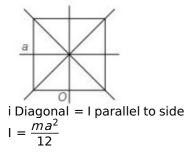
CGPET 2016

Solved Paper

Question 1

Consider a thin uniform square sheet made of a rigid material. If its side is a, mass m and moment of inertia | about one of its diagonals, then

Options:


A. $| > \frac{ma^2}{12}$ B. $\frac{ma^2}{24} < | < \frac{ma^2}{12}$ C. $| = \frac{ma^2}{12}$ D. $| = \frac{ma^2}{24}$

Answer: C

Solution:

Solution:

In a uniform square plate due to symmetry, moment of inertia about all the axis passing through the center and lying in the plane of the plate is same.

Question 2

From a solid sphere of mass M and radius R, aspherical portion of radius $\frac{R}{2}$ is removed, asshown in figure. Taking gravitational potential $\forall = 0$ at r = a. The potential at thecenter of the cavity thus formed is(G = gravitational constant)

$$\bigcirc$$

A.
$$\frac{-2 \text{ GM}}{3\text{R}}$$

B.
$$\frac{-2 \text{ GM}}{\text{R}}$$

C.
$$\frac{-\text{GM}}{2\text{R}}$$

D.
$$\frac{-\text{GM}}{\text{R}}$$

Answer: D

Solution:

Solution:

$$(\mathbf{P} = \mathbf{P} + \mathbf{P})$$

It is given, V = 0 at $r = \infty$ Gravitational potential at internal point of a solid sphere at a distance r, is given by the following formula $V = -\frac{GM}{3} - \frac{r^2}{r^2}$

$$V = -\frac{1}{R} \left[\frac{1}{2} - \frac{1}{2R^2} \right]$$

Here,

$$r = \frac{R}{2}$$

$$V_1 = -\frac{GM}{R} \left[\frac{3}{2} - \frac{R^2}{8R^2} \right]$$

$$= -\frac{GM}{R} \left[\frac{12 - 1}{8} \right]$$

$$= -\frac{11}{8} \frac{GM}{R}$$

Because of sphere removed-

$$V_2 = \frac{3}{2} \cdot \frac{\frac{8}{R}}{\frac{R}{2}} = \frac{3}{2} \times \frac{2 GM}{8R}$$

$$\frac{3 GM}{8 R}$$

The net potential at the center of the cavity

$$V = V_1 + V_2$$

$$= -\frac{11}{8} \frac{GM}{R} + \frac{3 GM}{8} \frac{R}{R}$$

$$= \frac{GM}{R} \left[\frac{3}{8} - \frac{11}{8} \right]$$

Question 3

A very long (length L) cylindrical galaxy ismade of uniformly distributed mass and hasradius R(R < < L). A star outside the galaxy isorbiting the galaxy in a plane perpendicular to the galaxy and passing through its center. If the time period of star is T and its distance from the galaxy's axis is r, then

Options:

A. T²∞r³

C

B. $T \propto r^2$

C. T∞*r*

D. T $\infty \sqrt{r}$

Answer: C

Solution:

Solution:

Length of the galaxy = L Mass is uni-formally distributed. Distance of star from axis of galaxy = r Star is orbiting the galaxy. So, centripetal force must equal to the force experience by gravitation of galaxy $\therefore F_c = \frac{2GM}{L,r}m$ $F_c = \frac{mv^2}{r} [\because v = \omega r = m\omega^2 r]$ $m\omega^2 r = \frac{2GMm}{L,r}$ but, $\omega = \frac{2\pi}{T}$ where, T = time period $m[\frac{2\pi}{T}]^2 \cdot r = \frac{2GMm}{L,r}$ $\therefore T \approx r$

Question 4

A pendulum made of a uniform wire of cross-sectional area A has time period \top . When anadditional mass M is added to its bob, thetime period changes to \top_M . If the Young'smodulus of the material of the wire is Y, then $\frac{1}{\gamma}$ is equal to (g = gravitational acceleration)

Options:

A.
$$\left[1 - \left(\frac{T_{M}}{T}\right)^{2}\right] \frac{A}{Mg}$$

B. $\left[1 - \left(\frac{T}{T_{M}}\right)^{2}\right] \frac{A}{Mg}$
C. $\left[\left(\frac{T_{M}}{T}\right)^{2} - 1\right] \frac{A}{Mg}$
D. $\left[\left(\frac{T_{M}}{T}\right)^{2} - 1\right] \frac{Mg}{A}$

Answer: C

Solution:

Solution:

The time period of a pendulum- $T = 2\pi \frac{\sqrt{I}}{g}$...(i) When additional mass M is added to its bob, thelength of the wire will increase, let it is Δ / then newtime period is,

 $T_{M} = 2\pi \frac{\sqrt{\Delta I}}{g}$...(ii) Young's modulus of wire-<u>F</u> $Y = \frac{\frac{\Delta}{\Delta}}{\frac{\Delta}{I}} = \frac{F.I}{\Delta I.A}$ $\therefore Y \cdot \Delta A = F.I$ $\int_{-\infty}^{1} \frac{\Delta I \cdot A}{A} = F \cdot I$ $\Delta I = \frac{F \cdot I}{AY} \{F = Mg\}$ $\Delta I = \frac{MgI}{AY}$ Time Period- $T_{M} = 2\pi \frac{\sqrt{I + Mg} \frac{I}{AY}}{g} \dots (iii)$ Dividing Eq. (iii) by Eq. (i), we get- $\sqrt{\frac{MgI}{T}} = \frac{2\pi I + \frac{A \cdot Y}{g}}{2\pi \frac{\sqrt{I}}{g}}$ $\left(\frac{T_{M}}{T}\right)^{2} = \frac{I + \frac{Mg}{AY}}{I} = 1 + \frac{Mg}{AY}$ $\frac{1}{Y} = \frac{A}{Mg} \left[\left(\frac{T_{M}}{T}\right)^{2} - 1 \right]$ $= \left[\left(\frac{T_{M}}{T}\right)^{2} - 1 \right] \frac{A}{Mg}$

Question 5

One end of a horizontal thick copper wire oflength 2L and radius 2R is welded to an end ofanother horizontal thin copper wire of length and radius R. When the arrangement isstretched by applying forces at two ends, theratio of the elongation in the thin wire to thatin the thick wire is

Options:

A. 0.25

B. 0.50

C. 2.00

D. 4.00

Answer: C

Solution:

Solution:

Let the Young's modulus of copper wire is Y. So,

$$Y = \frac{\frac{1}{A}}{\frac{\Delta I}{I}} = \frac{F \cdot L}{A \cdot \Delta I}$$
(i)

When the arrangement is stretched by applying forces at two ends, the same force will experienced by the wires.

From Eq. (i), $\Delta l = \frac{F \cdot L}{A \cdot Y}$ If the increase in length of the wires are Δl_1 and Δl_2 , then $\Delta l_1 = \frac{F \cdot L}{A \cdot Y}$

 $\Delta I_2 = \frac{F \cdot L'}{A' \cdot Y} [\because A = \pi R^2]$ $\frac{\Delta I_1}{\Delta I_2} = \frac{L}{R^2} \times \frac{(2R^2)}{2L} = 2 [\because A' = \pi (2R)^2]$

Question 6

A body initially at 80°C cools to 64°C in 5 minand to 52°C in 10 min. The temperature of this body after 15 min will be(assuming heat loss by radiation only)

Options:

A. 40°C

B. 43°C

C. 41°C

D. 39°C

Answer: B

Solution:

Solution:

Let the temperature of surroundings is θ_0 Making use of Newton's law of cooling, $\frac{\log(64 - \theta_0)}{\log(80 - \theta_0)} = -\frac{k}{m \times s} \times 5 \dots (i)$ $\log\left(\frac{64 - \theta_0}{52 - \theta_0}\right) = \frac{k}{m \times s} \times 5$ In next 10 min, the temperature becomes 52°. $\frac{\log(52 - \theta_0)}{\log(64 - \theta_0)} = -\frac{k}{m \times s} \times 10 \dots (ii)$ On dividing Eq. (ii) by Eq. (i), we get $\log\left(\frac{52 - \theta_0}{64 - \theta_0}\right) = 2\log\left(\frac{64 - \theta_0}{80 - \theta_0}\right)$ (52 - θ_0) × (80 - θ_0) = (64 - θ_0)² or, 52 × 80 - 132 θ_0 + θ_0^2 = (64)² - 128 θ_0 + θ_0^2 4 θ_0 = 4160 - 4096 = 64 $\theta_0 = \frac{64}{4} = 16^{\circ}$ C $\log\left(\frac{\theta - \theta_0}{80 - \theta_0}\right) = \log\left(\frac{64 - 16}{80 - 16}\right)^2$ where, θ is the temperature of the body after 15 min. $\frac{\theta - 16}{80 - 16} = \frac{27}{64}$

Question 7

A wave represented by the equation $y = a \cos(kx - \omega t)$ is superposed with anotherwave to form stationary wave such that the point x = 0 is a node. The equation for theother wave is

A. $a \sin(kx + \omega t)$

B. $-a\cos(\omega l + kx)$

C. $-a\cos(kx - \omega t)$

D. $-a\sin(kx - \omega t)$

Answer: B

Solution:

Solution:

At x = 0, the equation for other wave will be $-\cos(\omega t - kx)$ Because the wave will propagate in the opposite direction with phase difference of π Negative sign will be used as the boundary is rigid.or $y = y_1 + y_2$ $y = a[\cos(kx - \omega t) - \cos(kx - \omega t)]$ At, x = 0, y = 0 $\therefore y_2$ must be $[-a\cos(kx + \omega t)]$

Question 8

A particle moves on Y-axis according to equation $y = y_0 \sin^2 \omega t$, the motion is simple harmonic

Options:

A. with amplitude y_0

B. with amplitude $2y_0$

C. with time period $\frac{2\pi}{\omega}$

D. with time period $\frac{\pi}{\omega}$

Answer: D

Solution:

Solution:

$$\begin{split} y &= y_0 \sin^{-2} \omega t \\ &= \frac{1}{2} y_0 (1 - \cos 2 \omega t) \\ \text{Clearly above mention has a time period,} \\ T &= \frac{2\pi}{2\omega} = \frac{\pi}{\omega} \end{split}$$

Question 9

A sonometer wire under tension of 64N vibrating in its fundamental mode is in resonance with a vibrating tuning fork. The vibrating tuning fork is now moved away from the vibrating wire with a constant speed and an observer standing near sonometer hears one beat per second. The speed with which the tuning fork moved is (speed of sound in air is 330m / *s*, vibrating portion of sonometer wire has length 10 cm and mass 1 gm)

Options:

A. 0.117m/s

B. 0.752m/s

C. 0.342m/s

D. 0.435m/s

Answer: B

Solution:

Solution: According to Doppler's principle due to motion of source, $\frac{n'}{n} = \frac{v}{v + v_s}$ $\Rightarrow \frac{n}{n'} = \frac{v + v_s}{v} = 1 + \frac{v_s}{v}$ $n - n' = n'(\frac{v_s}{v})$ $n' = (n - n')\frac{v_s}{v_s}$ $n(\frac{v}{v + v_s}) = (n - n') \cdot \frac{v}{v_s} \dots (i)$ Here, v = 330m / s $v_s = ?$ $n = \frac{1}{2}/\frac{\sqrt{T}}{M} = \frac{1}{2 \times 10^{-1}} \sqrt{\frac{64}{10^{-2}}}$ $= \frac{1}{2 \times 10^{-1}} \times \frac{800}{2} = 400$ Given, n - n' = 1(beat) So, substitution of values in Eq. (i), we get $v_s = 0.752 \text{m/s}$

Question 10

Consider interference between two sources of intensities | and 4|. The intensity at point where the phase difference is π , is

- B. 4I
- C. 51I
- D. 31I

Answer: A

Solution:

Solution: When phase difference is π , the difference will be destructive $I = (a_1 - a_2)^2$ $I \propto a^2$ $a_1 \propto \sqrt{I_1} = \sqrt{I}$ $a_2 \propto \sqrt{I_2} = 2\sqrt{I}$ $I = (\sqrt{I} - 2\sqrt{I})^2$ $= (\sqrt{I})^2 [1 - 2]^2$ I = I

Question 11

If the frequency of light in a photoelectric experiment is doubled, the stopping potential will become

Options:

A. doubled

B. halved

C. more than double

D. less than double

Answer: C

Solution:

```
Solution:

Einstein's photoelectric equation,

hv = eV_0 + W

W = hv_0(work function)

eV_0 = hv - W_0

V_0 = stopping potential

W_0 = work function of metal surface

According to question, if the frequency of light is doubled i . e . 2v then stopping potential,

eV'_0 = 2hv - W_0

\therefore V'_0 > 2V_0
```

Question 12

Who is the first scientist to measure the specific charge of an electron?

- A. Millikan
- B. Rutherford
- C. Thomson
- D. Weinbridge

Answer: C

Solution:

Solution: Specific charge $= \frac{q_e}{m_e}$ where, m_e is the mass of electron. Thomson first determined the specific charge for charge particles like proton, electron, helium etc.

Question 13

The wavelength will be minimum when electron transits from $n = \dots$ to $n = \dots$.

Options:

```
A. n = 5 to n = 4
B. n = 4 to n = 3
```

C. n = 3 to n = 2

D. n = 2 to n = 1

Answer: D

Solution:

Solution:

The wavelength of the photon will be minimum when electron jumps from n = 2 to n = 1 because these are the closest energy levels.

Question 14

The number of active nuclei in two radioactive substances are in the ratio of 2:3 initially. If their half lifes are one hour and two hours respectively, then the ratio of active nuclei after 6 hours is in the ratio of

- A. 1:1
- B. 1:12
- C. 4:3
- D. 12:1

Answer: B

Solution:

Solution:

Let m_1 and m_2 are undacayed substances

 $m_{1}m_{01} = \frac{\left(\frac{1}{2}\right)^{1}}{6} = \left(\frac{1}{2}\right)^{6}$ $\frac{m_{2}}{m_{02}} = \frac{\left(\frac{1}{2}\right)^{6}}{2} = \left(\frac{1}{2}\right)^{3}$ $\therefore \frac{m_{1}/m_{01}}{m_{2}/m_{02}} = \frac{\left(\frac{1}{2}\right)^{2}}{\left(\frac{1}{2}\right)^{3}}$ $\frac{m_{1}}{m_{2}} \times \frac{m_{02}}{m_{01}} = \left(\frac{1}{2}\right)^{3}$ $\frac{m_{1}}{m_{2}} = \left(\frac{1}{2}\right)^{3} \times \frac{m_{01}}{m_{02}}$ $= \left(\frac{1}{2}\right)^{3} \times \frac{2}{3}$ $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{2}{3} = \frac{1}{12} = 1:12$

Question 15

Different wavelengths are coming out of a coolidge tube in an X-ray experiment. The possible one that is not present of the following is

Options:

- A. 25 pm (picometer)
- B. 50 pm
- C. 75 pm
- D. 100 pm
- Answer: A

Solution:

Solution: The wavelength of X- rays in specturn is of the order of $1\mathring{A} - 100\mathring{A}$ $\therefore 25 \text{ pm} = 25 \times 10^{-12} \text{m}$ $= 0.25 \times 10^{-10} \text{m}$ $= 0.25 \mathring{A}$ _____

Question 16

A point charge is producing electric field and in this electric field, an electric dipole is placed. Which of the following is most appropriate answer?

Options:

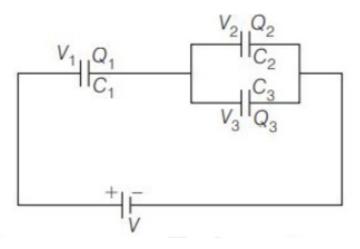
- A. The net electric force on dipole must be zero
- B. Net electric force on dipole may be zero
- C. Torque on the dipole due to electric field must be zero
- D. Torque on the dipole due to electric field may be zero

Answer: D

Solution:

Solution:

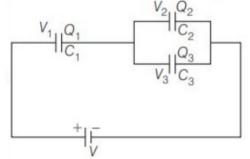
The electric field due to point charge, $F = \frac{k \cdot q}{r^2}$



When the dipole is placed in this electric field, each charge of the dipole will experience the force in different directions. So, these forces will produce a torque.

Question 17

Three capacitors C_1 , C_2 , C_3 are connected to a battery of V volt as shown in figure. The charges and potentials are shown in figure. Then, the correct answer is



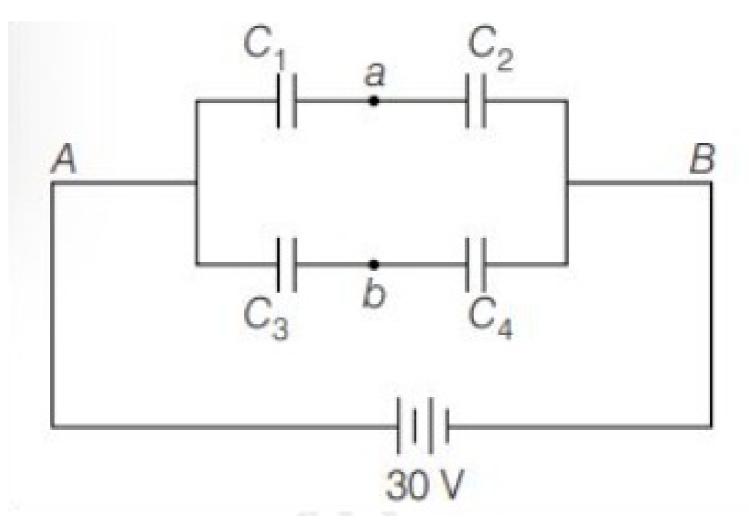
A.
$$Q_1 = Q_2 = Q_3, V_1 = V_2 = V_3 = V$$

B. $Q_1 = Q_2 + Q_3, V = V_1 + V_2 + V_3$
C. $Q_1 = Q_2 + Q_3, V = V_1 + V_2$
D. $Q_2 = Q_3, V_2 = V_3$

Answer: C

Solution:

Solution:



According to Kirchhoff's first law, $Q_1 = Q_2 + Q_3$ As C_2 and C_3 are in parallel, $V_2 = V_3$ and according to Kirchhoff's second law $V = V_1 + V_2 = V_1 + V_3$

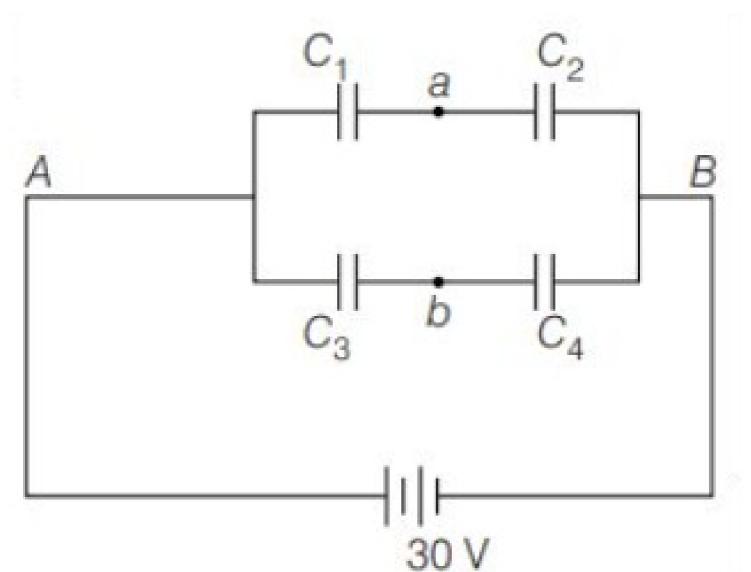
Question 18

Four capacitors with capacitance $C_1 = 1\mu$ F, $C_2 = 1.5\mu$ F, $C_3 = 2.5\mu$ F and $C_4 = 0.5\mu$ F are connected as shown in figure to a 30V source. The potential difference between points *a* and *b* is

Options:

A. 5V

В. **-9**V


C. 10V

D. -13V

Answer: D

Solution:

Solution:

 $C_{1} = 1\mu F$ $C_{2} = 1.5\mu F$ $C_{3} = 2.5\mu F$ Equivalent capacitance of C_{1} and C_{2} , $\frac{1}{C_{eql}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} = \frac{1}{1.0} + \frac{1}{1.5}\mu F$ $= 1 + \frac{2}{3} = \frac{5}{3}$ $C_{eql} = \frac{3}{5}\mu F$ Equivalent capacitance of C_{3} and C_{4} , $\frac{1}{C_{eqll}} = \frac{1}{2.5} + \frac{1}{0.5}$ $\frac{1}{C_{eqll}} = \frac{2}{5} + 2 = \frac{12}{5}$ $C_{eql} = \frac{5}{12}\mu F$ Total capacitance of circuit, $C_{eq} = C_{eql} + C_{eqll}$ $= \frac{3}{5} + \frac{5}{12} = \frac{36 + 25}{60}$ $= \frac{61}{60}\mu F$ Total charge given by the cell, $Q_{total} = C_{eq} \times V$ $= \frac{61}{60} \times 30$ $= \frac{61}{2}\mu C$ This charge is distributed in upper (I) and lower (II0 branches of the circuit. $\frac{Q_{1}}{C_{eql}} = \frac{Q_{2}}{\frac{5}{5}}$

 $\frac{5Q_1}{3} = \frac{12Q_2}{5}$ $Q_1 + Q_2 = \frac{61}{2}$ $\therefore Q_1 + \frac{25}{36}Q_1 = \frac{61}{2}$ $\frac{36 + 25}{36}Q_1 = \frac{61}{2}$ $\frac{61}{36}Q_1 = \frac{61}{2}$ $Q_1 = 18\mu C$ $Q_2 = \frac{61}{2} - 18$ $= \frac{61 - 36}{2} = \frac{25}{2}\mu C$ If V_1 = potential difference across capacitor C_1 $V_1 = \frac{Q_1}{C_1} = \frac{18}{1} = 18V$ $V_2 = \frac{Q_2}{Q_3} = \frac{25}{2.5} = \frac{25}{\frac{5}{2}} = 5V$ So, we have, $V_A - V_a = 18V$ $V_A - V_b = 5V$ $(V_A - V_b) - (V_A - V_a) = 5 - 18$ $V_a - V_b = -13V$

Question 19

A 600 pF capacitor is charged by a 200V supply. It is then disconnected from the supply and is connected to another uncharged 600 pF capacitor. Electrostatic energy lost in the process is

Options:

A. 6×10^{-6} J

B. 3×10^{-6} J

C. 6×10^{-9} J

D. 3×10^{-9} J

Answer: A

Solution:

Solution:

When the capacitor of 600 pF is charged by 200V supply, the electrostatic energy stored = $1.2CV^2$ = $\frac{1}{2} \times 600 \times 10^{-12} \times (200)^2$ = $\frac{1}{2} \times 600 \times 10^{-12} \times 200 \times 200$ = 12×10^{-6} J When it is connected to 600 pF uncharged capacitor, the electrostatic energy will be equally divided in the both the capacitors. So, the energy loss in first capacitor = $\frac{1}{2} \times 12 \times 10^{-6}$ J = 6×10^{-6} J

Question 20

A wire of resistance 5Ω is drawn out so that its length is increased by twice its original length. Its new resistance is

Options:

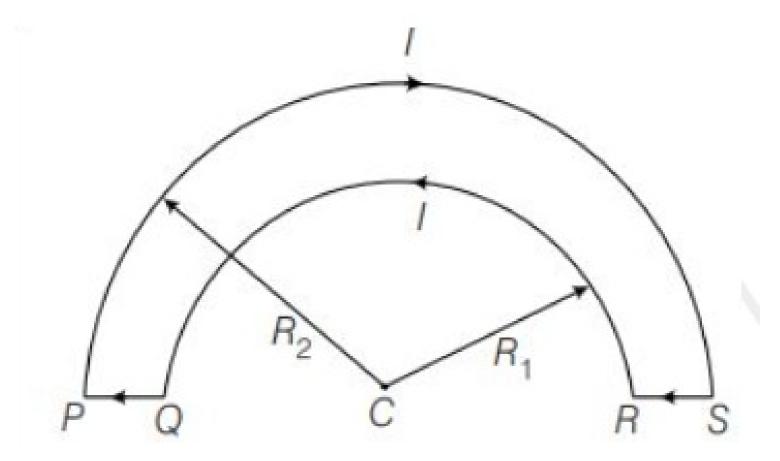
A. 5*Ω*

B. 15Ω

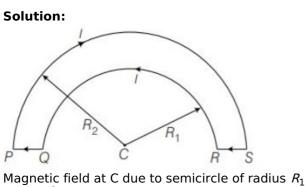
С. 25*Ω*

D. 45Ω

Answer: D


Solution:

Solution: $R = \frac{\rho I}{A}$ $R' = \frac{\rho \cdot I'}{A'}$ I' = I + 2I = 3ISince, volume of wire remains unchanged on increasing length, hence $A \cdot I = A' \times I' = A' \times 3I$ $A' = \frac{A}{3}$ $R' = \rho \times \frac{3 \cdot I}{\frac{A}{3}} = \frac{\rho \cdot I}{A} \cdot 9$ $R = \frac{\rho I}{A} = 5\Omega$ $R' = 5 \times 9 = 45\Omega$


Question 21

Two wire loops PQRSP formed by joining two semicircle wires of radii R_1 and R_2 carrying a current / as shown in figure. The magnetic field at centre *C* is

A. $\frac{\mu_0 l}{4} \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$ B. $\frac{\mu_0 l}{4} \left(\frac{1}{R_2} - \frac{1}{R_1} \right)$ C. $\frac{\mu_0 l}{2} \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$ D. $\frac{\mu_0 l}{2} \left(\frac{1}{R_2} - \frac{1}{R_1} \right)$

Solution:

 $B_{1} = \frac{\mu_{0}I}{4R_{1}}$ [outside of paper] $B_{2} = \frac{\mu_{0}I}{4R_{2}}$ [inside of paper]

PQ and RS are in the direction of point C, so field will be zero. So, $B_{PQ} = B_{RS} = 0$ The resultant field at C,

 $B = B_1 + B_2$ $B = \frac{\mu_0 I}{4R_1} - \frac{\mu_0 I}{4R_2}$ $= \frac{\mu_0 I}{4} \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$

Question 22

A galvanometer of resistance 240Ω allows only 4% of the main current after connecting a shunt resistance. The value of the shunt resistance is

Options:

A. 5*Ω*

B. 8Ω

C. 10Ω

D. 20Ω

Answer: C

Solution:

```
Solution:

Shunt resistance,

S = \frac{l_g}{l - l_g} \cdot G
Given,

l_g = l \times \frac{4}{100} = \frac{l}{25}
G = 240\Omega
S = \frac{\frac{l}{25}}{l - \frac{l}{25}} \times 240
= \frac{l \times 25}{24l \times 25} \times 240
= 10\Omega
```

Question 23

Two very long straight wires *P* and *Q* carry currents of 10A and 20A respectively and are at 20 cm apart. If a third wire, *R* of length 15 cm having a current of 10A is placed in middle between them, the direction of current in all the three wires is the same. How much force will act on *R*?

Options:

A. 3.0×10^{-5} N towards Q

B. 3.0×10^{-5} N towards *P*

C. 3.0×10^{-7} N towards Q

D. 3.0×10^{-7} N towards *P*

Answer: A

Solution:

Solution:

The wires P and Q carry current in same direction, therefore they attract each other. The force on R due to P is towards the wire P and is given by,

 $F_{RP} = \frac{\mu_0}{4\pi} \times \frac{2i_P \times i_R}{r_{PR}} \times I$ = $\frac{10^{-7} \times 2 \times 10 \times 10}{0.10} \times 0.15N$ P_{RP} = $3 \times 10^{-5}N$ [towards left] Similarly, wires Q and R attract each other as they also carry the current in the same direction. The force on R due to current in Q is towards right hand side. Therefore the force on R, due to Q, is given by $F_{QR} = \frac{\mu_0}{4\pi} \cdot \frac{2i_Q i_R}{r_{QR}} I = \frac{10^{-7} \times 2 \times 20 \times 10 \times 0.15}{0.10}$ $F_{QR} = 6 \times 10^{-5}N$ [towards right] \therefore Net force on R is $F = 6 \times 10^{-5} - 3 \times 10^{-5}N$ $= 3 \times 10^{-5}N$ [towards right (Q)]

Question 24

A transformer with efficiency 80% works at 4 kW and $100 \vee$. If the secondary voltage is $200 \vee$, then the primary and secondary currents are respectively

Options:

A. 40A, 16A

B. 16A, 40A

C. 20A,40A

D. 40A,20A

Answer: A

Solution:

Solution: $\eta = 80\%$ output power. $P = 4kW = 4 \times 10^{3}W$ $V_{1} = 100V, I_{1} = ?$ $V_{2} = 200V, I_{2} = ?$ Power $P = V_{1} \times I_{1}$ $I_{1} = \frac{P}{V_{1}} = \frac{4 \times 10^{3}}{100}$ = 40A $I_{2} = \frac{P_{0}}{V_{2}} = \frac{4 \times 10^{3}}{200} \times \frac{80}{100} = 16A$ Alternate method Here, $\eta = \frac{Output power}{Input power} = \frac{V_{2}I_{2}}{V_{1}I_{1}}$ $\frac{80}{100} = \frac{200 \times I_{2}}{100 \times 40}$ $I_{2} = \frac{20 \times 8}{10} = 16A$

Question 25

In series *LR* circuit $X_L = 3R$, now a capacitor with $X_C = R$ is added in series. The ratio of new to old power factor is

Options:

A. 1

B. 2

C. $\frac{1}{\sqrt{2}}$

D. √2

Answer: D

Solution:

Solution: Power factor = Resistance/Impendance Let the resistance is R, $Z_{RL} = \sqrt{R^2 + X^2}$ $= \sqrt{R^2 + (3R)^2} = \sqrt{R^2 + 9R^2}$ $= R\sqrt{10}$ when, $X_C = R$ is added the impedance of the circuit, $Z_{RLC} = \sqrt{R^2 + (X_L - X_C)^2}$ $= \sqrt{R^2 + (3R - R)^2}$ $= \sqrt{R^2 + 4R^2} = R\sqrt{5}$ $\cos \phi = \frac{R}{R\sqrt{10}}$ $\cos \phi' = \frac{R}{R\sqrt{5}}$ $\frac{\cos \phi'}{\cos \phi} = \sqrt{2}$

Question 26

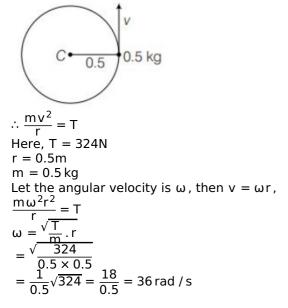
A ball of mass M = 0.5 kg is attached to one end of a string of length L = 0.5m. The ball rotates circularly in horizontal plane along vertical axis. If maximum tension which can be applied on string is 324N, what will be the maximum expected angular velocity of the ball?

Options:

A. 9 rad / s

B. 18 rad / s

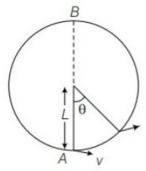
C. 27 rad / s


D. 36 rad / s

Answer: D

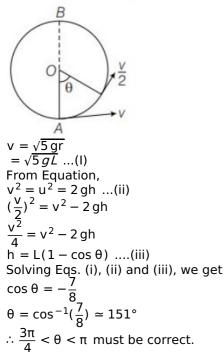
Solution:

Solution:


The tension produced in string must be equal to the centripetal force, when the particle moves in a circular path.

Question 27

A bob of mass *M* is suspended by a massless string of length *L*. The horizontal velocity *v* at position *A* is just sufficient to make it reach the point *B*. The angle θ at which the speed of the bob is half of that at *A*, satisfies


A.
$$\theta = \frac{\pi}{4}$$

B. $\frac{\pi}{4} < \theta < \frac{\pi}{2}$
C. $\frac{\pi}{2} < \theta < \frac{3\pi}{4}$
D. $\frac{3\pi}{4} < \theta < \pi$

Answer: D

Solution:

Solution:

The bob is moving in a vertical plane, so at highest point velocity must be

Question 28

A block of mass M = 10 kg rests on a horizontal table. The coefficient of friction between the block and table is 0.05, when hit by a bullet of mass 50g moving with speed V, that gets embedded in it, the block moves and comes to stop after moving a distance of 2m on the table. If a freely falling object were to acquire speed $\frac{V}{10}$ after being dropped from height H, then neglecting energy losses and taking g = 10ms⁻², the value of H is close to

Options:

- B. 0.3 km
- C. 0.4 km
- D. 0.5 km

Answer: C

Solution:

Solution:

Given, Mas of block = 10kg Mass of bullet = 50kg $= 50 \times 10^{-3}$ kg $= 5 \times 10^{-2} \text{kg}$ m = 50 v = ?M = 10 kgs=2mMg Speed of bullet = VDistance covered by the block = s = 2mCoefficient of friction between the block and the table $\mu = 0.05$ Thus, $F = F_f, N = Mg$ \Rightarrow Ma = μ N = acceleration of block \Rightarrow Ma = μ Mg = μ N $\Rightarrow a = 0.05 \times 10 = 0.05 / s^2$ Now, for speed of block $v_{block}^2 = u^2 + 2 as$ $= 0 + 2 as = 2 \times 0.5 \times 2 = 2m / s^2$ $\Rightarrow v_{block} = \sqrt{2}$ From law of conservation of momentum $mv = Mv_{block}$ $10 \times \sqrt{2}$ $\Rightarrow v = \cdot$ 50×10^{-3} $=\frac{\sqrt{2}}{5} \times 10^3 = 2\sqrt{2} \times 10^2$ Now for freely falling body Final velocity $=\frac{v}{10}$ Initial velocity u = 0Using formula $v^2 = u^2 = 2 \text{ gH}$ $\Rightarrow \left(\frac{V}{10}\right)^2 = -2 \text{ gH}$ $\Rightarrow \left[\frac{2\sqrt{2} \times 10^2}{10}\right]^2 = -2 \text{ gH}$ $\Rightarrow -2 \text{ gH} = (20\sqrt{2})^2 = 400 \times 2 = 800$ \Rightarrow H = $\frac{800}{2}$ × 10(=)40M = 40 × 10⁻³ km = 0.04 km

Question 29

A particle of mass m is attached to one end of a massless spring of force constant k, lying on a frictionless horizontal plane. The other end of the spring is fixed. The particle starts moving horizontally from its

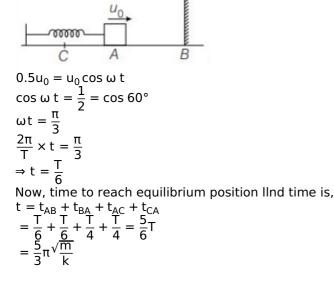
equilibrium position at time t = 0 with an initial velocity u_0 . When the speed of the particle is $0.5u_0$, it collides elastically with a rigid wall. After this collision,

Options:

A. the speed of the particle when it returns to its equilibrium position is u_0 . The time at which particle passes through equilibrium for second time is, $t = \frac{5\pi\sqrt{\frac{m}{k}}}{3}$

B. the time at which the particle passes through the equilibrium for the first time is $t = \pi \sqrt{\frac{m}{k}}$

C. the time at which maximum compression of the spring occurs is $t = \frac{4\pi\sqrt{\frac{m}{k}}}{3}$


D. the time at which minimum compression of the spring occurs is $t = \frac{3\pi\sqrt{\frac{m}{k}}}{4}$

Answer: A

Solution:

Solution:

Velocity of particle is instant t is, $u = u_0 \cos \omega t$ when u = 0.5, then

Question 30

The work done on the particle of mass M by a force, is given as

$$k \left[\frac{x}{(x^2 + y^2)^{\frac{3}{2}}} \right]^{\frac{5}{2}} + \frac{y}{(x^2 + y^2)^{\frac{3}{2}}} \right]^{\frac{5}{2}}$$

(k being constant of appropriate dimensions). When the particle is taken from the point (a, 0) to the point (0, a) along a circular path of radius a about the origin in the xy-plane is

C

A. $2k \frac{\pi}{a}$ B. $k \frac{\pi}{a}$ C. $k \frac{\pi}{2a}$ D. 0

Answer: D

Solution:

Solution:

$$F = k \left[x \frac{\dot{i}}{(x^2 + y^2)^{\frac{3}{2}}} + y \frac{\dot{j}}{(x^2 + y^2)^{\frac{3}{2}}} \right]$$

The work done,

$$dW = F \cdot dx$$

$$dW = k \left[x \frac{\dot{i}}{(x^2 + y^2)^{\frac{3}{2}}} + y \frac{\dot{j}}{(x^2 + y^2)^{\frac{3}{2}}} \right] dx$$

$$= k \left[\frac{x \cdot dx}{(x^2 + y^2)^{\frac{3}{2}}} + \frac{y \cdot dy}{(x_{y}^{22})^{\frac{3}{2}}} \right]$$

$$= k \left[\frac{x dx + y dy}{(x^2 + y^2)^{\frac{3}{2}}} \right]$$
Let $x^2 + y^2 = r^2$
 $x dx + y dy = r^2$
 $dW = k \cdot \frac{r \cdot dr}{r^3} = \frac{k}{r^2} \cdot dr$
 $W = [-\frac{k}{r}]_{r_1}^{r_2}$
Now, $r_1 = a, r_2 = a$
 $\therefore W = [-\frac{k}{r} + \frac{k}{r}] = 0$
 $W = 0$

Question 31

A solid sphere of radius R and density ρ is attached to one end of a massless spring of force constant k. The other end of the spring is connected to another solid sphere of radius R and density 3ρ . The complete arrangement is placed in a liquid of density 2ρ and is allowed to reach equilibrium. The correct statement is

Options:

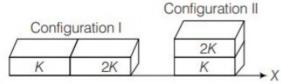
A. net elongation of spring is $\frac{4\pi R^3 \rho g}{3k}$ and the light sphere is completely submerged

B. net elongation of spring is $\frac{8\pi R^3 \rho g}{2k}$

C. the light sphere is partially submerged

D. net elongation of spring is $\frac{2\pi R^3 \rho g}{3k}$

Answer: A


Solution:

Solution: Force on each sphere is F. F = weight of the fluid displaced $=\frac{4}{3}\pi R^{3}\rho \cdot g = kx$ $\therefore x = \frac{4\pi R^3 \rho g}{3k}$

Question 32

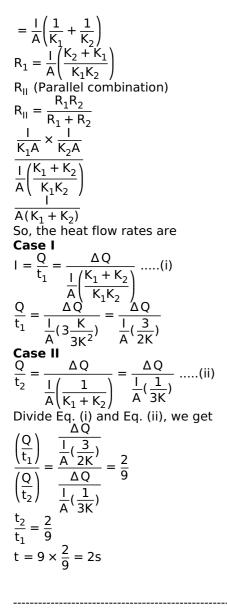
Two rectangular blocks, having identical dimensions, can be arranged either in configuration I or II as shown in figure. One of the blocks has thermal conductivity K and the other 2K. The temperature difference between the ends along the X-axis is the same in both the configurations. It takes 9s to transport a certain amount of heat from the hot end to the cold end in configuration I. The time to transport the same amount of heat in the configuration II is

Configuration II is

Options:

A. 2.0s

B. 3.0s


C. 4.5s

D. 6.0s

Answer: A

Solution:

Solution: Thermal resistance of the combination are $\mathsf{R}_\mathsf{I} = \mathsf{R}_\mathsf{1} + \mathsf{R}_\mathsf{2}$ $\frac{1}{K+1A} + \frac{1}{K_2A}$

Question 33

A solid body of constant heat capacity 1 J/°C is being heated by keeping it in contact with reservoirs in two ways

(i) Sequentially keeping in contact with2 reservoirs such that each reservoir supplies same amount of heat

(ii) Sequentially keeping in contact with 8 reservoirs such that each reservoir supplies same amount of heat

In both the cases, body is brought from initialtemperature 100° C to final temperature 200° C.Entropy change of the body in two casesrespectively is

Options:

A. In 2, In 2

B. 2 8 In 2, In 2

C. In 2, In 2

D. In 2, In 2

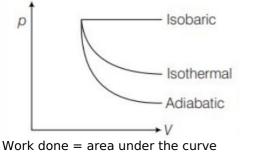
Answer: B

C

Solution:

Solution: Change in entropy due to condition is $\Delta S = C \log \frac{T_2}{T_1}$ C= Heat capacity Now, C = N1J / °C T_2 = 200°C T_1 = 100°C **In case I** $\Delta S_1 = 1 \times 2 \times \log \frac{200}{100} = 2 \log 2$ **In case II** $\Delta S_2 = 1 \times 8 \times \log \frac{200}{100} = 8 \log 2$ In first case, number of reservoir is 2. In second case, number of reservoir is 8.

Question 34

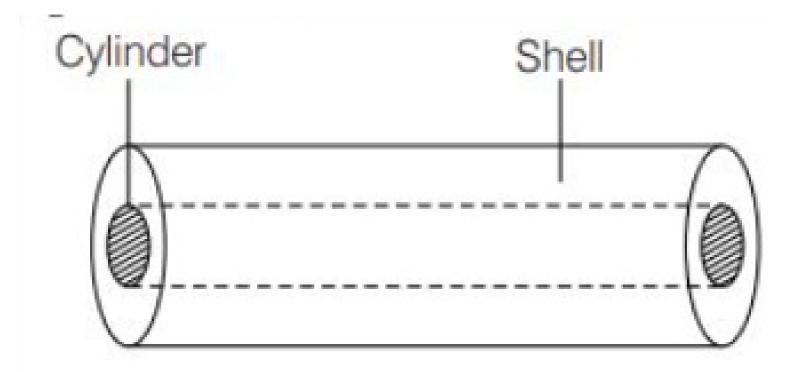

The initial pressure and volume of a gas are p_1 and V_1 , the gas after expansion attains final volume V_2 . Let W_1 , W_2 and W_3 are the corresponding work done by the gas under isothermal, adiabatic and isobaric processes respectively then

Options:

A. $W_1 = W_2 = W_3$

- B. $W_2 > W_1 > W_3$
- C. $W_3 > W_1 > W_2$
- D. $W_3 > W_2 > W_1$
- Answer: C
- Solution:

Solution:

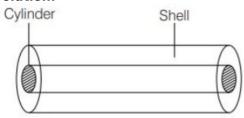


∴ Wisobaric is largest and Wadiabatic is smallest ∴ $W_3 > W_1 > W_2$

Question 35

A composite bar consists of a cylinder of radius R and thermal conductivity K_1 fitted inside a cylindrical shell of internal radius R and external radius 2R. If the thermal conductivity of shell is K_2 , then the equivalent thermal conductivity of the composite bar is

Options:


A.
$$K_1 + K_2$$

B. $\frac{K_1 + 3K_2}{4}$
C. $K_1 + 3K_2$

D.
$$\frac{K_2 + 3K_1}{4}$$

Answer: B

Solution:

Solution:

Equivalent thermal resistance of cylinder and shell is, $1 \ 1 \ 1 \ 1$

$$\overline{R} = \overline{R_1} + \overline{R_2}$$

$$\frac{K4\pi R^2}{I} = \frac{K_1\pi R^2}{K_1} + \frac{K_23\pi R^2}{I}$$

$$K = \frac{K_1 + 3K_2}{4}$$

Question 36

In Young's double slit experiment, interference is produced due to slits distance d metre apart. The fringe pattern is observed in a screen distant D metre from the slit. If λ in metre, denotes the wavelength of light, the number of fringes per metre of the screen is

Options:

A. $\frac{d}{\lambda D}$ B. $\frac{D}{\lambda d}$ C. $\frac{\lambda d}{D}$

D. $\frac{\lambda D}{2d}$

Answer: A

Solution:

Solution: The fringe width, $\beta = \frac{\lambda D}{d}$ λ = wavelength of light D = distance of screen from slits d = distance between slits Let there are n number of fringes in one metre. $\therefore \frac{\lambda D}{d} \times n = 1$ $n = \frac{1}{\frac{\lambda D}{d}} = \frac{d}{\lambda D}$

Question 37

A glass prism of angle 72 ° and refractive index 1.66 is immersed in a liquid of refractive index 1.33. The angle of minimum deviation for a parallel beam of light passing through the prism is (use, *sin* 47 ° 11 = 0.7336 and *sin* 36 ° = 0.5871)

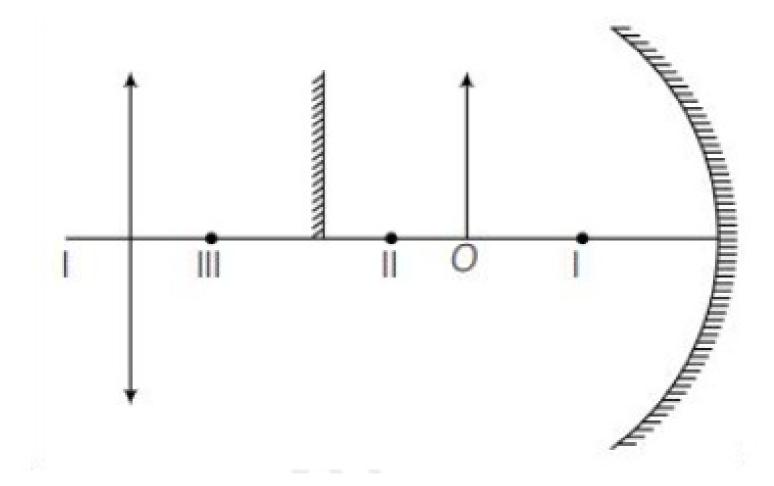
Options:

A. 11 ° 11

B. 22 ° 22

C. 47 ° 11 ́

D. 44 ° 44

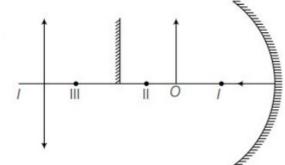

Answer: B

Solution:

Solution: Prism $n_{21} = \frac{n_2}{n_1} = \frac{\sin\left(\frac{A + \delta_m}{2}\right)}{\sin\frac{A}{2}}$ $\Rightarrow \frac{1.66}{1.33} = \frac{\sin\left(\frac{72^\circ}{2} + \frac{\delta_m}{2}\right)}{\sin(\frac{72^\circ}{2})}$ $\sin\left(\frac{72^\circ}{2} + \frac{\delta_m}{2}\right) = \sin 36^\circ \times \frac{1.66}{1.33}$ $= 0.5871 \times \frac{1.66}{1.33} = 0.7336$ $\Rightarrow \sin\left(\frac{72^\circ}{2} + \frac{\delta_m}{2}\right) = \sin 47^\circ 11'$ $36^\circ + \frac{\delta_m}{2} = 47^\circ 11'$ $\frac{\delta_m}{2} = 11^\circ 11$ $\delta_m = 2 \times (11^\circ 11') = 22^\circ 22'$

Question 38

An object O is placed between a concave mirror and a plane mirror so that the first image in both the mirrors coincide at I. What should be the position of centre of curvature of concave mirror?



- A. I
- B. II
- C. III
- D. 0

Answer: B

Solution:

Solution:

As a real and inverted image of O is obtained by concave mirror. \therefore I must be the focal point. And hence, II must be the centre of curvature.

Question 39

The magnification (of positive sign) of an object placed in front of a

convex lens of focal length 20 cm, is same in value but of negative sign when the object is moved a distance of 20 cm. Find the magnification.

C

Options:

A. 1.5

B. 2.0

C. 2.5

D. 3.0

Answer: B

Solution:

```
Solution:

Case I

Magnification,

m = \frac{f}{f-u}

f = +f

u = -u

Case II

m is negative.

\therefore m = -(\frac{f}{f-(u+20)})

Because object is shifted back by 20 cm

\frac{f}{f-u} = -\frac{f}{f-(u+20)}

20 - u = -20 + (u+20)

40 = 2u + 20

u = 10

\therefore m = \frac{f}{f-u} = \frac{20}{20-10} = 2.0
```

Question 40

In a telescope, the focal length of objective is 60 cm and eye piece is 10 cm. When it is focussed on an object parallel rays come out of eyepiece. If the angle subtended at objective by object is 3° , then what is the angular width of image?

 Options:

 A. 24°
 B. 18°
 C. 12°
 D. 6°
 D. 6°

Solution:

Solution: Final image is at infinity (∞) \therefore m = magnification = $\frac{f_0}{f_e}$ $= \frac{60}{10} = 6 = \frac{\beta}{\alpha}$ β = angular width of the image $\beta = \alpha \times 6$ $= 3^\circ \times 6$ $= 18^\circ$

Question 41

Diffusion current in a p - n junction is greater than the drift current in magnitude, if the junction is

Options:

A. reverse biased

- B. unbiased
- C. forward biased
- D. None of the above

Answer: C

Solution:

Solution: Diffusion current is greater than the drift current in magnitude $I_{diff} > I_{drift}$ It should be forward biased.

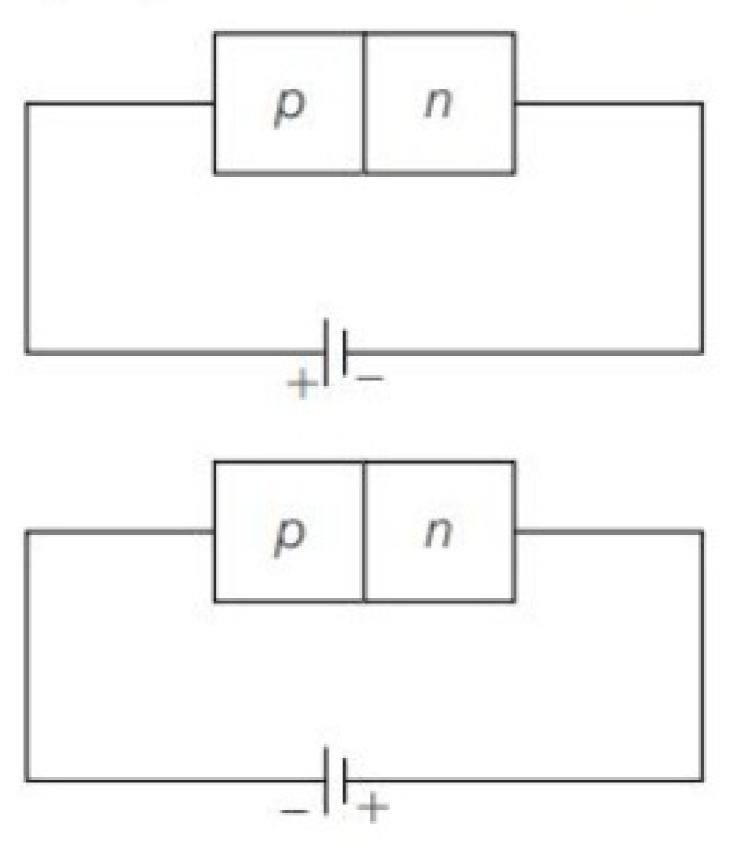
Question 42

When a semiconductor device is connected to a battery through a resistance, some current flows through it. Now, if the battery is reversed, the current becomes almost zero the device may be

Options:

A. pure semiconductor

- B. p n junction
- C. *p*-type semiconductor


D. *n*-type semiconductor

Answer: B

Solution:

Solution:

In forward bias, some current flows but when it is reverse biased charge carriers n (electrons) and p (holes) will drift away from the junction. It should be p - n junction.

Question 43

If a dip circle is positioned at 45 $^{\circ}$ to magnetic meridian, the apparent dip angle is 30 $^{\circ}$, then what is actual dip angle?

Options:

A. $\tan^{-1}(\frac{1}{\sqrt{3}})$ B. $\tan^{-1}(\frac{2}{\sqrt{3}})$ C. $\tan^{-1}(\frac{1}{\sqrt{6}})$ D. $\tan^{-1}(\frac{\sqrt{3}}{2})$

Answer: C

Solution:

```
Solution:

tan (Actual dip) = sin \beta \times tan (apparent dip)

tan \alpha = sin 45° × tan 30°

= \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{3}}

= \frac{1}{\sqrt{6}}

\alpha = tan<sup>-1</sup>(\frac{1}{\sqrt{6}})
```

Question 44

The work done in rotating a magnet of magnetic moment M in a magnetic field through 90° is x times that of work done in rotating the same through 60° in same situation. Then, the value of x is

Options:

A. 2 B. $\frac{1}{2}$ C. 4 D. $\frac{1}{4}$ Answer: A

Solution:

C

```
Solution:

Work done,

W = MB(\cos \theta_1 - \cos \theta_2)

In first case, \theta_1 = 0 and \theta_2 = 90^\circ

\therefore W_1 = MB(\cos 0^\circ - \cos 90^\circ) = MB

In second case, \theta_1 = 0^\circ, \theta_2 = 60

\therefore W_2 = MB(\cos 0^\circ - \cos 60^\circ)

= MB(1 - \frac{1}{2}) = \frac{MB}{2}

Given W_1 = xW_2

x = 2
```

Question 45

Two positive charges of $2\mu C$ and $1\mu C$ are kept at a distance of one metre. The value of electric field at the centre of the line joining the charges in newton/coulomb is

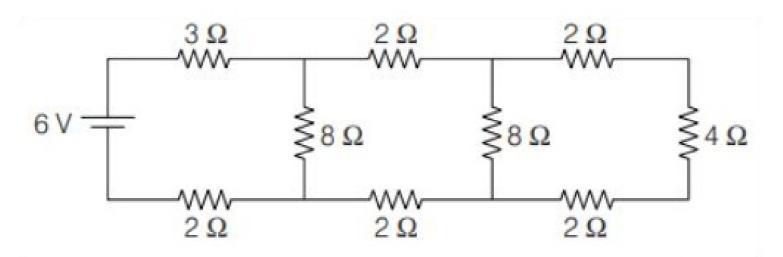
Options:

A. 3.6×10^4

B. 1.8×10^4

C. 10.8×10^4

D. 5.6×10^4


Answer: A

Solution:

Solution: 2 µC 1 µC • E1 0--0 E2 1m Electric field, $\mathsf{E} = \frac{\mathsf{Kq}}{\mathsf{r}^2}$ $\mathsf{E}_{1} = \frac{9 \times 10^{9} \times 2 \times 10^{-6}}{(0.5)^{2}}$ $E_2 = \frac{9 \times 10^9 \times 1 \times 10^{-6}}{(2.5)^2}$ (0.5)² Resultant electric field at O is given by, $\mathsf{E} = \mathsf{E}_1 - \mathsf{E}_2$ $\frac{E_1 = 9 \times 10^9 \times 2 \times 10^{-6}}{10^{-6}} - \frac{E_2 = 9 \times 10^9 \times 1 \times 10^{-6}}{10^{-6}}$ $= \frac{c_1 - 5 \cdots c_1}{(0.5)^2}$ $= \frac{9 \times 10^9 \times 10^{-6}}{(2.5)^2} [2 - 1]$ $(0.5)^2$ (0.5)² $=\frac{9\times10^3}{2}$ 0.25 $= 3.6 \times 10^4 \text{N} / \text{C}$

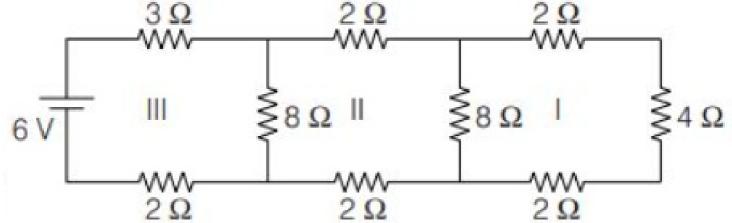
Question 46

In the circuit shown in figure, the current through 4Ω resistance is

Options:

A. 1.67Ω

B. 0.167*Ω*


C. 2.37*Ω*

D. 0.237Ω

Answer: B

Solution:

Solution:

Equivalent resistance of loop I, = 2 + 4 + 3 = 8Ω $R_{eq} = \frac{R_1 \times R_2}{R_1 + R_2} = \frac{8 \times 8}{8 + 8} = \frac{8 \times 8}{16}$ = 4Ω Equivalent resistance of loop II, = 2 + 4 + 2 = 8Ω $R'_{eq} = \frac{R_1 \times R_2}{R_1 + R_2} = \frac{8 \times 8}{8 + 8}$ = 4Ω Equivalent resistance loop III, = 3 + 2 + 4 = 9Ω Maximum current, i = $\frac{6}{9} = \frac{2}{3}A$ = 0.66A

This current is divided into two equal parts.

Current in first 2 Ω resistor $=\frac{1}{3}A$ The current in 4Ω resistor $=\frac{1}{3 \times 2}A$ $=\frac{1}{6}A = 0.167A$

Question 47

Amount of heat produced per second in calories when a bulb of 50W, 200V glows (assuming that only 20% of the electric energy is converted into light) (/ = 4.2 / cal)

Options:

A. 40 cal / s

B. 28 cal / s

C. 18.22 cal / s

D. 9.52 cal / s

Answer: D

Solution:

```
Solution:

Power of bulb = 50 W

Voltage = 200 V

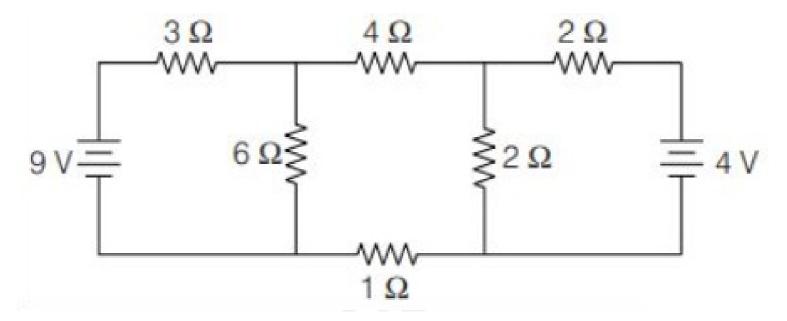
20% is converted into light,

J = 4.2J / cal.

So, amount of heat produced per second will be

\frac{80}{100} of the total power

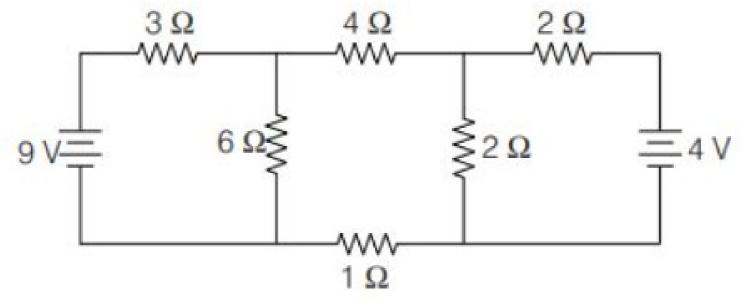
= 50 \times \frac{80}{100}J

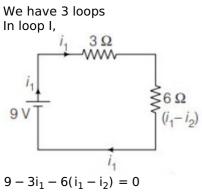

= 50 \times \frac{80}{100} × \frac{1}{4.2} cal /s

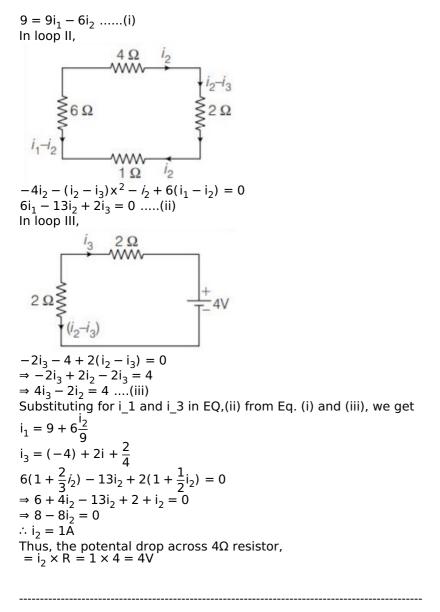
= \frac{40}{4.2} = 9.52 cal /s
```

Question 48

For the circuit shown in figure, the voltage across 4Ω resistance is

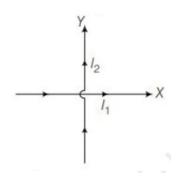

Options:


- A. 5V
- B. 4V
- C. 2V
- D. 1V


Answer: B

Solution:

Solution:



Question 49

Two long straight conductors with currents $/_1$ and $/_2$ are placed along X-axis and Y-axis as shown in figure. The equation of locus of zero magnetic induction is

Options:

A. y = x

B.
$$y = \frac{l_2 x}{l_1}$$

C. $y = \frac{l_1}{l_2} x$

D. $y = l_1 l_2 x$

Answer: C

Solution:

Solution:

Direction of magnetic fields are in opposite directions in Ist and IIIrd quadrants. Let P(x, y) is a point at which magnetic field is zero then B₁ = B₂ $\frac{\mu_0 l_1}{2\pi y} = \frac{\mu_0 l_2}{2\pi x}$ $\frac{l_1}{l_2} x = y$ is the locus of all points where B_{net} = 0

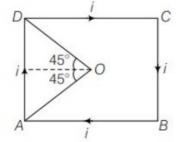
Question 50

What is the magnetic field induction at the centre of a coil bent in the form of a square of side 2*a*, carrying current / ?

Options:

B. $\frac{\sqrt{2}\mu_0}{\pi a}$

A. $\frac{\mu_0 I}{\pi a}$


D. $\frac{4 \cdot \mu_0 I}{\pi a}$

C. $\frac{2\sqrt{2}\mu_0 I}{\pi a}$

Answer: B

Solution:

Let O be the centre of square ABCD of side 2a carrying current i ampere. The magnetic field due to infinite length of

wire AD is given by $B_{1} = \frac{\mu_{0}i}{4\pi a} (\sin \alpha + \sin \beta)$ (Here, $\alpha = \beta = 45^{\circ}$) $\frac{\mu_{0}i}{4\pi a} (\sin 45^{\circ} + \sin 45^{\circ})$ $= \frac{\mu_{0}i}{4\pi a} (\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}})$ $= \frac{\sqrt{2}\mu_{0}i}{4\pi a}$ So, by the symmetry the magnetic field at O due to each side will be $\frac{\sqrt{2}.\mu_{0}i}{4\pi a}$ So, Net magnetic field at the centre O of current carrying square is, $B = 4B_{1}$ $= \frac{4 \times \sqrt{2}\mu_{0}i}{4\pi (a)}$ $= \sqrt{2}\frac{\mu_{0}i}{\pi a}$

Question 51

The length of unit cell edge of a body-centred cubic metal crystal is 352 pm. The radius of metal atom is

Options:

A. 162.4 pm

B. 152.4 pm

C. 142.4 pm

D. 156.4 pm

Answer: B

Solution:

Solution: \therefore For bcc - crystal, $\sqrt{3a} = \frac{4r}{4}$ \therefore r = $\frac{\sqrt{3.a}}{4} = \frac{1.732 \times 352}{4}$ r = 152.4 pm

Question 52

The half-life of a radioactive element depends upon

Options:

A. amount of element

B. temperature

- C. pressure
- D. independent of all the above

Answer: D

Solution:

Solution:

All radioactive nuclides decay by a first order process and its half-life is independent of amount of substance, temperature and pressure.

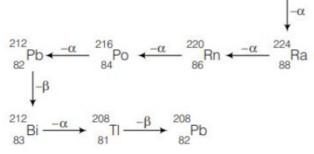
Question 53

The element $\frac{232}{90}$ Th belongs to thorium series. Which of the following will act as the end product of the series?

Options:

A. ₈₂Pb²⁰⁸ B. ₈₂Bi²⁰⁹

C. ₈₂Pb²⁰⁶


D. ₈₂Pb²⁰⁷

Answer: A

Solution:

Solution:

 $_{82}$ Pb²⁰⁸ will be the end product of thorium series. $_{90}$ Th²³² $\xrightarrow{6\alpha, 4\beta}{82}$ Pb²⁰⁸ It is shown as follows $_{90}^{232}$ Th $\xrightarrow{-\alpha}{(_{2}\text{He}^{4})}$ $\xrightarrow{228}{88}$ Ra $\xrightarrow{-\beta}{(_{1}\beta^{0})}$ $\xrightarrow{228}{89}$ Ac $\xrightarrow{-\beta}$ $\xrightarrow{228}{90}$ Th

Question 54

Consider the following reversible reactions,

$$\begin{split} & \mathsf{N}_2(g) + \mathsf{3H}_2(g) \neq \mathsf{2NH}_3(g)(\mathcal{K}_1) \dots(\mathbf{i}) \\ & \mathsf{N}_2(g) + \mathsf{O}_2(g) \neq \mathsf{2NO}(g)(\mathcal{K}_2) \dots(\mathbf{i}\mathbf{i}) \\ & \mathsf{H}_2(g) + \frac{1}{2}\mathsf{O}_2(g) \neq \mathsf{H}_2\mathsf{O}(g)(\mathcal{K}_3) \dots(\mathbf{i}\mathbf{i}\mathbf{i}) \\ & \text{The equilibrium constant for the reaction} \\ & \mathsf{2NH}_3(g) + \frac{5}{2}\mathsf{O}_2(g) \neq \mathsf{2NO}(g) + \mathsf{3H}_2\mathsf{O}(g) \\ & \text{will be} \end{split}$$

Options:

A. $K_1 K_2 K_3$ B. $\frac{K_1 K_2}{K_3}$ C. $\frac{K_1 K_3^3}{K_2}$ D. $\frac{K_2 K_3^3}{K_1}$

Answer: D

Solution:

Solution: Step 1 On reversing Eq. (i) we have $2NH_3(g) \Leftrightarrow N_2 + 3h_2, K'_1(new) = \frac{1}{K_1}$ (iv) Step 2 Multiply Eq. (iii) by 3, we have $3H + 2 + \frac{3}{2}O_2 \Leftrightarrow 3H_2O, K_3^3$ (v) Step 3 Add Eq. (ii), Eq. (iv) and Eq. (v), we get $2NH_3(g) \Leftrightarrow N_2 + 3H_2(g), \frac{1}{K_1}$ $N_2(g) + O_2(g) \Leftrightarrow 2NO(g), K_2$ $3H_2(g) + \frac{3}{2}O_2(g) \Leftrightarrow 3H_2O(g), K_3^3$ $2NH_3(g) + \frac{5}{2}O_2(g) \Leftrightarrow 2NO(g) + 3H_2O(g)$ and new equlibrium constant $= \frac{K_2K_3^3}{K_1}$

Question 55

The number of moles of sodium acetate to be added to 0.1M acetic acid for the buffer to have a pH = 4.7 is $[pK_a]$. for acetic acid is 4.7]

Options:

A. 0.2M

B. 0.4M

C

C. 0.1M

D. None of these

Answer: C

Solution:

```
Solution:

\therefore pH = pK_a + \log \frac{[Salt]}{[Acid]}
Given, pH = 4.7

pK_a = 4.7
\therefore 4.7 = 4.7 + \log \frac{[Salt]}{0.1}
\therefore \log[CH_3COONa] - \log(0.1) = 0
\log[CH_3COONa] - \log(10^{-1}) = 0
\log[CH_3COONa] + \log 10 = 0
\log[CH_3COONa] = 1.0000
\therefore On taking antilog on both the sides,
[CH_3COONa] = 0.1M
```

Question 56

Saturated solution of KNO₃ is used to make salt bridge because

Options:

A. KNO_3 is highly soluble in water

B. velocity of K ⁺ is greater than that of NO_3^-

C. velocity of NO_3^- is greater than that of K ⁺

D. velocity of K $^+$ and NO₃⁻ are almost equal

Answer: D

Solution:

Solution:

Cations and anions of the salt used in the salt bridge must have their comparable ionic radii in order to have same ionic speed so that they reach to the respective electrode compartments simultaneously. Hence, KNO_3 is used to make salt bridge because velocity of K⁺ and NO_3^- ions are almost equal.

Question 57

Syneresis is a process in which

Options:

C

A. spontaneous outcome of internal liquid without disturbing gel structure takes place

- B. sol particles absorb light
- C. aggregation of molecules to form micelle
- D. separation of soluble impurities from sols take place

Answer: A

Solution:

Solution:

Syneresis is a process in which spontaneous outcome of internal liquid without disturbing gel structure takes place.

Question 58

Among the following statements, the incorrect one is

Options:

- A. Calamine and siderite are carbonates
- B. Argentite and cuprite are oxides
- C. Zinc blende and pyrites are sulphides
- D. Malachite and azurite are ores of copper

Answer: B

Solution:

```
Solution:
(a) Calamine (ZnCO_3) and siderite (FeCO_3) both are carbonates.
(b) Argentite = Ag_2S
Culprite = Cu_2O
(c) Zinc blende = ZnS
and pyrites = FeS_2 are sulphide ares.
(d) Malachite and azurite [Cu(OH)_2.2CuCO_3] are ores of copper.
Hence, option (b) is incorrect.
```

Question 59

Microcosmic salt when heated strongly, a transparent bead is formed which is used in the identification of

Options:

A. ZnO

B. Al_2O_3

- C. MgO
- D. SiO_2

Answer: D

Solution:

Solution:

Microcosmic salt when heated strongly is used to identify ${\rm SiO}_2.$

Question 60

In nitroprusside ion, the iron and NO as Fe^{2+} and NO + rather than Fe^{3+} and NO. These forms can be differentiated by

Options:

A. estimating the concentration of iron

- B. measuring the concentration of CN $^-$
- C. measuring the solid state magnetic moment
- D. thermally decomposing the compound

Answer: C

Solution:

Solution:

In nitroprusside ion, the iron and NO are present as Fe^{2+} and NO ⁺ which are differentiated by measuring the solid state magnetic moment.

Question 61

Which of the following compounds gives metal on heating?

Options:

A. $AgNO_3$

B. Ca(NO_3)₂

C. Ni(NO₃)₂

D. $Pb(NO_3)_2$

Answer: A

Solution:

AgNO₃ on heating gives silvermetal. It is stable upto 650K and starts decomposing above this temperature. $3AgNO_3 \xrightarrow{700K} 3Ag_{(Metal)} + N_2 + NO + 4O_2$

Question 62

Which of the following compounds gives PELIGOT's salt with chromyl chloride?

Options:

A. Borax

B. Oxone

C. Sylvine

D. Trona

Answer: C

Solution:

Solution:

Chromyl chloride when reacts with PELIGOT salt (a potassium compound) give 'sylvine' (compound similar to KCI).

Question 63

Which of the following compound liberate $C|_2$ gas when react with $|_2$?

Options:

- A. Potassium permanganate
- B. Potassium chlorate
- C. Hypo
- D. Potassium dichromate

Answer: B

Solution:

 $2\text{KCIO}_3 + \text{I}_2 \longrightarrow 2\text{KIO}_3 + \text{CI}_2$

Question 64

Which of the following reactions give oxygen gas? 1. $KMnO_4 + 2 KF + H_2O_250 \% HF \rightarrow$ 2. $F_2 + NaOH \rightarrow$ 3. $XeF_2 + 2H_2O \rightarrow$

4. $Hg_2CrO_4 \rightarrow$

Options:

A. 1, 2, 3

B. 1, 3, 4

C. 2, 3, 4

D. 1, 2, 4

Answer: A

Solution:

Solution:

Reaction (1), (2) and (3) give oxygen. (1)2KMnO₄ + 2H₂O₂ + 2 KF → 2KMnO₂ + 3O₂ + 2H₂O + 2 KOH + F₂ (2)2F₂ + 4 NaOH → 4 NaF + O₂(g) + 2H₂O (3)2XeF₂ + 2H₂O → 2 Xe + 4 HF + O₂(g)

Question 65

Which of the following set of combination are correct?

- **1.** Fenton reagent : Alcohol \rightarrow Aldehyde
- 2. Ziegler-Natta catalyst : Polymerisation
- 3. Adam catalyst : Oxidation
- 4. Fe / Mo catalyst : Synthesis of NH₃

Options:

A. 1 and 3

B. 1 and 2

 $C.\ 2 \ and \ 3$

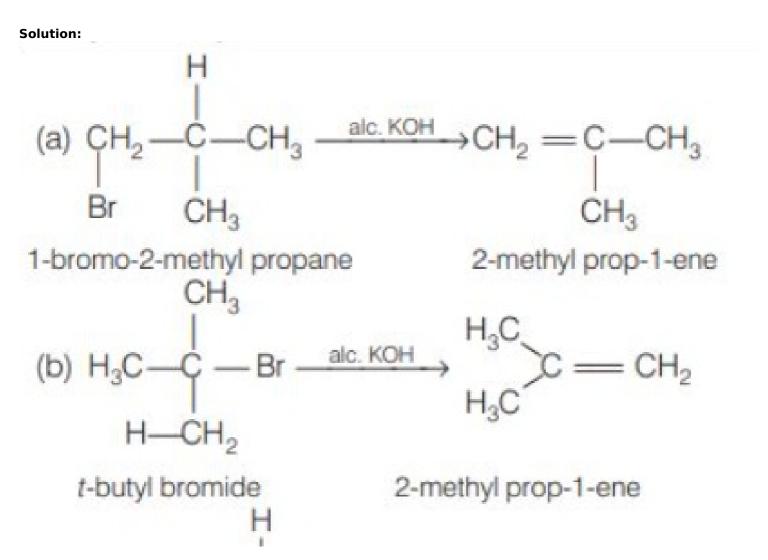
D. 2 and 4

Answer: B

Solution:

Fenton reagent (FeSO₄ + H₂O₂) is used to convert alcohol to aldehyde while Ziegler-Natta catalyst [TiCl₃ + Al(Et)₃] is used in polymerisation.

Question 66


Which compound does not form 2-methyl but-2-ene on heating with alc. KOH ?

Options:

- A. 1-bromo-2 methyl propane
- B. 2-bromo-3-methyl butane
- C. 2-bromo-2-methyl butane
- D. None of the above

Answer: A

Solution:

The final product A is

Options:

- A. butene
- B. butyne-2
- C. butyne-1
- D. buta-1, 3-diene

Answer: D

Solution:

Solution:

The Lindlar's catalyst is a palladium catalyst (Pd / $CaCO_3$) deliberately poisoned with lead. It is used to reduce alkynes to cis alkenes.

Acetylene $\xrightarrow{\text{CuCl}}_{\text{NH}_4\text{Cl}}$ H₂C = CH—C = CH \downarrow Lindlar's catalyst (Pd/CaCO_3) H₂C = CH—CH = CH₂ Buta-1, 3-diene (A)

Question 68

The olefin which on ozonolysis gives CH₃CH₂CHO and CH₃CHO is

Options:

A. 2-butene

B. 1-pentene

C. 1-butene

D. 2-pentene

Answer: D

Solution:

Solution: The olefin is 2-pentene which on ozonolysis gives CH_3CH_2CHO and CH_3CHO as $H_3C - CH_2 - CH = CH - CH_3 \xrightarrow[2n/H_2O]{}$

CH₃ CH₂CHO + CH₃CHO

Question 69

C

Which one of the following alkenes will react faster with H_2 under catalytic hydrogenation conditions?

Options:

A.

B.

Answer: A

Solution:

Solution:

is least stable thus, reacts faster with H_2 under catalytic hydrogenation due to two R- groups in the same plane. So, more surface area provides to hydrogenation reaction and alkenes will react faster with H_2 .

Question 70

Drugs are the chemicals with

Options:

A. low molecular masses

- B. high molecular masses
- C. low atomic mass
- D. high atomic mass

Answer: B

Solution:

Solution:

Drugs are the chemicals with high molecular masses. These are mostly polymers of various elements.

Question 71

Which of the following compounds cannot be identified by carbylamine test?

Options:

A. CHCl₃

- B. $C_6H_5 NH C_6H_5$
- C. $C_6H_5NH_2$
- D. CH₃CH₂NH₂

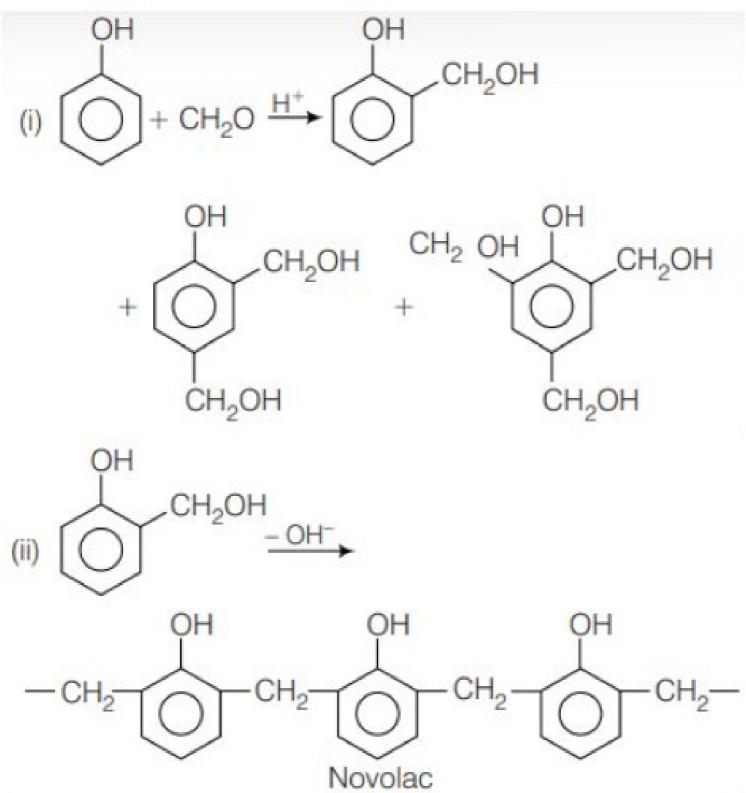
Answer: B

Solution:

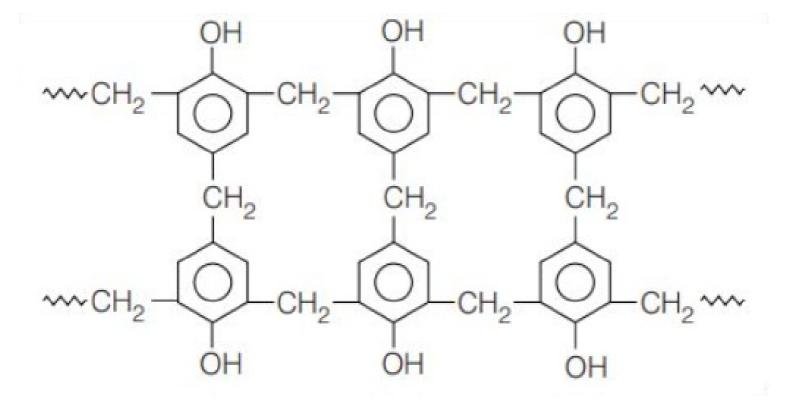
Solution: $C_6H_5 - NH - C_6H_5$ cannot be identified by carbylamine test as it is used to test primary amines or $CHCl_3$.

Question 72

The hard plastic covers of telephones are made from polymers of


Options:

- A. acrylonitrile
- B. styrene
- C. fluoromethane
- D. phenol and formaldehyde


Answer: D

Solution:

Phenol-formaldehyde is used in making covers of telephones. It is made by the reaction of phenol and Formaldehyde. **Step I** Formation of novolac

Step II On heating above structure, it gives network of phenol and formaldehyde, also known as bakelite.

Question 73

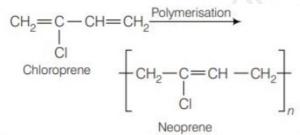
Which one of the following monomers gives the polymer neoprene on polymerisation?

Options:

A. $CH_2 = CH - CI$

B. $CCl_2 = CCl_2$

C.


$$CI$$

 $|$
 $CH_2 = C - CH = CH_2$

D. $CF_2 = CF_2$

Answer: C

Solution:

Solution:

Neoprene is a type of synthetic rubber.

Question 74

During the process of digestion, the proteins present in food materials are hydrolysed to amino acids.

Proteins $\xrightarrow{\text{Enzyme}(A)}$ Polypeptides

 $\stackrel{\text{Enzyme (B)}}{\rightarrow} \quad \text{Amino acids}$

The two enzymes *A* and *B* involved in the process are respectively

Options:

- A. amylase and maltase
- B. diastase and lipase
- C. pepsin and trypsin
- D. invertase and zymase

Answer: C

Solution:

Solution:

On the basis of secondary structure, most of the long polypeptide chains get coiled (or folded) to produce a threedimensional structure. α -helix is an example of this.

When these structures form tertiary structure called fibrous protein and if has long thin chains (threads), are called globular protein. Hence, coiled form of fibrous protein is known as globular protein.

Question 75

If radius of first Bohr's orbit of hydrogen atom is 'x', then the de-Broglie wavelength of electron in 3rd orbit is nearly

Options:

A. 2*πx*

B. 6*πx*

C. 9*x*

D. $\frac{x}{3}$

Answer: C

Solution:

C

Question 76

If radius of first Bohr's orbit of hydrogen atom is 'x', then the de-Broglie wavelength of electron in 3rd orbit is nearly

Options:

A. 2*πx*

B. 6*πx*

C. 9*x*

D. $\frac{x}{3}$

Answer: B

Solution:

Solution: As, $r_n = r_0 \frac{n^2}{Z}$ ($\because Z = 1, r_0 = x$) $r_3 = 3^2 \cdot x = 9x$ Also, $mvr = n \frac{nh}{2\pi}$ $mv = \frac{nh}{2\pi r_3}$ $= \frac{3h}{2\pi 9x} = \frac{h}{6\pi x}$ $\therefore \lambda = \frac{h}{mv} = \frac{h \times 6\pi x}{h} = 6\pi x$

Question 77

Quantum numbers / = 2 and m = 0 represent the orbital

Options:

A. d_{xy}

B. $d_{x^2 - y^2}$

C. d_{z^2}

D. *d_{xz}*

Answer: C

```
Solution:
For I = 2
m = 0(m = +2, +1, 0, -1, -2)
but, m = 0 is considerd as d_{z^2}.
\therefore m = 0 represents d_{z^2} orbital.
```

Question 78

Which of the following statements is false?

1. Non-bonding pairs occupy more space than bonding pairs.

2. The bonding orbitals in trigonal bipyramidal molecule are described as $sp^{3}d$ hybrids.

- 3. SnCl₂ has linear shape.
- **4.** PCl₄ + and AlCl₄ are isoelectronic.

Options:

- A. 1
- B. 2
- C. 3
- D. 4

Answer: C

Solution:

Solution:

As Sn has one Ip and two bp in its structure of SnCl₂. It is of bent structure.

Question 79

1% (W / V) solutions of KCI is dissociated to the extent of 82%. The osmotic pressure at 300K will be

Options:

A. 3.2 atm

B. 5.824 atm

C. 4.0 atm

D. 6.0 atm

Answer: D

Solution:

Solution: $\begin{aligned} & \because \pi = i \frac{W}{M \times V} \cdot RT \\ & \text{and } i = \frac{100 - \alpha + n\alpha}{100} \\ & i = \frac{100 - 82 + 2 \times 82}{100} = 1.82 \\ & \therefore \pi = \frac{1.82 \times 1 \times 0.08 \times 300 \times 1000}{74. \times 100} \\ & \pi = 6.0 \text{ atm} \end{aligned}$

Question 80

Match List I with List II and select the correct answer using the given codes.

List I	List II	
(Crystal system)	(Examples)	
A. Cubic	1. TiO ₂	
B. Tetragonal	2. Graphite	
C. Hexagonal	3. K ₂ Cr ₂ O ₇	
D. Triclinic	4. ZnS	

Options:

A. 2 3 4 1

B. 1 4 3 2

C. 3 2 1 4

D. 4 1 2 3

Answer: D

Solution:

Solution:

 $\begin{array}{ll} (A) & \longrightarrow 4, ZnS \mbox{ (cubic)} \\ (B) & \longrightarrow 1, TiO_2 \mbox{ (Tetragonal)} \\ (C) & \longrightarrow 2, \mbox{ Graphite (Hexagonal)} \\ (D) & \longrightarrow 3, K_2Cr_2O_7 \mbox{ (Triclinic)} \end{array}$

Question 81

Match List I with List II and select the correct answer using the codes.

List I	List II
A. Spontaneous process	1. Δ <i>H</i> < 0
B. Exothermic process	2. Heat of reaction
C. Enthalpy at constant pressure	3. $\Delta G < 0$
D. Cyclic process	4. $\Delta U = 0, \Delta H = 0$

Options:

A. 4 3 1 2

- B. 3 1 2 4
- C. 1 3 4 2

D. 1 2 3 4

Answer: B

Solution:

Solution: (A) \rightarrow 3, $\Delta G = -ve$ (B) \rightarrow 1, $\Delta H = -ve$ (C) \rightarrow 2, \Heat of reaction (D) \rightarrow 4, $\Delta U = 0$, $\Delta H = 0$

Question 82

Standard enthalpies of formation of O_3 , CO_2 , NH_3 and HI are 142.2, –393.2, –46.2 and 25.9 kJ mol⁻¹ respectively. Decreasing order of their stability is

Options:

A. $HI > NH_3 > CO_2 > O_3$ B. $NH_3 > CO_2 > HI > O_3$ C

C. $CO_2 > NH_3 > HI > O_3$

D. $O_3 > HI > NH_3 > CO_2$

Answer: C

Solution:

Solution:

More be the negative value of standard enthalpy of formation, more the species will be stable. Since, $0_3 = +142.2 \text{ kJ} / \text{mol}$ $CO_2 = -393.2 \text{ kJ} / \text{mol}$ $NH_3 = -46.2 \text{ kJ} / \text{mol}$ HI = +25.9 kJ / molHence, correct order is $CO_2 > NH_3 > HI > O_3$

Question 83

A hydrogenation reaction is carried out at 500K. If the same reaction is carried out in the presence of a catalyst at the same rate, the temperature required is 400K. If the catalyst lowers the activation barrier by $40 \text{ kJ} \text{ mol}^{-1}$, the activation energy of the reaction will be

Options:

A. 100 kJ mol⁻¹

B. 200 kJ mol⁻¹

C. 300 kJ mol⁻¹

D. 175 kJ mol⁻¹

Answer: B

Solution:

Solution:

Given, let $E_a = 0$ riginal activation energy Thus, $E'_a = E_a - 40$ (lower activation energy) \therefore Rate are same $\frac{E_a}{R \times 500} = \frac{E'_a}{R \times 400}$ $\frac{E_a}{500} = \frac{E_a - 40}{400}$ $400E_a = 500(E_a - 40)$ $400E_a = 500E_a - 20000$ $\therefore 100E_a = 20000$ $\therefore E_a = \frac{20000}{100}$ = 200 kJ/mol

Question 84

A drop of solution (volume 0.05 mL) contains 3×10^{-6} mole H⁺. If the rate constant of disappearance of H⁺ is 1.0×10^7 mol L⁻¹ s⁻¹, how long would it take for H⁺ in drop to disappear?

Options:

A. $4 \times 10^{-6} s$

B. $1 \times 10^{-7} s$

C. $3 \times 10^{-6} s$

D. $6 \times 10^{-9} s$

Answer: D

```
Solution:
```

Solution:

Concentration of drop $= \frac{n}{V} = \frac{3 \times 10^{-6}}{0.05} \times 1000$ Concentration $= 0.06 \text{ mol } L^{-1}$ $= 6 \times 10^{-2} \text{ mol } L^{-1}$ \therefore Rate of disappearance $= \frac{\Delta \text{ Concentration}}{\text{Time}}$ \therefore Time $= \frac{\text{Concentration}}{\text{Rate}} = \frac{6 \times 10^{-2}}{10^7}$

Question 85

One Faraday of charge passes through solution of AgNO₃ **and** CuSO₄ **connected in series and the concentration of two solutions being in the ratio 1:2. The ratio of amount of** Ag **and** Cu **deposited on Pt electrode is**

Options:

A. 107.9:63.54

B. 54:31.77

C. 107.9:31.77

D. 54:63.54

Answer: C

Solution:

Solution:

 $W_{Ag} \times n W_{Cu} \times n$ $\frac{1}{M_{Cu}} = \frac{1}{M_{Cu}}$ M_{Ag} $W_{Ag} \times 1 _ W_{Cu} \times 2$ $\frac{1}{107.9} = \frac{vv_{Cu} \times 2}{63.54}$ $\frac{w_{Ag}}{w_{C}} = \frac{107.9}{21}$ $W_{Cu} = 31.77$ ∴ Ratio is 107.9:31.77

Question 86

First and second ionisation enthalpies of Mg are 737.76 and 1450.73Jmol⁻¹ respectively. The energy required to convert all the atoms of magnesium to magnesium ions present in 24g of magnesium vapours is

Options:			
A. 24 kJ			
B. 2.188 kJ			
C. 12 kJ			

D. 4.253 kJ

Answer: B

Solution:

Solution: \therefore First ionisation enthalpy for 1 mole of Mg = 737.76//mol⁻¹ and second ionisation enthalpy for 1 mole of Mg = 1450.73J /mole⁻¹ Total energy required = 737.76 + 1450.73 = 2188.49J /mole⁻¹ Also, 24g of Mg = 1 mole of Mg \therefore Energy required = 2188.49J = 2.188 kJ

Question 87

First ionisation potentials of nitrogen and oxygen in eV respectively are

Options:

A. 14.5, 13.6

B. 13.6, 14.5

C. 13.6, 13.6

D. 14.6, 14.6

Solution:

 \therefore Nitrogen has half filled configuration, thus its ionisation enthalpy will always be greater than that of oxygen. First ionisation potential of nitrogen = 14.5 eV First ionisation potential of oxygen = 13.6 eV

Question 88

In the following, the element with the highest electropositivity is

Options:

A. copper

B. silver

C. gold

D. caesium

Answer: D

Solution:

Solution:

Caesium is the most electropositive element because of largest size as lonisation enthalpy $\propto \frac{1}{\text{Atomic size}}$ or Electropositive character \propto Atomic size

Question 89

The metal X is prepared by the electrolysis of fused chloride. It reacts with hydrogen to form a colourless solid from which hydrogen is released on treatment with water. The metal is

Options:		
A. Al		
B. Ca		
C. Cu		
D. Zn		
Answer: B		

Solution:

The metal ' X ' is Ca. When it undergoes electrolysis, it gives $H_2(g)$ because $Ca^{2+}(aq)$ has higher discharge potential than hydrogen.

Question 90

Mark the wrong statement. When $\mathsf{Na_2S}$ is added to sodium nitroprusside solution,

Options:

A. beautiful violet colour is produced

B. a complex $[Fe(CN)_5 NOS]^{4-}$ is formed

C. a complex $[Fe(CN)_5 NOS]^2$ is formed

D. a complex $Na_4[Fe(CN)_5 NOS]$ is formed

Answer: B

Solution:

Solution: When sodium sulphide is added to sodium nitroprusside, a purple or violet colour is solution observed. $Na_2S + Na_2[Fe(CN)_5NO] \longrightarrow Na_4[Fe(CN)_5NOS]$ (Purple colour)

or [Fe(CN)₅NOS]⁴⁻ (Complex ion)

Question 91

Identify the pair of complex showing geometrical isomerism and diamagnetic.

- 1. [PdCl₂(PPh₃)₂]; [Pt(NH₃)₂ ClBr]
- 2. [PdCl₂(PPh₃)₂]; [NiCl₂(PPh₃)₂]
- 3. [Ni(CO)₄]; [Co(NH₃)₆]Cl₃

Options:

A. 1

- B. 1,2 and 3
- C. 2 and 3
- $D.\;3\;and\;4$

Solution:

Only (1) is the correct answer, as $[PdCl_2(PPh_3)_2]$ and $[Pt(NH_3)_2ClBr]$ show geometrical isomerism due to dsp^2 hybridisation and two distinct ligands and is diamagnetic in nature due to the absence of unpaired electron.

Question 92

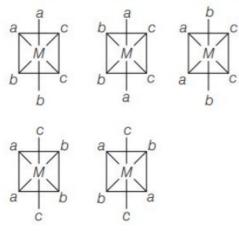
Which of the following complex compounds gives 5 isomers? (M = metal; a, b, c, d, e, f = ligands)

Options:

A. Ma₄b₂

B. *Ma*₂b₂c₂

C. Mabcdef


D. *Ma*₃*b*₃

Answer: B

Solution:

Solution:

The complex compound gives five isomers is $Ma_2b_2c_2$.

Question 93

Which is incorrectly matched?

Options:

A. Golden spangles : $PbCrO_4$

B. $Cu_2S + FeS : Matte$

C. ZnO : Pompholyx

D. 10 vol H₂O₂: 3.035 %

Answer: C

Solution:

Solution:

Question 94

The degree of unsaturation of C_6H_6 and butyne-2 respectively are

Options:

A. 6 and 3

 $B.\ 6\ and\ 2$

 $C.\ 2 \ and \ 6$

 $D.\;4\;and\;2$

Answer: D

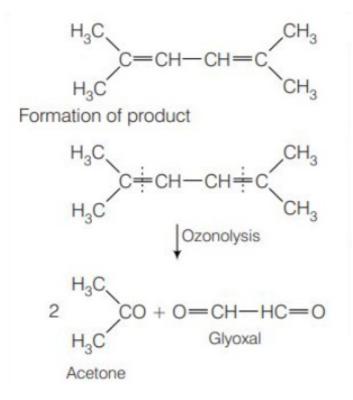
Solution:

Solution: The degree of unsaturation is 4 or C₆H₆ and 2 for C₄H₆(butyne - 2) as Formula for unsaturation $= \frac{2C_n + 2 - H}{2}$ For C₆H₆ (i) degree of unsaturation $= \frac{2 \times 6 + 2 - 6}{2}$ $= \frac{12 + 2 - 6}{2}$ $= \frac{14 - 6}{2}$ $= \frac{8}{2} = 4$ (ii) degree of unsaturation for (C₄H₆)(Butyne - 2) $= \frac{2 \times 4 + 2 - 6}{2}$ $= \frac{8 + 2 - 6}{2}$ $= \frac{10 - 6}{2}$ $= \frac{4}{2} = 2$

Question 95

Compounds (A) gives two mol acetone and glyoxal on ozonolysis?

Options:


- A. 2, 5-dimethyl hexyne
- B. 2, 5-dimethyl hex-3-ene
- C. 2, 5-dimethyl hex-2-yne
- D. 2, 5-dimethyl hexa-2, 4-diene

Answer: D

Solution:

Solution:

2, 5 - dimethyl hexa-2, 4 - diene

Question 96

Which of the following is a nacrotic analgesic?

Options:

- A. Paracetamol
- B. Aspirin

C. Morphine

D. None of the above

Answer: C

Solution:

Solution: Morphine is a narcotic analgesic.

Question 97

Which among the following is not an antibiotic?

Options:

A. Erythromycin

B. Oxytocin

C. Penicillin

D. Tetracycline

Answer: B

Solution:

Solution: Oxytocin is not an antibiotic. It is used for milk extraction.

Question 98

 $(CH_3)_2CO \xrightarrow{N a CN}_{HCI} A \xrightarrow{H}_3O^+B$ In the above sequence of reactions, A and B respectively are

Options:

A. $(CH_3)_2C(OH)CN, (CH_3)_2CHCOOH$

B. $(CH_3)_2C(OH)CN, (CH_3)_2C(OH)_2$

C. $(CH_3)_2C(OH)CN, (CH_3)_2C(OH)COOH$

D. $(CH_3)_2C(OH) CN, (CH_3)_2C = O$

Answer: C

Solution:

 $\begin{array}{l} \textbf{Solution:} \\ (i) \ (CH_3)_2 CO \xrightarrow[HCl]{} & (CH_3)_2 C(OH) \ CN \\ & Cyanohydrin(A) \end{array} \\ (ii) \ (CH_3)_2 C(OH)(CN) \longrightarrow CH^- \ part \ on \ hydrolysis \ give \ -COOH \ . \\ & Thus, \ (CH_3)_2 C(OH) \ COOH(B) \ . \end{array}$

Question 99

Which of the following is the most reactive towards ring nitration?

Options:

A. Benzene

B. Toluene

C. *m*-xylene

D. Mesitylene

Answer: D

Solution:

Solution: As mesitylene contains $3 - CH_3$ groups (electron donating groups) thus, is most reactive towards ring nitration.

Question 100

In the following reaction, $C_6H_5NO_2 \xrightarrow{Sn/HCl} X \xrightarrow{C_6H_5COCl} Y + HCl$ the product Y is

Options:

A. azobenzene

B. acetanilide

C. benzanilide

D. hydrazobenzene

Answer: C

Solution:

Solution:

Question 101

In how many ways can 5 keys be put in a ring?

Options:

A. 4!

B. 5 ! C. $\frac{4!}{2}$ D. $\frac{5!}{2}$

Answer: A

Solution:

Solution:

To arrange *n* objects in a ring, number of ways = (n - 1) ! \therefore 5 keys to be put in a ring = (5 - 1)! = 4 ! ways

Question 102

The value of $(\sqrt{5} + 1)^5 - (\sqrt{5} - 1)^5$ is

Options:

A. 232

B. 352

C. 452

D. 532

Answer: B

Solution:

Solution: $(\sqrt{5} + 1)^5 - (\sqrt{5} - 1)^5$ $= [(\sqrt{5})^5 + {}^5C_1(\sqrt{5})^4(1) + {}^5C_2(\sqrt{5})^3(1) + {}^5C_3(\sqrt{5})^2(1)$ $+ {}^5C_4(\sqrt{5})^1(1) + {}^5C_5(\sqrt{5})^0(1)] - [(\sqrt{5})^5 - {}^5C_1(\sqrt{5})^4(1)$ $+ {}^5C_2(\sqrt{5})^3(1) - {}^5C_3(\sqrt{5})^2(1) + {}^5C_4(\sqrt{5})^1(1) - {}^5C_5(\sqrt{5})^0(1)]$ $= 2[{}^5C_1(\sqrt{5})^4] + 2[{}^5C_3(\sqrt{5})^2] + 2({}^5C_5)$ $= 2 \times 5 \times 25 + 2 \times 10 \times 5 + 2$ = 250 + 100 + 2 = 352

Question 103

The sum of the series $\frac{1}{2 \cdot 3} + \frac{1}{4 \cdot 5} + \frac{1}{6 \cdot 7} + \dots$ is

Options:

A. log($\frac{e}{2}$)

B. log($\frac{2}{e}$) C. $\frac{e}{2}$ D. $\frac{2}{e}$

Answer: A

Solution:

Solution: Given series is $\frac{1}{2.3} + \frac{1}{4.5} + \frac{1}{6.7}$ $\therefore a_n = \frac{1}{(\text{nth term of } 2, 4, 6...)(\text{nth term of } 3, 5, 7...)}$ $= \frac{1}{(2n)(2n+1)}$ = $(\frac{1}{2n} - \frac{1}{2n+1})$ [by using partial fraction] Thus, $a_k = (\frac{1}{2n} - \frac{1}{2n+1})$ On putting k = 1, 2, 3, ... we get $a_1 = (\frac{1}{2} - \frac{1}{3})$ $a_{2} = (\frac{1}{4} - \frac{1}{5})$ $a_{3}(\frac{1}{6} - \frac{1}{7})$ $a_{n} = (\frac{1}{2n} - \frac{1}{2n+1})$ $=(\frac{1}{2}-\frac{1}{2})+(\frac{1}{4}-\frac{1}{5})+(\frac{1}{6}-\frac{1}{7})+\ldots+(\frac{1}{2p}-\frac{1}{2p+1})$

 $\sum_{i=1}^{n} a_k$

$$= -(-\frac{1}{2} + \frac{1}{3} + -\frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} + \dots)$$

= 1 - (1 - $\frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} + \dots)$
= log e - log 2 = log($\frac{e}{2}$)

Question 104

The maximum value of $3\cos\theta + 4\sin\theta$ is

Options:

A. 3

B. 4

C. 5

D. None of these

Answer: C

Solution:

Solution:

```
∴ Maximum value of a cos θ + b sin θ = \sqrt{a^2 + b^2}

∴ Maximum value of 3 cos θ + 4 sin θ = \sqrt{3^2 + 4^2}

= \sqrt{25} = 5
```

The period of $sin \theta - \sqrt{3} \cos \theta$ is

Options:

A. $\frac{\pi}{4}$

B. $\frac{\pi}{2}$

С. п

D. 2π

Answer: D

Solution:

Solution: Let $f(\theta) = \sin \theta - \sqrt{3} \cos \theta$ Then, $f(2\pi \pm \theta) = \sin(2\pi + \theta) - \sqrt{3} \cos(2\pi + \theta)$ $= \sin \theta - \sqrt{3} \cos \theta = f(\theta)$ i.e. $f(T + \theta) = f(\theta)$ Hence, the period of $f(\theta)$ is 2π

Question 106

If the tangent at the point (2 sec θ , 3 tan θ) of the hyperbola $\frac{x^2}{4} - \frac{y^2}{9} = 1$ is parallel to 3x - y + 4 = 0, then the value of θ is

Options:

A. $\frac{\pi}{4}$

B. $\frac{\pi}{3}$

C. $\frac{\pi}{6}$

6

D. $\frac{\pi}{2}$

Answer: C

Solution:

Solution:

Given equation of the hyperbola is $\frac{x^2}{4} - \frac{y^2}{9} = 1$ On differentiating w.r.t.x , we get $\frac{2x}{4} - \frac{2yy'}{9} = 0$ $\Rightarrow y' = \frac{2x}{4} \times \frac{9}{2y} = \frac{9x}{4y}$ $\therefore m_1 = \frac{9 \times 2 \sec \theta}{4 \times 3 \tan \theta} = \frac{3}{2} \csc \theta$ and given line is 3x - y + 4 = 0 $\therefore m_2 = \frac{-3}{-1} = 3$ Since, both the lines are parallel. $\therefore m_1 = m_2$ $\Rightarrow \frac{3}{2} \csc \theta = 3$ $\Rightarrow \csc \theta = 2$ $\Rightarrow \theta = \csc^{-1}(2)$ $\Rightarrow \theta = \frac{\pi}{6}$

Question 107

If $\cos \theta = \frac{\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma}{\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma}$, where α, β, γ are the angles made by a line with the positive directions of the axes of reference, then the measure of θ is

Options:			

A. 60 °

B. 90 °

C. 30°

D. 45 °

Answer: A

Solution:

Solution:

Given, $\cos \theta = \frac{\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma}{\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma}$ (i) where, α, β, γ are the angles made by a line with positive direction of the axes of reference. We know that, $l^2 + m^2 + n^2 = 1$ $\therefore \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1....(ii)[l = \cos \alpha, m = \cos \beta \text{ and } n = \cos \gamma]$ $\Rightarrow (1 - \sin^2 \alpha) + (1 - \sin^2 \beta) + (1 - \sin^2 \gamma) = 1$ $\Rightarrow 3 - (\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma) = 1$ $\Rightarrow \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2....(iii)$ $\cos \theta = \frac{1}{2} \text{ [from Eqs. (ii) and (iii)]}$ $\Rightarrow \theta = \cos^{-1}(\frac{1}{2})$ $\Rightarrow \theta = \frac{\pi}{3} = 60^{\circ}$

The equation of the plane through intersection of planes x + 2y + 3z = 4and 2x + y - z = -5 and perpendicular to the plane 5x + 3y + 6z = -8 is

Options:

A. 23x + 14y - 9z = -48

B. 51x + 15y - 50z = -173

C. 7x - 2y + 3z = -81

D. None of the above

Answer: B

Solution:

Solution:

Given planes $P_1: x + 2y + 3z - 4 = 0$ $P_2: 2x + y - z + 5 = 0$ The equation pf plane through intersection of P_1 and P_2 is $P_{1\lambda}^{1}P_{2} = 0$ $\Rightarrow (x + 2y + 3z - 4) + \lambda(2x + y - z + 5) = 0$ $\Rightarrow x(1+2\lambda) + y(2+\lambda) + z(3-\lambda) + (5\lambda - 4) = 0 \dots (i)$ Since, the plane is perpendicular to 5x + 3y + 6z + 8 = 0 $\Rightarrow 5 + 10\lambda + 6 + 3\lambda + 18 - 6\lambda = 0$ \Rightarrow 7 λ + 29 = 0 $\therefore \lambda = \frac{-29}{7}$ Now, equation of the plane is $(x + 2y + 3z - 4) + (\frac{-29}{7})(2x + y - z + 5) = 0$ $\Rightarrow 7x + 14y + 21z - 28 - 58x - 29y + 29z - 145 = 0$ $\Rightarrow -51x - 15y + 50z - 173 = 0$ $\Rightarrow 51x + 15y - 50z = -173$

Question 109

If I, m, n are the direction cosines of a line, then the maximum value of Imn is

Options:

A.
$$\frac{1}{3\sqrt{3}}$$

B. $\frac{1}{5\sqrt{3}}$

C. $\frac{1}{\sqrt{3}}$

Answer: A

Solution:

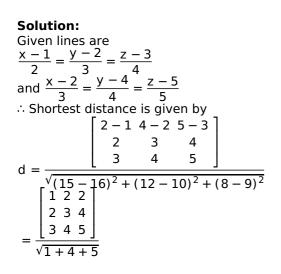
Solution:

Question 110

If the shortest distance between the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$ is *d*, then [*d*], where [·] is the greatest integer function, is equal to

Options:

A. 0


B. 1

C. 2

D. 3

Answer: A

Solution:

⇒ d = $\frac{1(15-16) - 2(10-12) + 8 - 9)}{\sqrt{6}}$ = $\frac{-1+4-2}{\sqrt{6}} = \frac{1}{\sqrt{6}}$ ∴ [d] = 0

Question 111

Which of the following function is inverse of itself?

Options:

A. $f(x) = \frac{1-x}{1+x}$

- B. $g(x) = 5^{\log x}$
- C. h(x) = $2^{x(x-1)}$
- D. None of the above

Answer: A

Solution:

Solution: fof(x) = f(f(x)) f($\frac{1-x}{1+x}$) = $\frac{1-(\frac{1-x}{1+x})}{1+(\frac{1-x}{1+x})}$ = x, $\forall x$ Hence, f is inverse of itself.

Question 112

Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function and f(1) = 4. Then, the value of $\lim_{x \to 1} \int_{4}^{f(x)} \frac{2t}{x-1} dt$ is

Options:

A. 8f(1)

B. 4f(1)

C. 2*f*(1)

D. *f*(1)

Answer: A

Solution:

Solution:
Given, f: R
$$\rightarrow$$
 R and f(1) = 4
Let I = $\lim_{\substack{x \to 1 \\ f(x)}} \int_{4}^{f(x)} \frac{2t}{x-1} dt$
= $\frac{\lim_{\substack{x \to 1 \\ f(x)}} \int_{4}^{f(x)} 2t dt}{\lim_{\substack{x \to 1 \\ x \to 1}} (x-1)}$
= $\lim_{\substack{x \to 1 \\ x \to 1}} \frac{2f'(x)f(x)}{1}$ [using L' Hospital's rule]
= $2f(1)f'(1)$
= $2 \times 4f'(1) = 8f'$

If f'(x) = -f(x) and g(x) = f'(x) and $F(x) = [f(\frac{x}{2})]^2 + [g(\frac{x}{2})]^2$ and given that F(5) = 5, then the value of F(10) is

Options:

A. 15

B. 0

C. 5

D. 10

Answer: C

Solution:

Solution: Given, f''(x) = -f(x) and g(x) = f'(x)⇒ g'(x) = -f(x) and g(x) = f'(x)(i) Now, $F(x) = [f(\frac{x}{2})]^2 + [g(\frac{x}{2})]^2$ ⇒ $F'(x) = f(\frac{x}{2})f(\frac{x}{2}) + g(\frac{x}{2})g'(\frac{x}{2})$ ⇒ $F'(x) = f(\frac{x}{2})g(\frac{x}{2}) - g(\frac{x}{2})f(\frac{x}{2}) = 0$ [from Eq.(i)] i.e. F(x) = Contant∴ F(10) = F(5) = 5

Question 114

The value of $\lim_{x \to 0} \frac{\sin x^4 - x^4 \cos x^4 + x^{20}}{x^4 (e^{2x^4} - 1 - 2x^4)}$ is equal to

Options:

A. 0

D. Does not exist

Answer: C

Solution:

Solution: $\lim_{x \to 0} \frac{\sin x^4 - x^4 \cos x^4 + x^{20}}{x^4 (e^{2x^4} - 1 - 2x^4)}$ Using L'Hospital Rule $= \lim_{x \to 0} \frac{4x^7 \sin x^4 + 20x^{19}}{8e^{2x^4}x^7 - 16x^7 + 4e^{2x^4} - 4x^3}$ $= \lim_{x \to 0} \frac{4x^3 (x^4 \sin x^4 + 5x^{16})}{4x^3 (2e^{2x^4}x^4 - 4x^4 + e^{2x^4} - 1)}$ Using L'Hospital Rule $= \lim_{x \to 0} \frac{4x^3 \sin^4 + 4x^7 \cos x^4 + 80x^{15}}{16e^{2x^4}x^7 + 16e^{2x^4}x^3 - 16x^3}$ $= \lim_{x \to 0} \frac{4x^3 (\sin x^4 + x^4 \cos x^4 + 20x^{12})}{4x^3 (4e^{2x^4} + 4e^{2x^4} - 4)}$ Using L'Hospital Rule $= \lim_{x \to 0} \frac{4x^3 \cos x^4 + 4x^3 \cos x^4 - 4x^7 \sin x^4 + 240x^{11}}{32e^{2x^4} \cdot x^7 + 48e^{2x^4} \cdot x^3}$ $= \lim_{x \to 0} \frac{4x^3 (2 \cos x^4 - x^4 \sin x^4 + 60x^{11})}{4x^3 (8e^{2x^4} \cdot x^4 + 12e^{2x^4})}$ $= \lim_{x \to 0} \frac{2 \cos (0)^4 - (0)^4 \sin (0)^4 + 60(0)^{11}}{e^{2(0)^2} [8(0)^4 + 12]}$ $= \frac{2}{12} = \frac{1}{6}$

Question 115

A function g defined for all real x & gt; 0 satisfies $g(1) = 1, g'(x^2) = x^3$ for all x & gt; 0, then the value of g(4) is

Options:

A. $\frac{13}{3}$

В. З

C. $\frac{67}{5}$

D. None of these

Answer: C

Solution:

Solution: Given, g(1) = 1, $g'(x^2) = x^3$, $\forall x > 0$

```
Now, g'(x^2) = x^3

Put x^2 = y

\therefore g'(y) = (y)^{\frac{3}{2}} \left[ \because x^3 = x^2 \cdot x = y \cdot \sqrt{y} = y^{\frac{3}{2}} \right]

\Rightarrow \int g'(y) dy = \int (y)^{\frac{3}{2}} dy

\Rightarrow g(y) = \frac{y^{\frac{3}{2}} + 1}{\frac{3}{2} + 1}

\Rightarrow g(y) = \frac{2}{5}y^{\frac{5}{2}} + C

or g(x)^2 = \frac{2}{5}x^5 + C[\because x^2 = y] \dots (i)

Now, g(1) = \frac{2}{5} + C

\Rightarrow C = 1 - \frac{2}{5}[\because g(1) = 1]

\Rightarrow C = \frac{3}{5}

From Eq. (i), g(x^2) = \frac{2}{5}x^5 + \frac{3}{5}

On taking x = 2, we get

g(4) = \frac{2}{5} \cdot 2^5 + \frac{3}{5} = \frac{2 \cdot 32 + 3}{5}

= \frac{67}{5}
```

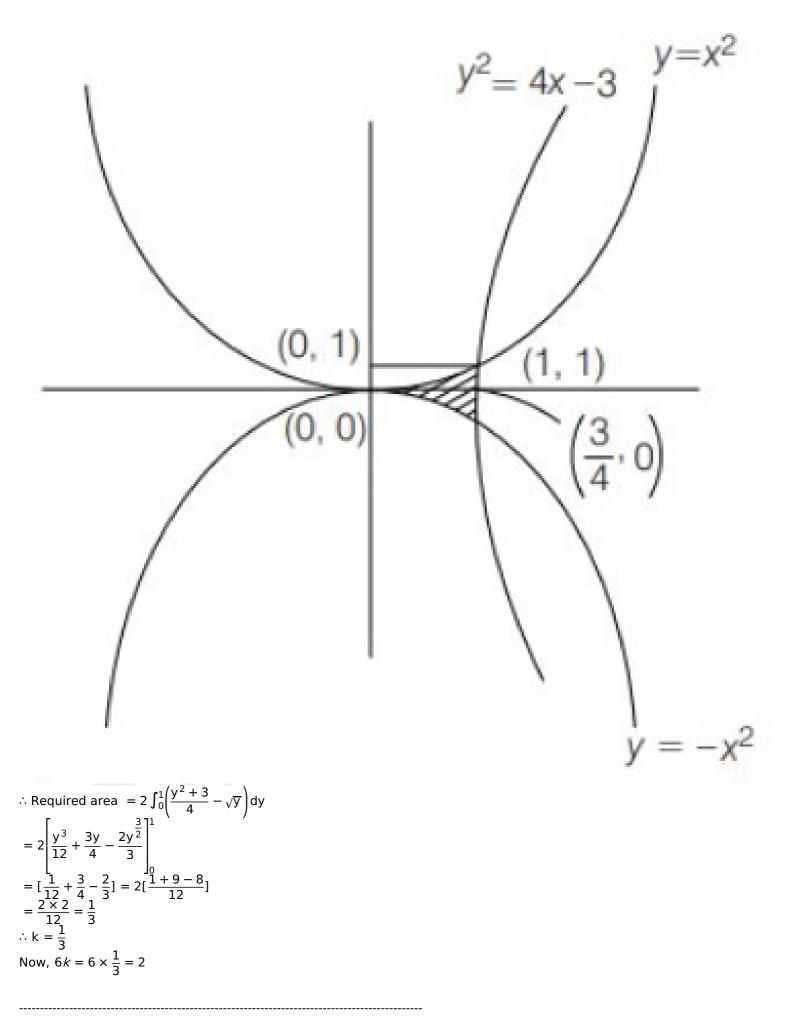
Question 116

The area bounded by the curves $y = x^2$, $y = -x^2$ and $y^2 = 4x - 3$ is k, then the value of 6k is

Options:

A. 2

B. 3


C. 0

D. 4

Answer: A

Solution:

Solution:

The degree of the differential equation satisfying $\sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y)$ is

Options:

A. 1

B. 2

C. 3

D. None of the above

Answer: A

Solution:

Solution: We have, $\sqrt{1-y^2} + \sqrt{1-x^2} = a(x-y)$ Put x = sin A and y = sin B, we get $\cos A + \cos B = a(\sin A - \sin B)$ $\Rightarrow \cot(\frac{A-B}{2}) = a$ $\Rightarrow A - B = 2\cot^{-1}a$ $\Rightarrow \sin^{-1}x - \sin^{-1}y = 2\cot^{-1}a$ On differentiating w.r.t.x, we get $\frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-y^2}} \cdot \frac{dy}{dx} = 0$ $\Rightarrow \frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$ Clearly, it is differential equation of first order and first degree.

Question 118

The solution of the differential equation $y - x \frac{dy}{dx} = a(y^2 + \frac{dy}{dx})$ is

Options:

A. y = C(x + a)(1 - ay)

B. y = C(x + a)(1 + ay)

C. y = C(x - a)(1 - ay)

D. None of the above

Answer: A

Solution:

Solution: We have, $y - x \frac{dy}{dx} = a(y^2 + \frac{dy}{dx})$

$$\Rightarrow y - ay^{2} = (a + x)\frac{dy}{dx}$$

$$\Rightarrow \frac{dx}{a + x} = \frac{1}{y - ay^{2}}dy$$

$$\Rightarrow \int \frac{1}{a + x}dx = \int \frac{1}{y - ay^{2}}dy$$

$$\Rightarrow \int \frac{1}{a + x}dx = \int \frac{1}{y(1 - ay)}dy$$

$$\Rightarrow \int \frac{1}{a + x}dx = \int (\frac{1}{y} + \frac{a}{1 - ay})dy$$

$$\Rightarrow \log(a + x) + \log C = \log y - \log(1 - ay)$$

$$\Rightarrow (a + x)C = \frac{y}{1 - ay}$$

$$\Rightarrow C(x + a)(1 - ay) = y$$

Question 119

The solution of differential equation (2y - 1) dx - (2x + 3) dy = 0 will be

Options:

A.
$$\frac{2x-1}{2y+3} = C$$

B.
$$\frac{2y+1}{2x-3} = C$$

C.
$$\frac{2x+3}{2y-1} = C$$

D.
$$\frac{2x-1}{2y-1} = 0$$

Answer: C

Solution:

Solution: We have, (2y - 1) dx - (2x + 3) dy = 0 $\Rightarrow (2y - 1) dx = (2x + 3) dy$ $\Rightarrow (\frac{1}{2x + 3}) dx = (\frac{1}{2y - 1}) dy$ $\Rightarrow \int \frac{1}{2x + 3} dx = \int \frac{2}{2y - 1} dy$ $\Rightarrow \log(2x + 3) = \log(2y - 1) + \log C$ $\Rightarrow \frac{2x + 3}{2y - 1} = C$

Question 120

The solution of the differential equation $\frac{dy}{dx} = \frac{x \log x^2 + x}{\sin y + y \cos y}$ will be

Options:

A. $y \sin y = x^2 \log x + C$ B. $y \sin y = x^2 + C$ C. $y \sin y = x^2 + \log x + C$ D. $y \sin y = x \log x + C$ Answer: A

Solution:

Solution: We have, $\frac{dy}{dx} = \frac{x \log x^2 + x}{\sin y + y \cos y}$ $\Rightarrow \int (\sin y + y \cos y) \, dy = 2 \int x \log x \, dx + \int x \, dx$ $\Rightarrow y \sin y = x^2 \log x + C$

Question 121

For n = 4, using trapezoidal rule, the value of $\int_{0}^{2} \frac{dx}{1+x}$ will be

Options:

A. 1.1125

B. 1.1176

C. 1.1180

D. None of these

Answer: A

Solution:

```
Solution:
```

Here, n = 4 and a = 0, b = 2 $\therefore \Delta x = 2 - \frac{0}{4} = \frac{1}{2} = 0.5$ Now, y₀ = f(a) = f(0) = $\frac{1}{1+0} = 1$ y₁ = f(a + Δx) = f(0 + 0.5) = f(0.5) = $\frac{1}{1+0.5} = \frac{1}{1.5} = 0.66666$ y² = f(a + 2 Δx) = f(0 + 2 × 0.5) = f(1) = $\frac{1}{1+1} = \frac{1}{2} = 0.5$ y₃ = f(a + 3 Δx) = f(0 + 3 × 0.5) = f(1.5) = $\frac{1}{1+1.5} = \frac{1}{2.5} = 0.4$ y₄ = f(b) = f(1) = $\frac{1}{1+2} = \frac{1}{3} = 0.3333$ $\int_{0}^{2} \frac{1}{1+x} dx = 0.5[\frac{1}{2} + 0.6666 + 0.5 + 0.4 + \frac{0.3333}{2}]$ = 0.5[0.5 + 0.6666 + 0.5 + 0.4 + 0.16665] = 0.5 × 2.23325 = 1.116625(approx)

The value of $\int_{0}^{6} \frac{dx}{1+x^2}$ by choosing six sub-intervals and by using Simpson's Rule will be

Options:

A. 1.3562

B. 1.3662

C. 1.3456

D. 1.2662

Answer: B

Solution:

Solution: Here, n = 6 $\therefore \Delta x = 6 - \frac{0}{6} = 1$ Now, y(0) = f(0) = $\frac{1}{1+0} = 1$ y(1) = f(0 + Δx) = $\frac{1}{1+1} = 0.5$ y(2) = f(0 + 2 Δx) = $\frac{1}{1+4} = \frac{1}{5} = 0.2$ y(3) = f(0 + 3 Δx) = $\frac{1}{1+9} = \frac{1}{10} = 0.1$ y(4) = f(0 + 4 Δx) = $\frac{1}{1+16} = \frac{1}{17} = 0.058$ y(5) = f(0 + 4 Δx) = $\frac{1}{1+25} = \frac{1}{26} = 0.038$ y(6) = f(0 + 6 Δx) = $\frac{1}{1+36} = \frac{1}{37} = 0.027$ $\therefore \int_{0}^{6} \frac{dx}{1+x^{2}}$ = $\frac{1}{3}[1 + 4(0.5 + 0.1 + 0.038) + 2(0.2 + 0.058) + 0.027]$ = $\frac{1}{3}[1 + 2.552 + 0.516 + 0.027]$ = $\frac{1}{3} \times 4.095 = 1.365 = 1.3662$

Question 123

ISP stands for

Options:

- A. Instructions Set Processor
- **B.** Information Standard Processing
- C. Interchange Standard Protocol

D. Interrupt Service Procedure

Answer: A

Solution:

Solution: ISP stands for Instruction set processor.

Question 124

The 8-bit encoding format used to store data in a computer is known as

A. ASCII

B. EBCDIC

C. ANCI

D. USCII

Answer: B

Solution:

Solution: The 8-bit encoding format used to store data in a computer is known as USCII.

Question 125

The small extremely fast RAM's are called as

Options:

- A. cache
- B. heaps
- C. accumulators
- D. stacks

Answer: A

Solution:

The small extrenely fast RAM's are called as cache.

Question 126

The value of $i^2 + i^4 + i^6 + ... (2n + 1)$ terms is

Options:

A. -1

B. 1

C. –i

D. i

Answer: A

Solution:

Solution: $i^{2} + i^{4} + i^{6} + \dots (2n + 1)$ terms $= i^{2}[1 - (i^{2})^{2n+1}] = i^{2}(\frac{1+1}{1+1}) = -1$

Question 127

The argument of the complex number $-1 + i\sqrt{3}$ is

Options:

A. 45 °

B. 60 °

C. 120°

D. 150°

Answer: C

Solution:

Solution:

Given, $z = -1 + i\sqrt{3}$ Now, $\tan \alpha = \frac{|b|}{|a|} = \frac{\sqrt{3}}{1} = \sqrt{3}$ $\Rightarrow \alpha = \tan^{-1}\sqrt{3} \Rightarrow \alpha = \frac{\pi}{3}$ Clearly the point representing z lies in the second quadrant.

$$\therefore \theta = \pi - \alpha \Rightarrow \theta = \pi - \frac{\pi}{3}$$
$$\Rightarrow \theta - \frac{2\pi}{3} \Rightarrow \theta = 120^{\circ}$$

Question 128

If $\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$ be the AM of a and b, then n is equal to

Options:

A. -1

B. 0

C. 1

D. None of these

Answer: B

Solution:

Solution:

Given, AM of a and b = $\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$ $\therefore \frac{a^{n+1} + b^{n+1}}{a^n + b^n} = \frac{a+b}{2}$ $\Rightarrow 2(a^{n+1} + b^{n+1}) = (a+b)(a^n + b^n)$ $\Rightarrow 2a^{n+1} + 2b^{n+1} = a \cdot a^n + a \cdot b^n + b \cdot a^n + b \cdot b^n$ $\Rightarrow 2a^{n+1} + 2b^{n+1} = a^{n+1} + ab^n + ba^n + b^{n+1}$ $\Rightarrow a^{n+1} + b^{n+1} = ab^n + ba^n$ $\Rightarrow a^{n+1} - ba^n = ab^n - b^{n+1}$ $\Rightarrow a^n (a-b) = b^n (a-b)$ $\Rightarrow a^n = b^n$ $\Rightarrow (\frac{a}{b})^n = 1$ $\therefore n = 0$

Question 129

 $x^{\frac{1}{2}} \cdot x^{\frac{1}{4}} \cdot x^{\frac{1}{8}} \dots \infty$ equal to

Options:

A. 0

B. 1

C. ∞

D. x

Answer: D

Solution:

Solution:

$$\frac{x^{1}}{2} \cdot \frac{x^{1}}{4} \cdot \frac{x^{1}}{8} \cdot \dots \infty$$

$$= \frac{1}{x^{2}} + \frac{1}{4} + \frac{1}{8} + \dots = x^{\frac{\frac{1}{2}}{1 - \frac{1}{2}}}$$

$$= x^{\frac{\frac{1}{2}}{\frac{1}{2}}} = x$$

Question 130

If the roots of the equation $x^2 + px + q = 0$ differ by 1, then

Options:

- A. $p^2 = 4q + 1$
- B. $p^2 = 4q$
- C. $p^2 = 4q 1$
- D. $p^2 = -4q$

Answer: A

Solution:

```
Solution:

Given equation is x^2 + px + q = 0

Let the roots of given wquation be \alpha and \beta

Then, \alpha = \beta = 1

Bur \alpha + \beta = -p

and \alpha\beta = q

Hence, (\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta

\Rightarrow (1)^2 = (-p)^2 - 4q

\Rightarrow 1 = p^2 - 4q

\therefore p^2 = 4q + 1
```

Question 131

If a = 2, b = 3 and c = 5 in $\triangle ABC$, then $\angle C$ is to equal

Options:

B. $\frac{\pi}{4}$ C. $\frac{\pi}{6}$

D. None of these

Answer: D

Solution:

Solution:
Given,
$$a = 2, b = 3 \text{ and } c = 5$$

The, $\cos C = \frac{a^2 + b^2 + c^2}{2 a b}$
 $\Rightarrow \cos C = \frac{(2)^2 + (3)^2 - (5)^2}{2 \times 2 \times 3} = \frac{4 + 9 - 25}{12}$
 $\Rightarrow \cos C = \frac{-12}{12}$
 $\Rightarrow \cos C = -1$
 $\Rightarrow \angle C = \cos^{-1}(-1)$
 $\therefore \angle C = \pi$

Question 132

The value of $\sin^{-1}\frac{4}{5} + 2\tan^{-1}\frac{2}{3}$ is

Options:

A. $\frac{\pi}{3}$

B. $\frac{\pi}{2}$

C. $\frac{\pi}{6}$

D. None of these

Answer: D

Solution:

 $=\sin^{-1}[\frac{20}{65}+\frac{36}{65}]=\sin^{-1}(\frac{56}{65})$

Question 133

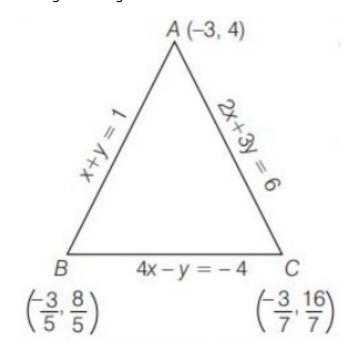
The centroid of the triangle formed by the lines x + y = 1, 2x + 3y = 6and 4x - y = -4 lies in the quadrant

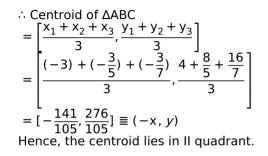
Options:

A. I

B. II

C. III


D. IV


Answer: B

Solution:

Solution:

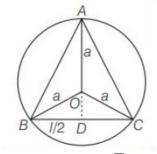
Given, $x + y = 1 \dots (i)$ $2x + 3y = 6 \dots (ii)$ and $4x - y = -4 \dots (iii)$ On solving Eqs. (i) and (ii), we get x = -3 and y = 4Now, solving Eqs. (ii) and (iii), we get $x = -\frac{3}{7}$ and $y = \frac{16}{7}$ and solving Eqs. (i) and (iii), we get $x = -\frac{3}{5}$ and $y = \frac{8}{5}$

If an equilateral triangle is inscribed in the circle $x^2 + y^2 = a^2$, the length of its each side is

Options:

A. √2a

B. √**3**a


D.
$$\frac{1}{\sqrt{3}}a$$

Answer: B

Solution:

Solution:

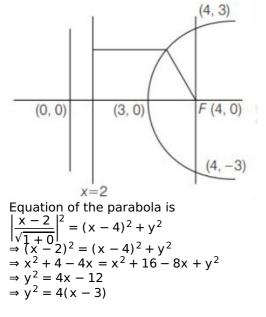
Given equation of the circle is $x^2 + y^2 = a^2$ where, radius = a Let ABC be the inscribed equilateral triangle and length of its each sides be I.

Area of
$$\triangle ABC = \frac{\sqrt{3}}{4}|^2$$

Also, $OD = \sqrt[4]{a^2 - \frac{l^2}{4}} [from \triangle ODB]$
 \therefore Area of $\triangle OBC = \frac{1}{2} \times l \times \sqrt[4]{a^2 - \frac{l^2}{4}}$
Now, Area of $\triangle ABC = 3 \times Area of \triangle OBC$
 $\Rightarrow \frac{\sqrt{3}}{4}|^2 = 3 \times \frac{l}{2}\sqrt[4]{a^2 - \frac{l^2}{4}}$
 $\Rightarrow \sqrt{3}| = 3\sqrt{4a^2 - l^2}$
 $\Rightarrow 3l^2 = 9(4a^2 - l^2)$
 $\Rightarrow l^2 = 12a^2 - 3l^2$
 $\Rightarrow l^2 = 3a^2$
 $\Rightarrow l = \sqrt{3}a$

Question 135

If the vertex is (3,0) and the extremities of the latusrectum are (4,3) and (4,-3), then the equation of the parabola is


Options:

A. $y^2 = 4(x - 3)$ B. $x^2 = 4(y - 3)$ C. $y^2 = -4(x + 3)$ D. $x^2 = -4(y + 3)$

Answer: A

Solution:

Solution:

Question 136

If G and G are respectively centroid of $\triangle ABC$ and $\triangle A^{'}B^{'}C^{'}$, then $AA^{'} + BB^{'} + CC^{'}$ is equal to

Options:

A. 2GG

B. 3GG'

C. $\frac{2}{3}$ GG[']

D. $\frac{1}{3}GG'$

Answer: B

Solution:

Solution:

Let a, b, c be the position vectors of A, B and C, respectively. Then, the position vector of G is $\frac{a+b+c}{3}$ Let the position vectors of A', B' and C' be a', b' and c', respectively. Then, the position of G is $\frac{a'+b'+c'}{3}$ $\therefore AA' + BB' + CC' = (a'-a) + (b'-b) + (c'-c)$ $\Rightarrow AA' + BB' + CC' = (a'+b'+c') - (a+b+c)$ $= 3(\frac{a'+b'+c'}{3} - \frac{a+b+c}{3})$

If $a = 3\hat{i} - 4\hat{j} + 5\hat{k}$, $b = \hat{i} + \hat{j} + \hat{k}$ and $c = -2\hat{i} + 3\hat{j} - 5\hat{k}$, and if [] is the least integer function, then [a + b + / * */c] is equal to

Options:

A. 1

B. 2

C. 3

D. 0

Answer: C

Solution:

```
Solution:

Given, a = 3\hat{i} - 4\hat{j} + 5\hat{k}, b = \hat{i} + \hat{j} + \hat{k} and c = -2\hat{i} + 3\hat{j} - 5\hat{k}

\therefore a + b + c = 3\hat{i} - 4\hat{j} + 5\hat{k} + \hat{i} + \hat{j} + \hat{k} - 2\hat{i} + 3\hat{j} - 5\hat{k}

= 2\hat{i} + 0\hat{j} + \hat{k}

\Rightarrow |a + b + c| = \sqrt{(2)^2} + (0)^2 + (1)^2

= \sqrt{4} + 0 + 1 = \sqrt{5} = 2.236

[a + b + c] = [2.236] = 3
```

Question 138

If $a = -\hat{i} + \hat{j} + \hat{k}$ and $b = 2\hat{i} + \hat{k}$, then the vector satisfying the following conditions (i) it is coplanar with a and b, (ii) it is perpendicular to b and (iii) $a \cdot c = 7$, is

Options:

A. $-\hat{i} + 2\hat{j} + 2\hat{k}$ B. $-\frac{3}{2}\hat{i} + \frac{5}{2}\hat{j} + 3\hat{k}$ C. $-3\hat{i} + 5\hat{j} + 6\hat{k}$ D. $-6\hat{i} + \hat{k}$

Answer: B

Solution:

Solution:

```
Let r be a vector coplanar with a and b are perpendicular to b.

Then, r = b × (a × b)

\Rightarrow r = (b.b)a - (b.a)b

\Rightarrow r = 5a + b

r = -3î + 5j + 6k

Let c = \lambdar, then

a.c = 7

\Rightarrow \lambda = \frac{1}{2}

Hence, c = -\frac{3}{2}i + \frac{5}{2}j + 3k
```

Question 139

If the vectors $b = \left(\tan \alpha, -1, 2\sqrt{\sin \frac{\alpha}{2}}\right)$ and $c = \left(\tan \alpha, \tan \alpha, -\frac{3}{\sqrt{\sin \alpha/2}}\right)$ are orthogonal and a vector $a = (1, 3, \sin 2)$ with the Z-axis, then the value of α is

are orthogonal and a vector $\mathbf{a} = (\mathbf{1}, \mathbf{3}, \sin 2\alpha)$ makes an obtuse angle with the Z-axis, then the value of α is

Options:

A. $(4n + 2)\pi + \tan^{-1}2$

- B. $(4n + 2)\pi \tan^{-1}2$
- C. $(4n + 1)\pi + \tan^{-1}2$
- D. $(4n + 1)\pi \tan^{-1}2$

Since, $\sin 2\alpha < 0$ and $\tan 2\alpha > 0$

Answer: D

Solution:

Solution: Since, the vector $a = (1, 3, \sin 2\alpha)$ makes an obtuse angle with the Z - axis. Therefore, its z - component is negative. i.e. $\sin 2\alpha < 0$ $\therefore -1 \leq \sin 2\alpha < 0....(i)$ Since, b and c are orthogonal. \therefore b.c = 0 \Rightarrow tan² α – tan α – 6 = 0 \Rightarrow (tan α - 3)(tan α + 2) = 0 \Rightarrow tan $\alpha = 3, -2$ $\therefore \tan \alpha = 3$ Then, $\sin 2\alpha = \frac{2 \tan \alpha}{1 + \tan^2 \alpha}$ $=\frac{6}{10}$ > 0, which is a contradiction to(i) \therefore tan α = 3 is not possible. Thus, $\tan \alpha = -2$ and for this value of $\tan \alpha$, we get $\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha} = \frac{4}{3}$ $1 - tan^2 \alpha$

Therefore, 2α is in third quadrant. Also, $\sqrt{\sin \frac{\alpha}{2}}$ is meaningful, if $0 < \sin \frac{\alpha}{2} < 1$ when these conditions are satisfied, α is given by $\alpha = (4n + 1)\pi - \tan^{-1}2$.

Question 140

If f:R \rightarrow R be the signum function and g:R \rightarrow R be the greatest integer function, then sin { $\pi((f \circ g)(\frac{1}{2}))$ } is equal to

Options:

A. 1

B. $\frac{\sqrt{3}}{2}$

C. 0

D.
$$\frac{1}{\sqrt{2}}$$

Answer: C

Solution:

Solution:

We have, f(x) = sgn(x)and g(x) = [x]Now, $fog(\frac{1}{2}) = f(g(\frac{1}{2})) = f([\frac{1}{2}])$ $= f(0)[\because [0.5] = 0]$ $= Sgn(0) = 0[\because Sgn(0) = 0]$ Now, $sin[\pi \{ fog(\frac{1}{2}) \}] = sin(\pi \times 0) = sin 0^{\circ} = 0$

Question 141

A particle moving on a curve has the position at a time t is given by $x = f(t) \sin t + f(t) \cos t$ $y = f(t) \cos t - f(t) \sin t$, where f is a twice differentiable function. Then, the velocity of the particle at time t is

Options:

A. f'(t) + f''(t)

B. f't) – f''(t)

C. f'(t) + f''(t)

D. f'(t) - f''(t)

Answer: C

Solution:

```
Solution:

Given that,

x = f'(t) \sin t + f''(t) \cos t

and y = f'(t) \cos t - f''(t) \sin t

\therefore V_x = \frac{dx}{dt} = [f''(t) \sin t + f'(t) \cos t] + [f'''(y) \cos t - f''(t) \sin t]

= f'(t) \cos t + f'''(t) \cos t

and V_y = \frac{dy}{dt} = [f''(t) \cos t - f'(t) \sin t] - [f'''(t) \sin t + f''(t) \cos t]

= -[f'(t) \sin t + f'''(t) \sin t]

we know that,

|V| = \sqrt{(V_x)^2 + (V_y)^2}

= \sqrt{[f'(t) \cos t + f'''(t) \cos t]^2 + \{ -[f'(t) \sin t + f'''(t) \sin t]^2 \}}

= \sqrt{[f'(t)]^2 [\cos^2 t + \sin^2 t] + [f'''(t)^2 [\cos^2 t + \sin^2 t] + 2f'(t)f'''(t)}

(\cos^t + \sin^2 t)

= \sqrt{[f'(t)]^2 + [f'''(t)]^2}

= \sqrt{[f'(t) + f'''(t)]^2}
```

Question 142

f(x) and g(x) are differentiable in the interval [0, 1] such that f(0) = 2, g(0) = 0, f(1) = 6, g(1) = 2, then Rolle's theorem is applicable for which of the following in [0, 1] ?

Options:

A. f(x) - g(x)

B. f(x) - 2g(x)

C. f(x) + 3g(x)

D. None of the above

Answer: B

Solution:

```
Solution:

Let \phi(x) = f(x) - 2g(x), x \in [0, 1]

Clearly, \phi(x) is continuous on [0, 1] and differentiable on (0, 1), as f(x) and g(x) are differentiable on [0, 1].

Also, \phi(0) = f(0) - 2g(0) = 2 - 0 = 2

and \phi(1) = f(1) - 2g(1) = 6 - 2 \times 2 = 2

\because \phi(0) = \phi(1)

Thus, \phi(x) satisfies all the three conditions of Rolle's theorem.

Therefore, there exists a point x \in (0, 1) such that

\phi'(x) = 0 \Rightarrow f'(x) - 2g'(x) = 0

\therefore f'(x) = 2g'(x)
```

If $\int \frac{\cos 4x + 1}{\cot x - \tan x} dx = A \cos 4x + B$, then the value of A is

Options:

A. $\frac{1}{2}$ B. $\frac{1}{8}$ C. $-\frac{1}{8}$ D. $\frac{1}{4}$

Answer: C

Solution:

Solution: Let $I = \int \frac{1 + \cos 4x}{\cot x - \tan x} dx$ $\Rightarrow I = \int \frac{2\cos^2 x \cdot \sin x \cos x}{\cos^2 x - \sin^2 x} dx$ $\Rightarrow I = \int \sin 2x \cos 2x dx$ $\Rightarrow I = \frac{1}{2} \int \sin 4x dx$ $\Rightarrow I = -\frac{1}{8} \cos 4x + B$ On comparing with the given integral, we get $A = -\frac{1}{8}$

Question 144

I $f(x) = \sqrt{x}$, $g(x) = e^{x} - 1$ and $\int f \circ g(x) dx = Afog(x) + Btan^{-1}(f \circ g(x)) + C$, then the value of A + B is

Options:

A. 1

B. 2

C. 3

D. None of these

Answer: D

Solution:

Solution:

We have, $f(x) = \sqrt{x}$ and $g(x) = e^{x} - 1$ \therefore fog(x) = $f\{\underline{g(x)}\} = f\{e^{x} - 1\}$ \Rightarrow fog(x) = $\sqrt{e^{x} - 1}$ (i) Let $I = \int fog(x) dx$ $= \int \sqrt{e^{x} - 1} dx$ [from Eq. (i)] $= \int \frac{e^{x} - 1}{\sqrt{e^{x} - 1}} dx$ $= \int \frac{e^{x} - 1}{\sqrt{e^{x} - 1}} dx - \int \frac{1}{\sqrt{e^{x} - 1}}$ (ii) Consider $I_{1} = \int \frac{e^{x}}{\sqrt{e^{x} - 1}} dx$ and $I_{2} = \int \frac{1}{\sqrt{e^{x} - 1}} dx$ Now, $I_{1} = \int \frac{e^{x}}{\sqrt{e^{x} - 1}} dx$ Put $e^{x} - 1 = t$ $\Rightarrow e^{x} dx = dt$ \therefore $I_{1} = \int \frac{dt}{\sqrt{t}} = 2\sqrt{t} + C_{1} = 2\sqrt{e^{x} - 1} + C_{1}$ and $I_{2} = \int \frac{1}{\sqrt{t}} \frac{\sqrt{e^{x} - 1}}{\sqrt{e^{x} - 1}} dx$ Put $e^{x} - 1 = z^{2^{-1}}$ $\Rightarrow e^{x} dx = 2zdz \Rightarrow dx = \frac{2z}{z^{2} + 1} dz$ $= 2tab^{-1}z + C_{2} = 2tan^{-1}\sqrt{e^{x} - 1} + C_{2}$ \therefore $I_{2} = \int \frac{1}{z} \cdot \frac{2z}{z^{2} + 1} dz = 2\int \frac{1}{z^{2} + 1} dz$ $= 2tab^{-1}z + C_{2} = 2tan^{-1}\sqrt{e^{x} - 1} + C_{2}$ \therefore $I = 2\sqrt{e^{x} - 1} - 2tan^{-1}\sqrt{e^{x} - 1} + C[$ where, $C = C_{1} - C_{2}$ $= 2\sqrt{e^{x} - 1} - 2tan^{-1}\sqrt{e^{x} - 1} + C[$ where, $C = (C_{1} - C_{2})$ $= 2fog(x) - 2tan^{-1} fog(x) + C[$ \because fog(x) = $\sqrt{e^{x} - 1}]$ Now, comparing with the given integral, we get A = 2 and B = -2Hence, A + B = 2 + (-2) = 2 - 2 = 0

Question 145

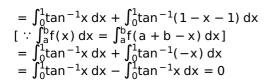
The value of
$$\int_{0}^{1} \tan^{-1} (\frac{2x-1}{1+x-x^2}) \, dx$$
 is

Options:

A. 0

B. 1

C. -1


D. None of these

Answer: A

Solution:

Solution:

Let $I = \int_0^1 \tan^{-1} \{ \frac{2x - 1}{1 + x - x^2} \} dx$ $= \int_0^1 \tan^{-1} \{ \frac{x + x - 1}{1 - x(x - 1)} \} dx$ $= \int_0^1 [\tan^{-1}x + \tan^{-1}(x - 1)] dx$

Question 146

If A and B are mutually exclusive events, then P(A / B) is equal to

Options:

A. 0

B. 1

C. $\frac{P(A \cap B)}{P(A)}$

D. $\frac{P(A \cap B)}{P(B)}$

Answer: A

Solution:

Solution: Given, A and B are mutually exclisive events. Then, P(A $\bigcap B$) = 0 Now, P($\frac{A}{B}$) = P $\frac{(A \bigcap B)}{P(B)} = \frac{0}{P(B)} = 0$

Question 147

If 0 < P(A) < 1, 0 < P(B) < 1 and $P(A \cup B) = P(A) + P(B) - P(A)P(B)$, then

Options:

A. $P(A \cup B)^{C} = P(A^{C})P(B^{C})$

B. $P(\frac{A}{B}) = P(A)$

C. Both (a) and (b) are true

D. None of the above

Answer: C

Solution:

Solution: We know that, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ But it is given that, $P(A \cup B) = P(A) + P(B) - P(A)P(B)$ $\therefore P(A \cap B) = P(A)P(B)$ $\Rightarrow A and B are independent events.$ $\therefore P(A \cup B)^{C} = P(A^{C} \cap B^{C})$ $= P(A^{C})P(B^{C})$ and $P(\frac{A}{B}) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)}$ = P(A)

Question 148

If both the coefficients of regression between *x* and *y* are **0.8** and **0.2**, then the coefficient of correlation between them will be

Options:

A. 0.4

B. 0.6

C. 0.3

D. 0.5

Answer: A

Solution:

Solution: Given, $b_{yx} = 0.8$ and $b_{xy} = 0.2$ $\therefore r = \sqrt{b_{yx} \cdot b_{xy}}$ $= \sqrt{0.8 \times 0.2} = 0.4$

Question 149

If the angle between two lines of regression is $\theta,$ then the value of θ will be

Options:

A.
$$\tan^{-1}\left[\frac{b_{yx} - \frac{1}{b_{xy}}}{1 + \frac{b_{xy}}{b_{yx}}}\right]$$

B. $\tan^{-1}\left[\frac{b_{yx} - b_{xy} - 1}{b_{xy} + b_{yx}}\right]$

C.
$$\tan^{-1}\left[\frac{b_{xy} - \frac{1}{b_{yx}}}{1 + \frac{b_{xy}}{b_{yx}}}\right]$$

D. $\tan^{-1}\left[\frac{b_{yx} - b_{xy}}{1 + b_{yx} \cdot b_{xy}}\right]$

Answer: C

Solution:

Solution:

Equation of regression line of y on x is $y - \overline{y} = r \cdot \frac{\sigma_y}{\sigma_x} (x - \overline{x}) \Rightarrow y - \overline{y} = b_{yx} (x - \overline{x})$ \therefore Slope of regression line y on M₁ = x is b_{yx}. Now, equation of regression line of x is y is $x - \overline{x} = b_{xy} (y - \overline{y})$ Slope of regression line x on $M_2 = y$ is $\frac{1}{b_{xy}}$ If the angle between two lines is θ , then $\begin{bmatrix} . & 1 \end{bmatrix}$

$$\tan \theta = \pm \frac{M_1 - M_2}{1 + M_1 M_2} = \left[\frac{b_{yx} - \frac{1}{b_{xy}}}{1 + \frac{b_{yx}}{b_{xy}}} \right]$$

or
$$\tan \theta = \left[\frac{b_{xy} - \frac{1}{b_{yx}}}{1 + \frac{b_{xy}}{b_{yx}}} \right] \Rightarrow \theta = \tan^{-1} \left[\frac{b_{xy} - \frac{1}{b_{yx}}}{1 + \frac{b_{xy}}{b_{yx}}} \right]$$

Question 150

The positive root of equation $x^3 - 2x - 5 = 0$ lies in the interval

Options:

A. (0,1)

B. (1,2)

C. (2,3)

D. (3,4)

Answer: C

Solution:

Solution: By Newton Raphson Formula, $X_{n+1} = X_n - \frac{f(x_n)}{f'(x_n)}$ $\therefore X_{n+1} = X_n - \frac{x_n^3 - 2x_n - 5}{3x_n^2 - 2}$ n = 0, 1, 2, Let $x_0 = 2$ (i) Then, $f(x_0) = f(2) = 2^3 - 2(2) - 5 = -1$ and $f'(x_0) = f'(2) = 3(2)^2 - 2 = 10$ By putting n = 0 in Eq. (i), $x_1 = 2 - (\frac{-1}{10}) = 2.1$ $\Rightarrow f(x_1) = f(2.1) = (2.1)^3 - 2(2.1)5 = 0.061$ $f'(x_1) = f'(2.1) = 3(2.1)^2 - 2 = 1.23$ $x_2 = 2.1 - \frac{0.061}{11.23} = 2.094$ So, the positive roots of the equation lies in interval (2, 3).
