{\frac{529}{841}} = \frac{23}{29}$$

Ex.
$$\sqrt{36 \times 49} = \sqrt{36} \times \sqrt{49} = 6 \times 7 = 42$$

Successive subtraction

We successive subtract odd no from the given no. till we get zero. The number of time we subtract is the square root of the no.

Ex.
$$\sqrt{16}$$

 $16 - 1 = 15$
 $15 - 3 = 2$
 $12 - 5 = 7$
 $7 - 7 = 0$ so $\sqrt{16} = 4$