1. NUMBERS

IMPORTANT FACTS AND FORMULAE

I. Numeral: In Hindu Arabic system, we use ten symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 called digits to represent any number.

A group of digits, denoting a number is called a numeral.

We represent a number, say 689745132 as shown below :

Ten Crores (108)	Crares (107)	Ten Lacs (Millions) (10 ⁶)	Lacs (10 ⁵)	Ten Thousands (104)	Thousands (10 ³)	Hundreds (102)	Tens (10¹)	Units (10 ⁰)
6	8	9	oidy as	4	5	1 1	3	2

We read it as: 'Sixty-eight crores, ninety-seven lacs, forty-five thousand, one hundred and thirty-two'.

II. Place Value or Local Value of a Digit in a Numeral :

In the above numeral :

Place value of 2 is $(2 \times 1) = 2$; Place value of 3 is $(3 \times 10) = 30$;

Place value of 1 is (1 × 100) = 100 and so on.

Place value of 6 is $6 \times 10^8 = 600000000$.

III. Face Value: The face value of a digit in a numeral is the value of the digit itself at whatever place it may be. In the above numeral, the face value of 2 is 2; the face value of 3 is 3 and so on.

IV. TYPES OF NUMBERS

- Natural Numbers: Counting numbers 1, 2, 3, 4, 5, are called natural numbers.
 - Whole Numbers: All counting numbers together with zero form the set of whole numbers. Thus,
 - (i) 0 is the only whole number which is not a natural number.
- (ii) Every natural number is a whole number.
- 3. Integers: All natural numbers, 0 and negatives of counting numbers i.e., [...., -3, -2, -1, 0, 1, 2, 3,] together form the set of integers.
 - (i) Positive Integers: {1, 2, 3, 4,} is the set of all positive integers.
- (ii) Negative Integers : {-1, -2, -3,} is the set of all negative integers.
 - (iii) Non-Positive and Non-Negative Integers: 0 is neither positive nor negative. So, (0, 1, 2, 3,) represents the set of non-negative integers, while {0, -1, -2, -3,} represents the set of non-positive integers.

- Even Numbers: A number divisible by 2 is called an even number. e.g., 2, 4, 6, 8, 10, etc.
- Odd Numbers: A number not divisible by 2 is called an odd number. e.g., 1, 3, 5, 7, 9, 11, etc.
- Prime Numbers: A number greater than 1 is called a prime number, if it has exactly two factors, namely 1 and the number itself.

Prime numbers upto 100 are: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

Prime numbers Greater than 100: Let p be a given number greater than 100. To find out whether it is prime or not, we use the following method:

Find a whole number nearly greater than the square root of p. Let $k > \sqrt{p}$. Test whether p is divisible by any prime number less than k. If yes, then p is not prime. Otherwise, p is prime.

e.g., We have to find whether 191 is a prime number or not. Now, $14 > \sqrt{191}$. Prime numbers less than 14 are 2, 3, 5, 7, 11, 13.

191 is not divisible by any of them. So, 191 is a prime number.

- Composite Numbers: Numbers greater than 1 which are not prime, are known as composite numbers. e.g., 4, 6, 8, 9, 10, 12.
 - Note: (i) 1 is neither prime nor composite.
 - (ii) 2 is the only even number which is prime.
 - (iii) There are 25 prime numbers between 1 and 100.
- Co-primes: Two numbers a and b are said to be co-primes, if their H.C.F. is 1. e.g., (2, 3), (4, 5), (7, 9), (8, 11), etc. are co-primes.

V. TESTS OF DIVISIBILITY and Maid a to entiry larged to entiry against

 Divisibility By 2: A number is divisible by 2, if its unit's digit is any of 0, 2, 4, 6, 8.

Ex. 84932 is divisible by 2, while 65935 is not.

 Divisibility By 3: A number is divisible by 3, if the sum of its digits is divisible by 3.

Ex. 592482 is divisible by 3, since sum of its digits = (5 + 9 + 2 + 4 + 8 + 2) = 30, which is divisible by 3.

But, 864329 is not divisible by 3, since sum of its digits = (8 + 6 + 4 + 3 + 2 + 9)= 32, which is not divisible by 3.

 Divisibility By 4: A number is divisible by 4, if the number formed by the last two digits is divisible by 4.

Ex. 892648 is divisible by 4, since the number formed by the last two digits is 48, which is divisible by 4.

But, 749282 is not divisible by 4, since the number formed by the last two digits is 82, which is not divisible by 4.

- Divisibility By 5: A number is divisible by 5, if its unit's digit is either 0 or 5.
 Thus, 20820 and 50345 are divisible by 5, while 30934 and 40946 are not.
- Divisibility By 6: A number is divisible by 6, if it is divisible by both 2 and 3.
 Ex. The number 35256 is clearly divisible by 2.

Sum of its digits = (3 + 5 + 2 + 5 + 6) = 21, which is divisible by 3.

Thus, 35256 is divisible by 2 as well as 3. Hence, 35256 is divisible by 6.

 Divisibility By 8: A number is divisible by 8, if the number formed by the last three digits of the given number is divisible by 8.

Ex. 953360 is divisible by 8, since the number formed by last three digits is 360, which is divisible by 8.

But, 529418 is not divisible by 8, since the number formed by last three digits is 418, which is not divisible by 8.

 Divisibility By 9: A number is divisible by 9, if the sum of its digits is divisible by 9.

Ex. 60732 is divisible by 9, since sum of digits = (6 + 0 + 7 + 3 + 2) = 18, which is divisible by 9.

But, 68956 is not divisible by 9, since sum of digits = (6 + 8 + 9 + 5 + 6) = 34, which is not divisible by 9.

- Divisibility By 10: A number is divisible by 10, if it ends with 0.
 Ex. 96410, 10480 are divisible by 10, while 96375 is not.
- Divisibility By 11: A number is divisible by 11, if the difference of the sum of its digits at odd places and the sum of its digits at even places, is either 0 or a number divisible by 11.

Ex. The number 4832718 is divisible by 11, since:

(sum of digits at odd places) - (sum of digits at even places)

= (8 + 7 + 3 + 4) - (1 + 2 + 8) = 11, which is divisible by 11.

Divisibility By 12: A number is divisible by 12, if it is divisible by both 4 and

Ex. Consider the number 34632.

- (i) The number formed by last two digits is 32, which is divisible by 4.
- (ii) Sum of digits = (3 + 4 + 6 + 3 + 2) = 18, which is divisible by 3.

Thus, 34632 is divisible by 4 as well as 3. Hence, 34632 is divisible by 12.

- Divisibility By 14: A number is divisible by 14, if it is divisible by 2 as well as 7.
- Divisibility By 15: A number is divisible by 15, if it is divisible by both 3 and
 5.
- Divisibility By 16: A number is divisible by 16, if the number formed by the last
 4 digits is divisible by 16.

Ex. 7957536 is divisible by 16, since the number formed by the last four digits is 7536, which is divisible by 16.

- Divisibility By 24: A given number is divisible by 24, if it is divisible by both 3 and 8.
- Divisibility By 40: A given number is divisible by 40, if it is divisible by both 5 and 8.
- Divisibility By 80: A given number is divisible by 80, if it is divisible by both 5 and 16.

Note: If a number is divisible by p as well as q, where p and q are co-primes, then the given number is divisible by pq.

If p and q are not co-primes, then the given number need not be divisible by pq, even when it is divisible by both p and q.

Ex. 36 is divisible by both 4 and 6, but it is not divisible by $(4 \times 6) = 24$, since 4 and 6 are not co-primes.

VI. MULTIPLICATION BY SHORT CUT METHODS

1. Multiplication By Distributive Law:

(i)
$$a \times (b + c) = a \times b + a \times c$$
 (ii) $a \times (b - c) = a \times b - a \times c$.

Ex. (i)
$$567958 \times 99999 = 567958 \times (100000 - 1)$$

(ii)
$$978 \times 184 + 978 \times 816 = 978 \times (184 + 816) = 978 \times 1000 = 978000$$
.

 Multiplication of a Number By 5ⁿ: Put n zeros to the right of the multiplicand and divide the number so formed by 2".

and divide the number so formed by
$$2^n$$
.

Ex. $975436 \times 625 = 975436 \times 5^4 = \frac{9754360000}{16} = 609647500$.

VII. BASIC FORMULAE | 01 of obligable is sedimin A = 01 ver verticalities

1.
$$(a + b)^2 = a^2 + b^2 + 2ab$$

1.
$$(a + b)^2 = a^2 + b^2 + 2ab$$
 2. $(a - b)^2 = a^2 + b^2 + 2ab$

3.
$$(a + b)^2 - (a - b)^2 = 4ab$$

3.
$$(a + b)^2 - (a - b)^2 = 4ab$$
 4. $(a + b)^2 + (a - b)^2 = 2(a^2 + b^2)$

$$(a^2-b^2)=(a+b)(a-b)$$
 and to more additions assume the forest size b

6.
$$(a + b + c)^2 = a^2 + b^2 + c^2 + 2 (ab + bc + ca)$$
 vd oldistyth vedmun a

7.
$$(a^3 + b^3) = (a + b)(a^2 - ab + b^2)$$
 8. $(a^3 - b^3) = (a - b)(a^2 + ab + b^2)$

8.
$$(a^3 - b^3) = (a - b)(a^2 + ab + b^2)$$

9.
$$(a^3 + b^3 + c^3 - 3abc) = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$$

10. If
$$a + b + c = 0$$
, then $a^3 + b^3 + c^3 = 3abc$, $a + 1 = (b + 8 + 7 + 8) = (a + b) = (a + b) + (a + b) = (a + b) + (a + b) = (a + b) + (a + b) + (a + b) + (a + b) = (a + b) + (a$

VIII. DIVISION ALGORITHM OR EUCLIDEAN ALGORITHM

If we divide a given number by another number, then :

Dividend = (Divisor × Quotient) + Remainder

IX. (i) $(x^n - a^n)$ is divisible by (x - a) for all values of n.

(ii) $(x^n - a^n)$ is divisible by (x + a) for all even values of n.

(iii) $(x^n + a^n)$ is divisible by (x + a) for all odd values of n.

X. PROGRESSION

A succession of numbers formed and arranged in a definite order according to certain definite rule, is called a progression.

1. Arithmetic Progression (A.P.): If each term of a progression differs from its preceding term by a constant, then such a progression is called an arithmetical progression. This constant difference is called the common difference of the A.P. An A.P. with first term a and common difference d is given by a, (a + d), (a + 2d), (a + 3d),

The nth term of this A.P. is given by $T_n = a (n-1) d$. The sum of n terms of this A.P.

$$S_n = \frac{n}{2} [2a + (n-1)d] = \frac{n}{2}$$
 (first term + last term).

SOME IMPORTANT RESULTS:

(i)
$$(1+2+3+...+n) = \frac{n(n+1)}{2}$$
, we obtain a manual new set made

(ii)
$$(1^2 + 2^2 + 3^2 + ... + n^2) = \frac{n(n+1)(2n+1)}{6}$$
.
(iii) $(1^3 + 2^3 + 3^3 + ... + n^3) = \frac{n^2(n+1)^2}{6}$.

(iii)
$$(1^3 + 2^3 + 3^3 + ... + n^3) = \frac{n^2 (n+1)^2}{4}$$
.

 Geometrical Progression (G.P.): A progression of numbers in which every term bears a constant ratio with its preceding term, is called a geometrical progression.
 The constant ratio is called the common ratio of the G.P.

A G.P. with first term a and common ratio r is :

In this G.P. $T_n = ar^{n-1}$.

Sum of the n terms, $S_n = \frac{a(1-r^n)}{(1-r)}$.

OBJECTIVE GENERAL ENGLISH

FOR COMPETITIONS

- R.S. Aggarwal
Vikas Aggarwal

- An ideal book for Bank P.O., S.B.I.P.O., R.B.I., M.A.T., Hotel Management, C.B.I., L.I.C.A.A.O., G.I.C.A.A.O., U.T.I., Section Officers, Railways, N.D.A., C.D.S. and other competitive examinations.
- Over 10,000 questions on Comprehension, Sentence and Passage Completion,
 Synonyms, Antonyms, Rearrangement, Spotting Errors, Sentence Correction,
 Idioms and Phrases, One-word Substitution etc.
- * Previous years' questions included.

SOLVED EXAMPLES

Ex. 1. Simplify: (i) 8888 + 888 + 88 + 8 (B.S.R.B. 1998) (ii) 11992 - 7823 - 456 (Bank Exam, 2003) Sol. (i) 8888 (ii) 11992 - 7823 - 456 = 11992 - (7823 + 456) 888 = 11992 - 8279 = 3713.88 7823 11992 8 + 456 8279 9872 8279 3713

Ex. 2. What value will replace the question mark in each of the following equations? (i) ? - 1936248 = 1635773 (ii) 8597 - ? = 7429 - 4358

Sol. (i) Let x - 1936248 = 1635773. Then, x = 1635773 + 1936248 = 3572021.

(ii) Let 8597 - x = 7429 - 4358. Then, x = (8597 + 4358) - 7429 = 12955 - 7429 = 5526.

Ex. 3. What could be the maximum value of Q in the following equation ?

Sol. We may analyse the given equation as shown:

Clearly, 2 + P + R + Q = 11.

So, the maximum value of Q can be (11 - 2) i.e., 9 (when P = 0, R = 0).

(Bank P.O. 1999)

(1) 2

5 P 9

3 R 7

2 Q 8

Ex. 4. Simplify: (i) 5793405 × 9999 (ii) 839478 × 625

Sol. (i) 5793405 × 9999 = 5793405 (10000 - 1) = 57934050000 - 5793405 = 57928256595.

(ii) $839478 \times 625 = 839478 \times 5^4 = \frac{8394780000}{16} = 524673750.$

Ex. 5. Evaluate: (i) 986 × 137 + 986 × 863 (ii) 983 × 207 - 983 × 107

Sol. (i) 986 × 137 + 986 × 863 = 986 × (137 + 863) = 986 × 1000 = 986000. (ii) 983 × 207 - 983 × 107 = 983 × (207 - 107) = 983 × 100 = 98300.

Ex. 6. Simplify: (i) 1605 × 1605 (ii) 1398 × 1398

Sol. (i) $1605 \times 1605 = (1605)^2 = (1600 + 5)^2 = (1600)^2 + (5)^2 + 2 \times 1600 \times 5$ = 2560000 + 25 + 16000 = 2576025.

(ii) $1398 \times 1398 = (1398)^2 = (1400 - 2)^2 = (1400)^2 + (2)^2 - 2 \times 1400 \times 2$ = 1960000 + 4 - 5600 = 1954404.

Ex. 7. Evaluate: (313 × 313 + 287 × 287).

Sol. $(a^2 + b^2) = \frac{1}{2}[(a + b)^2 + (a - b)^2]$

$$(313)^{2} + (287)^{2} = \frac{1}{2} [(313 + 287)^{2} + (313 - 287)^{2}] = \frac{1}{2} [(600)^{2} + (26)^{2}]$$

$$= \frac{1}{2} (360000 + 676) = 180338.$$

Ex. 8. Which of the following are prime numbers?

(i) 241 (ii) 337 (iii) 391 (iv) 571

Sol. (i) Clearly, $16 > \sqrt{241}$. Prime numbers less than 16 are 2, 3, 5, 7, 11, 13. 241 is not divisible by any one of them.

241 is a prime number.

- (ii) Clearly, 19 > √337. Prime numbers less than 19 are 2, 3, 5, 7, 11, 13, 17. 337 is not divisible by any one of them. the first of the 337 is a prime number all own test arb and humanitase
 - (iii) Clearly, 20 > √391. Prime numbers less than 20 are 2, 3, 5, 7, 11, 13, 17, 19. We find that 391 is divisible by 17. 391 is not prime.
 - (iv) Clearly, 24 > √571. Prime numbers less than 24 are 2, 3, 5, 7, 11, 13, 17, 19, 23. 571 is not divisible by any one of them. 571 is a prime number.

Ex. 9. Find the unit's digit in the product $(2467)^{153} \times (341)^{72}$.

Clearly, unit's digit in the given product - unit's digit in $7^{153} \times 1^{72}$.

Now, 74 gives unit digit 1.

7152 gives unit digit 1.

 7^{153} gives unit digit $(1 \times 7) = 7$. Also, 1^{72} gives unit digit 1. Hence, unit's digit in the product = $(7 \times 1) = 7$.

Ex. 10. Find the unit's digit in (264)¹⁰² + (264)¹⁰³. Required unit's digit = unit's digit in $(4)^{102} + (4)^{103}$.

Now, 42 gives unit digit 6.

(4)102 gives unit digit 6.

(4)103 gives unit digit of the product (6 × 4) i.e., 4.

Hence, unit's digit in $(264)^{102} + (264)^{103} = \text{unit's digit in } (6 + 4) = 0$.

Ex. 11. Find the total number of prime factors in the expression $(4)^{11} \times (7)^5 \times (11)^2$.

 $(4)^{11} \times (7)^5 \times (11)^2 = (2 \times 2)^{11} \times (7)^5 \times (11)^2 = 2^{11} \times 2^{11} \times 7^5 \times 11^2 = 2^{22} \times 7^5 \times 11^2.$

Total number of prime factors = (22 + 5 + 2) = 29.

Ex. 12. Simplify: (i) 896 × 896 - 204 × 204

(ii) 387 × 387 + 114 × 114 + 2 × 387 × 114

(iii) $81 \times 81 + 68 \times 68 - 2 \times 81 \times 68$

- (i) Given $\exp = (896)^2 (204)^2 = (896 + 204)(896 204) = 1100 \times 692 = 761200$. Sol.
- (ii) Given exp. = $(387)^2 + (114)^2 + 2 \times 387 \times 114$ At a second a part of $a^2 + b^2 + 2ab$, where a = 387, b = 114 $=(a+b)^2=(387+114)^2=(501)^2=251001.$
- (iii) Given exp. = $(81)^2 + (68)^2 2 \times 81 \times 68 = a^2 + b^2 2ab$, where a = 81, b = 68 $(a-b)^2 = (81-68)^2 = (13)^2 = 169$

Ex. 13. Which of the following numbers is divisible by 3? (ii) 5967013

(i) 541326

- (i) Sum of digits in 541326 = (5 + 4 + 1 + 3 + 2 + 6) = 21, which is divisible by 3. Sol. Hence, 541326 is divisible by 3.
 - (ii) Sum of digits in 5967013 = (5 + 9 + 6 + 7 + 0 + 1 + 3) = 31, which is not divisible

Hence, 5967013 is not divisible by 3.

Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9 ? ... Of all publicary salt redown minters over Both validable a

Sol. Let the missing digit be x.

Sum of digits = (1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x).

For (34 + x) to be divisible by 9, x must be replaced by 2.

Hence, the digit in place of * must be 2.

Ex. 15. Which of the following numbers is divisible by 4?

- (i) 67920594
- (ii) 618703572
- Sol. (i) The number formed by the last two digits in the given number is 94, which is not divisible by 4.

Hence, 67920594 is not divisible by 4.

(ii) The number formed by the last two digits in the given number is 72, which is divisible by 4.

Hence, 618703572 is divisible by 4.

Ex. 16. Which digits should come in place of * and \$ if the number 62684*\$ is divisible by both 8 and 5?

Sol. Since the given number is divisible by 5, so 0 or 5 must come in place of \$. But, a number ending with 5 is never divisible by 8. So, 0 will replace \$.

Now, the number formed by the last three digits is 4*0, which becomes divisible by 8, if * is replaced by 4.

Hence, digits in place of * and \$ are 4 and 0 respectively.

Ex. 17. Show that 4832718 is divisible by 11.

Sol. (Sum of digits at odd places) - (Sum of digits at even places)

= (8 + 7 + 3 + 4) - (1 + 2 + 8) = 11, which is divisible by 11.

Hence, 4832718 is divisible by 11.

Ex. 18. Is 52563744 divisible by 24?

Sol. $24 = 3 \times 8$, where 3 and 8 are co-primes.

The sum of the digits in the given number is 36, which is divisible by 3. So, the given number is divisible by 3.

The number formed by the last 3 digits of the given number is 744, which is divisible by 8. So, the given number is divisible by 8.

Thus, the given number is divisible by both 3 and 8, where 3 and 8 are co-primes. So, it is divisible by 3×8 , i.e., 24.

Ex. 19. What least number must be added to 3000 to obtain a number exactly divisible by 19?

Sol. On dividing 3000 by 19, we get 17 as remainder.

.. Number to be added = (19 - 17) = 2.

Ex. 20. What least number must be subtracted from 2000 to get a number exactly divisible by 17?

Sol. On dividing 2000 by 17, we get 11 as remainder.

Required number to be subtracted = 11.

Ex. 21. Find the number which is nearest to 3105 and is exactly divisible by 21.

Sol. On dividing 3105 by 21, we get 18 as remainder. The part to deploy all all

Number to be added to 3105 = (21 - 18) = 3, Hence, required number = 3105 + 3 = 3108.

Ex. 22. Find the smallest number of 6 digits which is exactly divisible by 111.

Sol. Smallest number of 6 digits is 100000.

On dividing 100000 by 111, we get 100 as remainder.

Number to be added = (111 - 100) = 11.

at 231347 Hence, required number = 100011 jump od hann sulps hand hold del ark

Ex. 23. On dividing 15968 by a certain number, the quotient is 89 and the remainder is 37. Find the divisor.

Sol. Divisor =
$$\frac{\text{Dividend} - \text{Remainder}}{\text{Quotient}} = \frac{15968 - 37}{89} = 179.$$

Ex. 24. A number when divided by 342 gives a remainder 47. When the same number is divided by 19, what would be the remainder?

Sol. On dividing the given number by 342, let k be the quotient and 47 as remainder. Then, number = $342k + 47 = (19 \times 18k + 19 \times 2 + 9) = 19 (18k + 2) + 9$.

The given number when divided by 19, gives (18k + 2) as quotient and 9 as remainder.

Ex. 25. A number being successively divided by 3, 5 and 8 leaves remainders 1, 4 and 7 respectively. Find the respective remainders if the order of divisors be reversed.

$$z = (8 \times 1 + 7) = 15; \ y = (5z + 4) = (5 \times 15 + 4) = 79; \ x = (3y + 1) = (3 \times 79 + 1) = 238.$$

:. Respective remainders are 6, 4, 2.

Ex. 26. Find the remainder when 231 is divided by 5.

Sol. 2^{10} = 1024. Unit digit of $2^{10} \times 2^{10} \times 2^{10}$ is 4 [as $4 \times 4 \times 4$ gives unit digit 4].

. Unit digit of 231 is 8.

Now, 8 when divided by 5, gives 3 as remainder.

Hence, 231 when divided by 5, gives 3 as remainder.

Ex. 27. How many numbers between 11 and 90 are divisible by 7?

Sol. The required numbers are 14, 21, 28, 35, ..., 77, 84. This is an A.P. with a = 14 and d = (21 - 14) = 7.

Let it contain n terms.

Then,
$$T_n = 84 \implies a + (n-1) d = 84$$

 $\implies 14 + (n-1) \times 7 = 84 \text{ or } n = 11.$

.. Required number of terms = 11.

Ex. 28. Find the sum of all odd numbers upto 100.

The given numbers are 1, 3, 5, 7, ..., 99.

This is an A.P. with a = 1 and d = 2.

Let it contain n terms. Then,

$$1 + (n - 1) \times 2 = 99$$
 or $n = 50$.

(600). Of Required sum =
$$\frac{n}{2}$$
 (first term + last term)
(600). Of LEE

Ex. 29. Find the sum of all 2 digit numbers divisible by 3.

Sol. All 2 digit numbers divisible by 3 are :

12, 51, 18, 21, ..., 99.

This is an A.P. with a = 12 and d = 3.

Let it contain n terms. Then,

$$12 + (n-1) \times 3 = 99$$
 or $n = 30$.

.. Required sum = $\frac{30}{2} \times (12 + 99) = 1665$.

Ex. 30. How many terms are there in 2, 4, 8, 16, ..., 1024?

Sol. Clearly 2, 4, 8, 16, ..., 1024 form a G.P. with a = 2 and r

Let the number of terms be n. Then,

$$2 \times 2^{n-1} = 1024$$
 or $2^{n-1} = 512 = 2^9$.

$$n-1=9 \text{ or } n=10.$$

Ex. 31. $2 + 2^2 + 2^3 + ... + 2^8 = ?$

Sol. Given series is a G.P. with a = 2, r = 2 and n = 8.

Sum =
$$\frac{a(r^n - 1)}{(r - 1)} = \frac{2 \times (2^8 - 1)}{(2 - 1)} = (2 \times 255) = 510.$$

EXERCISE 1

(OBJECTIVE TYPE QUESTIONS)

Directions: Mark (\mathcal{I}) against the correct answer: The difference between the local value and face value of 7 in the numeral 657903 is: (a) 0 (b) 7896 (c) 6993 (d) 903 The difference between the place values of 7 and 3 in the number 527435 is : (a) 4 (b) 5 (c) 45 (d) 6970 (R.R.B. 2001) 3. The sum of the smallest six-digit number and the greatest five-digit number is : (a) 199999 (b) 201110 (c) 211110 (d) 1099999 4. If the largest three-digit number is subtracted from the smallest five-digit number, then the remainder is: (S.S.C. 1998) (a) 1 (b) 9000 (c) 9001 (d) 90001 5. 5978 + 6134 + 7014 = ?(Bank P.O. 1999) (a) 16226 (b) 19126 (c) 19216 (d) 19226 6. 18265 + 2736 + 41328 = ? (Bank P.O. 2000) (a) 61329 (b) 62239 (c) 62319 (d) 62329 7. 39798 + 3798 + 378 = ? (Bank P.O. 2002) (a) 43576 (b) 43974 (c) 43984 (d) 49532 8. 9358 - 6014 + 3127 = ?(SIDBI, 2000) (a) 6381 (b) 6471 (c) 6561 (d) 6741 9. 9572 - 4018 - 2164 = ?(a) 3300 (b) 3390 (c) 3570 (d) 7718 10. 7589 - ? = 3434(Bank P.O. 2003) (a) 721 (b) 3246 (c) 4155 (d) 11023 11. 9548 + 7314 = 8362 + ? (S.B.I.P.O. 2000) (a) 8230 (b) 8410 (c) 8500 (d) 8600 12. 7845 - ? = 8461 - 3569 (a) 2593 (c) 3569 (d) None of these 13. 3578 + 5729 - ?486 = 5821 (b) 2 (c) 3 (d) None of these 14. If 6x43 - 46y9 = 1904, which of the following should come in place of x? (a) 4 ne = 1 m od = E v 11 - (c) 9 (b) 6 (d) Cannot be determined

(c) None of these

15.	What should be the n 5A9 - 7B2 + 9C6 =	naximum value of B in	the following equation	? (Bank P.O. 2000)
			(e) 7	(d) 9
	In the following num	(b) 6 , ? stands for which d	ligit 9	
10.	7 + 17 + 27 + 73 + 7	i, : stands for which o	ngit is a radional man	(M.D.A. 1990)
	(-) A	1 = 21? (b) 6	7-X 9	(3) 0
177	(a) 4	dw daidw gadmur Jaul	(c) 8	(a) 9
17.			(c) 273348	
10	(a) 273258 $360 \times 17 = ?$	(0) 273208	(c) 27304b	
18.	$360 \times 17 = ?$ (a) 5120	// F000	() (100	(R.B.I. 2003)
		(8) 5320	(c) 6120	(d) 6130
19.	587 × 999 = ? (a) 586413	ware in the following	And come in place of	(M.B.A. 1998)
			(c) 614823	(d) 615173
	$469157 \times 9999 = ?$		1. (6)	I (a)
		(b) 4686970743		
	(a) 796491244		(c) 875591244	
	The value of 112 × 8			(M.B.A. 2002)
		(b) 70000	(e) 76500	(d) 77200
	$935421 \times 625 = ?$			0 (n)
		(b) 584638125		
24.	$12846 \times 593 + 1284$	6 × 407 = ?	d up de 11 aanmud	11 4 4 2 1
	(a) 12846000	(b) 14203706	(c) 24038606	(d) 24064000
25.	1014 × 986 = ?			X - 1 - 11 - 12
			(c) 998904	(d) 999804
26.	(a) 998804 1307 × 1307 = ?			
	(a) 1601249	(b) 1607249	(c) 1701249	(d) 1708249
27.	1399 × 1399 = ?			
	(a) 1687401	(b) 1901541		
28.		L= 2) and to delite and		
		(b) 20072		
29.	217 × 217 + 183 × 1	183 ₀ = ? (a)	(Hotel M	anagement, 2002)
	(a) 79698		(c) 80698	
30.	12345679 × 72 is eq			(S.S.C. 2000)
77.77		(6) 88888888		
31.		d replace x in this mu		71 (a)
OZ.	White Hollisca bliotal	3 x 4	ambar of even prime	dS. The total m
		1 64		
2000		bus, 60 netwice 70 and	m of prime numbers	49. Find the se
		1216	(Hotel M	(anagement, 2000)
	(a) 0	· (b) 2	(c) 4	(d) 5
32.	A positive integer, wl	hich when added to 100	0, gives a sum which is	greater than when
	it is multiplied by 1	000. This positive inte	ger is : accould and to	(M.A.T. 2003)
	(a) 1	(b) 3 (a)	(c) 5	(d) 7
		ng can be a product of		
	(a) 1010024	(b) 991014	(c) 9124	(d) None of these

34.	A boy multiplie answer, both 9' be :	s 987 by a certa s are wrong but t	in number he other di	and obtains 559 gits are correct,	981 as his then the co	rrect answ	f in the ver will . 1997)
	(a) 553681	(b) 5551	81	(c) 555681		(d) 55658	
35.	When a certain smallest such	number is mult		3, the product co	nsists enti	rely of five (M.B.A.	es. The
	(a) 41625		5				
36.	The number of	digits of the sm	allost nur	hor which who	a manulation line	(d) 42735	
88	result consisting	g entirely of nir	ies, is :	802272 (8)			ves the
2003	(a) 3	(b) 5	353	(c) 6		(d) 8	
31.	- 95 ÷ 19 = ?	UZJE TO		H) (6) 5320 4	otel Man	agement,	2000)
(888)	(a) - 5	(b) - 4		(c) 0		(d) 5	
38.	What should co 1*5\$4 ÷ 148 =	ome in place of	mark in	the following eq	uation ?	(B.S.R.B.	1998)
	(a) 1	(b) 4	(c) 6	(d) 8	= 6666 ×	(e) None o	f these
39.	The sum of all natural number	l possible twò-d s when divided	igit numb	ers formed from of the original	three di	fferent on	e-digit
of thepe	(a) 18	(b) 22	100	(c) 36		(d) None o	
(2002)					se of 112		
40.	If n is a negati	ve number, then	which of	the following is	the least ?	MRA	2009)
	(a) 0	(b) - n	A	(c) 2n			2002)
41.	If x and y are n						true 2
	I. $x + y$ is pos	itive II. xy is	positive	III. $x - y$ is	neitivo	(MAT	2004)
	(a) I only	(b) II on	v	(c) III only	Jositive.	of) I and I	II and
42.	If $-1 \le x \le 2$	and $1 \le v \le 3$, the	hen loagt r	ossible value of	/9u 9ul	io .	II only
	(a) 0	(b) - 3	nen rease l	(c) - 4			
43.	If a and b are l		e which o		108	(d) - 5	
	(a) a + b	(b) a + b	± 1				
44.	Which of the fo			(c) ab	6157	(d) ab + 2	
	(a) Sum of two		s ouu :	(1) D:0	7,000	.v 9661	
	(c) Product of t			(b) Difference		id number	rs
45	For the integer	wo odd numbers	de 1.1.1	(d) None of t	hese		900
201	For the integer I. n is odd.	II. n ² is	men which	of the following			
	(a) I only			III. n^2 is even		D.M.R.C.	
				(c) I and II c	nly	d) I and II	II only
	The least prime			81008 EG1 -			
47		(b) 1		(c) 2: Impo	1 1 1 × 16	d) 3	
74.	What is the tot	at number of pr	me numbe	ers less than 70	? 88888		
	(a) 17	(6) 18	then soft	(c) 19	du redmb	d) 20	
	The total number		numbers	is:			
	(a) 0	(b) 1		(c) 2	(6	d) None of	these
49.	Find the sum of	prime numbers	lying bety	ween 60 and 75.		(R.R.B.	2000)
	(a) 199			(c) 211	(6	d) 272	
	The smallest th					(S.S.C. :	2000)
melw na	(a) 103	(b) 107		(c) 109	(6	d) None of	these
51.	Which one of th	e following is a	prime num	ber ? 1 .0001			
2000	(a) 161	(b) 221		(c) 373	(c	i) 437	
52.	The smallest val	ue of n, for whi	$ch \ 2n + 1$	is not a prime r	umber, is	sinidW J	
of these	(a) 3	(b) 4 (s)		(c) 5		f) None of	
		12		(Ho	tel Mana		

53.	The sum of three one of the number	prime numbers is 100.	If one of them exceed	s another by 36, then
	(a) 7		(c) 41	(d) 67
54.	There are four prin	me numbers written in a f the last three is 100	ascending order. The pr	oduct of the first three
	(a) 11	(b) 13	(c) 17	(d) 19
55.		ers between 400 and 6 (b) 100	00 begin with or end	with a digit of 5 ? (d) 120
56.		whole numbers from nd only once ?	(Hotel	many of these contain Management, 2003)
	(a) 32	(b) 34	(c) 35	(d) 36
57.	The unit's digit in	(b) 34 i the product 274 × 31	8 × 577 × 313 is:	
	01.2	(0) 0	107 9	1047 19
58.	The digit in unit's	s place of the product	81 × 82 × × 89 is :	1 III 30187 901 301
	(a) 0	(b) 2	(c) 6	(d) 8
59.		a the product (459×46)		
	(a) 3	(b) 5	(c) 7	(d) None of these
		n the product (3127)173		
	(a) 1	old) (b) 3 ons visuals	equer (c): 7; rithuseund)	and (d) 90miq
61.		the product $(7^{71} \times 6^5)$		
	(a) 1	(b) 2 galaxies a a	a = g(c) 4sdmun thib	61. 5 d 61(b):hree
62.	The digit in the	unit's place of the num		
	(a) 0	(b) 4	(c) 6	(d) 7 (n)
	miyib al Exerciti n	a - so that the number	ue must be ussigned t	(A.A.O. Exam, 2003)
63.	If x is an even nu	imber, then x , where	n is a positive integer	r, will always have :
			(b) 6 in the unit	
	(c) either 0 or 6	in the unit's place		
	Linconnector			Management, 1997)
64.		rime factors of $(3 \times 5)^{1}$		(n) 2
	(a) 47	10d (b) 60 (a) b one	(c) 72 model ad	(d) None of these
65.		\times 104 + 2 \times 397 \times 104	74, 4131, 8286, 0640	2183, 2343, 34
odi)	and the state of t	(b) 251001	(c) 260101	(d) 261001
66.		× 159 – 2 × 186 × 159		35. Which one of t
	(a) 729	(b) 1039	(c) 2019	(d) 7029
67.	$(475 + 425)^2 - 4$	× 475 × 425 is equal	to :	(4) 2000
		(b) 3160	(c) abuu	(d) 3600
		20z, the value of z is		(A) N (B)
Trans	(a) 70	(b) 120 98 - 3066	(e) 180	(d) None of these
69.	$(46)^2 - (?)^2 = 439$	8 - 3066	respectively uce:	(B.S.R.B. 1998) (d) 42
	(a) 16	(b) 28	(c) 36	(d) 42
70.	$(856 + 167)^2 + (868 + 167)^2 + (868 + 167)^2 + (868 + 168)^$	$\frac{56-167)^2}{7\times 167}$ is equal to (b) 2	llowing numbers is di	88. Which of the fi
	(a) 1	(b) 2	(c) 689	(d) 1023
	777	The first of the presence of	• 0 0 (d)	2 (a)
71.	(469 + 174)2 - (46	59-174) is equal to :		
9171	469×17	4 is equal to :		
	1-10	(b) A	(e) 905	(d) 643

72	The sum of first 45	natural numbers is :		
	(a) 1035	(b) 1280	(c) 2070	(d) 2140
73	. The sum of even nu	mbers between 1 and	31 is : (6)	77 (60)
	(a) 16	(b) 128	(c) 240	(d) 512
74.	. (51 + 52 + 53 +	+ 100) is equal to :		
	(a) 2525	(b) 2975	(c) 3225	(d) 3775
75.	How many numbers	between 200 and 600	are divisible by 4, 5 a	nd 6 ?
	(a) 5	(b) 6	(e) 7	(d) 8
76.	How many three-dig	it numbers are divisible	le by 6 in all ?	56. If we write
	(a) 149	(b) 150	(c) 151	(d) 166
77.	If $(1^2 + 2^2 + 3^2 + \dots)$	$+ 10^2$) = 385, then th	e value of $(2^2 + 4^2 + 6)$	32 + + 202) is :
	(a) 770	(b) 1155	(c) 1540	(d) (385 × 385)
78.	The value of (112 + 1	$12^2 + 13^2 + 14^2 + \dots$	20 ²) is:	58. The digit i
	(a) 385		(c) 2870	(d) 3255
79.	If 1*548 is divisible	by 3, which of the foll	owing digits can repla	ce * ?
		(b) 2		
	wanted (b)			(S.S.C. 1999)
80.	If the number 357+25	is divisible by both 3 a	and 5, then the missing	digits in the unit's
	place and the thousan	ndth place respectively	are: (Hotel Ma	nagement, 1997)
NINGS.	(a) 0, 6 L	(b) 5, 6	(c) 5, 4	(d) None of these
81.	5*2 is a three-digit n 6, the missing digit i	umber with * as a mis	ssing digit. If the num	ber is divisible by
	(a) 2	(b) 3 (a)	(c) 6	(d) 7
82.	What least value mu 8 ?	st be assigned to * so	that the number 6357	6*2 is divisible by
	(a) 1 sould a'time so		(c) 3 maig all me sets	
83.	What least value mus	st be given to * so that	the number 451*603	s exactly divisible
	(a) 2	(b) 5	(c) 7	(d) 8
			risible by 3 but not by 7347, 8115, 9276	9 ? Th tall THE X THE LAB
	Which one of the follo	A STATE OF THE PARTY OF THE PAR	(c) 7	(d) None of these
	(a) 235641	(b) 245642		(C.D.S. 2003)
86.	What least value mus			(d) 415624 5×6 is divisible by
	(a) 1	(b) 2	(c) 3	(d) 5
87.	A number 476**0 is d and tenth place respe	ivisible by both 3 and 3 ctively are :		
	(a) 7, 4	(b) 7, 5	(c) 8, 5	(d) None of these
88.	Which of the following	g numbers is divisible		1856 - 167
	(a) 639	(b) 2079	(c) 3791	(d) 37911
89.	The value of P, when	4864 × 9P2 is divisible		(10)
	(a) 2	(b) 5	(c) 8 ATT - 9340 - 40	(d) None of these
90.	Which of the following	numbers is exactly d	ivisible by 24 ?	(M.B.A. 1998)
	(a) 35718	(b) 63810	(c) 537804	(d) 3125736

91.	If the number 425 numbers should re-	73* is completely div place the asterisk?	risible by 72,	then which	of the fo	llowing
	(a) 4	(b) 5				
92		ring numbers is exactl				.801
	(a) 114345	(b) 135792	(c) 91346		(d) 35724	
93.		d by * and \$ in 34222	13*\$ so that th			by 99,
	(a) 1, 9	(b) 3, 7	(c) 4, 6		(d) 5, 5	
94.	If x and y are the to by 80, then $x + y$ i	two digits of the numb	er 653xy such	that this n	umber is d	livisible
	(a) 2	(b) 3	(c) 4		(d) 6	
95.		following numbers are			I vedmus	
		, 968, 2178, 5184, 633		(Hotel Ma	nagement	, 2002)
	(a) 4	(b) 5	(c) 6	t-number i	(d) 7	151
o.c	6897 is divisible by		tell age		(I.A.M	. 2002)
80.	(a) 11 only	(a) 30	(b) 19 onl	v	1,1,40	.4
	and the first second of Fell community and the	prostrop exist to history		r 11 nor 19	The greate	
200	(c) both 11 and 19					tween 1
97.	and 17 ?	ving numbers is exactl	Ladden ad at			dir
	(a) 345345	(b) 440440	(c) 51051	0	(d) 5155	
98.	325325 is a six-dig	git number. It is divis	ible by :		Thousand this I	. 1998)
	(a) 7 only	(b) 11 only	(c) 13 on	y	(d) all 7, 1	
99.	The number 31131	1311311311311311 is	: 1.100		(C.D.S	5. 2003)
	(a) divisible by 3 l	out not by 11	(b) divisit	ole by 11 be	it not by	ana B
	(c) divisible by bot		(d) neithe	r divisible	by 3 nor b	y 11
100.	There is one numb	er which is formed by ver is always divisible				
	(a) 7 only	(b) 11 only	(c) 13 on		(d) All o	
101.	A 4-digit number is	formed by repeating a m is exactly divisible	a 2-digit numb	er such as 2	525, 3232	etc. Any
	(a) 7		(b) 11			
	(c) 13		(d) small	est 3-digit	prime num	ber
102.	A six-digit number	is formed by repeating number of this form	g a three-digit is always exa	number; fo	r example, le by :	256256
		(b) 11 only			(d) 1001	
103.	The largest natura	l number which exactly	y divides the p	roduct of an	y four con	secutive
			(c) 24		(d) 120	
	The largest natura	al number by which the s divisible, is :	ne product of t	hree consec	utive even	natural
	(a) 16	(b) 24	(c) 48		(d) 96	
105		consecutive odd numb		divisible by		
100.	I O	II. 3	III 5	mount to m	IV. 6	
	(a) Only I	(b) Only II	(c) Only		(d) Only	
	(a) Only I	(b) Only II	(c) Only	(Hotel Ma	100 mm	A CONTRACTOR
106.		ween the squares of tw	o consecutive o	dd integers	is always	
	Value of the late	(L) B	(e) 7		(d) 8	1

(Hotel Management, 2003)

107	A number is multip	lied by 11 and 11 is ac the smallest original	ded to the product. If	the resulting number
	(a) 12	(b) 22	(c) 26	(d) 53
108	. The sum of the digit	s of a 3-digit number i		number. The resulting
			(b) divisible by 9	
	(c) divisible neither	by 6 nor by 9	(d) divisible by b	oth 6 and 0
109.	If x and y are positi	ive integers such that Iso be divisible by 11	(3x + 7y) is a multiple	e of 11 then which of
A.	(a) 4x + 6y	(b) x + y + 4	(c) 9x + 4y	(d) 4r = 9v
110.	A 3-digit number 4 number 1357, which	a3 is added to anothe h is divisible by 11. T	r 3-digit number 984	to give the four-digit
	(a) 10	(b) 11	(c) 12	(d) 15
111.	The largest number (3^5-3) ,, (n^5-n)	that exactly divides ea	ich number of the sequ	sence (1^5-1) , (2^5-2) ,
	(a) 1	(b) 15	(c) 30	(d) 120
112.	divisible is :	by which the product		ultiples of 3 is always (S.S.C. 2000)
	(a) 54	(b) 81	(c) 162	(d) 243
113.	The smallest number	er to be added to 100	0 so that 45 divides	the sum exactly is :
	(a) 10	(b) 20	(c) 35	(d) 80
114.	The smallest number 11 is :	r that must be added	to 803642 in order to	obtain a multiple of (C.B.L. 2003)
	(a) 1	(b) 4	(e) 7	(d) 9
115.	by 77 ?	ng numbers should be		
	(a) 5	(b) 7	(c) 8	100, The (b) me
116.	The least number w by 9 is :	hich must be subtrac	ted from 6709 to mak	te it exactly divisible (C.B.I. 1998)
	(a) 2	(b) 3	(c) 4	(d) 5 101
117.	What least number is divisible by 15?	must be subtracted fr	om 427398 so that th	e remaining number (Bank P.O. 2000)
	(a) 3		(c) 1?	(d) 16
118.	What least number : divisible by 97 ?	must be subtracted fr	om 13294 so that the	remainder is exactly
			(c) 4	(d) 5
119.	one of the following	numbers is multiplied pairs of numbers sati	l by 5, the product is disfies the above condi-	ivisible by 15. Which
	(a) 240, 335	(b) 250, 341	(c) 245, 342	(d) None of these
			(Hotel 1	Ianagement, 1998)
120.	The least number by 112, is:	which 72 must be m	ultiplied in order to p	roduce a multiple of
	(a) 6	(b) 12		(d) 18
121.	The number of times	99 is subtracted from	n 1111 so that the ren	mainder is less than (S.C.R.A. 1996)
	(a) 10	111 44	(c) 12	(d) 13
122.		ich is nearest to 457		le by 11
	(a) 450	(b) 451	(c) 460	(d) 462

123.	The number ne	earest to 99547 which is	exactly divisible by 6	87 is : a mad % .001
	(a) 98928	(b) 99479	(c) 99615	(d) 100166
124.	What largest n	umber of five digits is d	ivisible by 99 ?	
	(a) 99909	(b) 99981	(c) 99990	(d) 99999
125.	The smallest n	umber of five digits exac	tly divisible by 476 i	s: (S.S.C. 2004)
	(a) 10000	(b) 10472	(c) 10476	(d) 47600
126.	On dividing a number is:	number by 999, the quo	tient is 366 and the	remainder is 103. The
	(a) 364724	(b) 365387	(c) 365737	(d) 366757
127.	On dividing 41 The divisor is	50 by a certain number,	the quotient is 55 an	
	(a) 65	(b) 70	(c) 75	(d) 80
128.	A number whe	n divided by the sum of a d 30 as the remainder. T	555 and 445 gives two he number is :	times their difference (S.S.C. 2000)
	(a) 1220	(b) 1250	(c) 22030	(d) 220030
129.	A four-digit nu largest such no	mber divisible by 7 becom umber is :	nes divisible by 3, whe	n 10 is added to it. The
	(a) 9947	(b) 9987	(c) 9989	(d) 9996
	A number when	n divided by 114 leaves the e remainder will be :	e remainder 21. If the	same number is divided (R.R.B. 2003)
	(a) 1	(b) 2	(c) 7	(d) 21
131.	A number who	en divided by 296 gives then the remainder will	a remainder 75. Whe	n the same number is (C.B.I. 2003)
1965	(a) 1	(b) 2	(c) 8 1 mdmm	alor (d) 11 11 24 1
132.	A number whe	n divided by 119 leaves 19 nainder obtained is :	as remainder. If the	
	(a) 2		ZMA(c) 7	(d) 10
133.	A number whe	n divided by 899 gives a nainder will be :	remainder 63. If the	same number is divided
		(b) 4		(d) 10 g
134.	When a numb	er is divided by 31, the what will be the remain	remainder is 29. Who	en the same number is
	(a) 11	(b) 13	(c) 15	(d) Datà inadequate
135.	When a numb	er is divided by 13, the the remainder is 9. Wha	remainder is 11. Who	en the same number is
	(a) 339	(b) 349	(e) 369	(d) Data inadequate
136.	In a division s the remainder	um, the divisor is 10 time is 46, the dividend is :		
	(a) 4236	(b) 4306	(c) 4336	(d) 5336
137.	The difference the smaller or	between two numbers is ie, the quotient is 6 and	1365. When the larg the remainder is 15.	er number is divided by The smaller number is:
				(A.A.O. Exam, 2003)
	(a) 240	(b) 270	(c) 295	(d) 360
138.	In doing a div instead of 21.	ision of a question with z The quotient obtained by	ero remainder, a cand y him was 35. The co	tidate took 12 as divisor errect quotient is :
	(a) 0	(b) 12		(S.S.C. 2003)

145. (b) 146. (a)

139.	When by 4	n is c	livide		4, th		aind	er is 3	. Wi	at is	the r	emair	der	when	2n is	divided	
	(a) I									(e) 3				(d) (2	Same	
140.	A num	mber o	when	divid	led l	y 6 1	eave	s a re	mai	nder :	3. W	hen t	he s	quare	of th	ie same	
	(a) 0	C1 18	aivid	ed by	(b)		nain	der is	217							2000)	
141.	Anun	nber w	hen	divide	d su	cessi	vely by 5	by 4 a	nd 5	c) 2 leave: en th	s ren	nainde	ers 1	(d) 3 and 4	resp	ectively.	
	(a) 1,	2				2, 3				c) 3,		pecu		(d) 4			
														(5	s.s.c	. 2003)	
142.	respec	tively	was 2, 3	divide and	d su	ccessi ne nu	wely mber	in or	rder	by 4,	5 a	nd 6.	The			rs were L 1997)	
	(a) 21				(b)					c) 95	_			(d) 1			
143.	4, 8 a	nd 12.	If h	e had	divi	ively ded t	by 5 he m	, 9 an umber	d 13 by	(facto 585, t	rs of he r	585) a emain	and g	ot the would	rem have	ion. He ainders been :	
	(4) 24	0.0 0.0			(0)	144			(c) 29;				(d) 5			
144														(N.	I.F.T	. 1997)	
144.	A nun	aber w	hen	divide	ed by	3 les	aves	a rem	ainc	ler 1.	Whe	n the	quot	tient i	s div	ided by	
	by 6 ?	Jery CD	a rei	mannu	Cr 1,	wna	t wii	1 De t						numbe		divided	
	(a) 2				(b) a				0	c) 4				(d) 5	100		
145.	461 +	462 +	463	464 1	s div	risible	by	: Santri						((C.B.I	. 2003)	
	(a) 3				(b)	10			6	2) 11				(d) 1	3		
146.	If x is	a wh	ole n	umbe	r, th	en x2	$(x^2 .$	- 1) is	alv	vays d	livisi	ble by	7:			. 1998)	
	(a) 12				(b) :	24			(6) 12	- x	wib n				le of 12	
100%	ACTION D	70 no	1159	60							00.3		107		70		
						A	NS	WEF	RS								
	1. (c)	2	(d)	3	(a)	4	(c)	5	(b)		(d)		(4)	ad 6			
	9. (b)		(c)		(c)		(d)		(c)		(e)		(b)		(b) (c)		О,
	17. (a)						(c)		(c)		(b)		(6)		(a)		
	25. (d)				(d)		(6)		(b)		(6)		(a)		(a)		8
	33. (b)		(c)		(d)		(e)		(a)		(a)		(b)	40.			
rede	41. (b)	42.	(c)		(a)		(c)		(c)		(c)		(c)	48.		1000	
THEI A	49. (d)	50.	(d)			52.			(d)		-			56.	14-14		
	57. (a)				(c)				(c)	62.			(b)	64.			
	65. (b)				(a)		(d)		(b)		(b)		(b)	72.			
	73. (c)		(d)		(b)		(b)		(c)		(b)		(a)				
	81. (a)		(e)		(d)		(b)		(d)		(c)		(c)	88.			
	89. (d)		(d)	91.			(a)		(a)		(a)		(a)	96.			
	97. (c)		(d)	99.		100.		101.		102.		103.					
	05. (b)	106.		107.		108.		109.		110.				104.			
	13. (c)	114.		115.		116.		117.		118.		111.		112.			
	21. (b)	122.		123.		124.		125.		126.		127.		120.			
	29. (c)	130.		131.		132.						135.		128. 136.			
	37. (b)	138.		139.		140.		141.		142.				144			

SOLUTIONS

- (Local Value) (Face Value) = (7000 7) = 6993.
- (Place Value of 7) (Place Value of 3) = (7000 30) = 6970.
 - Required Sum = (100000 + 99999) = 199999.
 - Required Remainder = (10000 999) = 9001.
 - 5. 5978 + 6134 + 7014 = 19126.
 - 18265 + 2736 + 41328 = 62329.
- 7. 39798 + 3798 + 378 = 43974.
 - 8. 9358 6014 + 3127 = (9358 + 3127) 6014 = (12485 6014) = 6471.
 - 9. 9572 4018 2164 = 9572 (4018 + 2164) = (9572 6182) = 3390.
 - 10. Let 7589 x = 3434. Then, x = (7589 3434) = 4155.
 - 11. Let 9548 + 7314 = 8362 + x. Then, $16862 = 8362 + x \Leftrightarrow x = (16862 8362) = 8500$.
 - 12. Let 7845 x = 8461 3569. Then, $7845 x = 4892 \iff x = (7845 4892) = 2953$.
 - 13. Let 3578 + 5729 x486 = 5821.

Then, $9307 - x486 = 5821 \iff x486 = (9307 - 5821) \iff x486 = 3486 \iff x = 3.$

14.
$$6x43 - 46y9 = 1904 \Leftrightarrow 6x43 = 1904 + 46y9$$
 [1 + y = 4 \Leftrightarrow y = 3]
 $\Leftrightarrow 6x43 = 1904 + 4639 = 6543$ [: y = 3]
 $\Leftrightarrow x = 5$.

- 15. We may represent the given sum, as shown.

 ∴ 1 + A + C B = 12 ⇔ A + C B = 11.

 Giving maximum values to A and C, i.e.,

 A = 9 and C = 9, we get B = 7.

 1 1

 5 A 9

 7 B 2

 8 2 3
- 16. Let x + (10 + x) + (20 + x) + (10x + 3) + (10x + 1) = 200 + 10 + x. Then, $22x = 176 \Leftrightarrow x = 8$.
- 17. $5358 \times 51 = 5358 \times (50 + 1) = (5358 \times 50) + (5358 \times 1) = (267900 + 5358) = 273258$
 - 18. $360 \times 17 = 360 \times (20 3) = (360 \times 20) (360 \times 3) = (7200 1080) = 6120$.
 - 19. $587 \times 999 = 587 \times (1000 1) = (587 \times 1000) (587 \times 1) = (587000 587) = 586413$
 - 20. 469157 × 9999 = 469157 × (10000 1) = (469157 × 10000) (469157 × 1) = (4691570000 - 469157) = 4691100843.
 - 21. 8756 × 99999 = 8756 × (100000 1) = (8756 × 100000) (8756 × 1) = (875600000 - 8756) = 875591244.
 - 22. $(112 \times 5^4) = \frac{1120000}{2^4}$ (see the rule) = $\frac{1120000}{16} = 70000$.
 - 23. $935421 \times 625 = 935421 \times 5^4 = \frac{9354210000}{2^4}$ (see the rule) = $\frac{9354210000}{16} = 584638125$.
 - 24. 12846 × 593 + 12846 × 407 12846 × (593 + 407) = 12846 × 1000 = 12846000.
 - 25. $(1014 \times 986) = (1000 + 14) \times (1000 14) = (1000)^2 (14)^2 = 1000000 196 = 999804$.
 - **26.** $(1307 \times 1307) = (1307)^2 = (1300 + 7)^2 = (1690000 + 49 + 18200) = 1708249.$
 - 27. $(1399 \times 1399) = (1399)^2 = (1400 1)^2 = (1400)^2 + 1^2 2 \times 1400 \times 1$ = 1960000 + 1 - 2800 = 1960001 - 2800 = 1957201.

28.
$$(106 \times 106 + 94 \times 94) = \frac{1}{2} \times 2 (a^2 + b^2) = \frac{1}{2} [(a + b)^2 + (a - b)^2]$$

 $= \frac{1}{2} \cdot [(106 + 94)^2 + (106 - 94)^2] = \frac{1}{2} \cdot [(200)^2 + (12)^2]$
 $= \frac{1}{2} (40000 + 144) = \frac{1}{2} (40144) = 20072.$

29.
$$(217 \times 217 + 183 \times 183) = \frac{1}{2} \times 2(a^2 + b^2) = \frac{1}{2} \cdot [(a + b)^2 + (a - b)^2]$$

$$= \frac{1}{2} \cdot [(217 + 183)^2 + (217 - 183)^2] = \frac{1}{2} \cdot [(400)^2 + (34)^2]$$

$$= \frac{1}{2} \cdot [(160000 + 1156) = \frac{161156}{2} = 80578.$$

30. 12345679 × 72 = 12345679 × (100 - 28) = 1234567900 - (12345679 × 28) = 1234567900 - [12345679 × (30 - 2)] = 1234567900 - 370370370 + 24691358 = 8888888888.

31.
$$(300 + 10x + 4) \times 4 = 1200 + 40x + 16 = (12 \times 100) + (4x + 1) \times 10 + 6$$

 $\therefore 4x + 1 = 1 \implies 4x = 0 \implies x = 0.$

- 32. (1000 + N) > (1000N). Clearly, N = 1.
- When two 3-digit numbers are multiplied, the product must contain 5 or 6 digits.
 So, the required number is 991014.
- 34. $987 = 3 \times 7 \times 47$.

So, required number must be divisible by each one of 3, 7, 47.

None of the numbers in (a) and (b) are divisible by 3, while (d) is not divisible by 7.

.. Correct answer is (c).

By hit and trial, we find that a number exactly divisible by 13 and consisting entirely
of fives is 555555.

On dividing 555555 by 13, we get 42735 as quotient.

- .. Required number = 42735.
- 36. By hit and trial, we find that a number exactly divisible by 7 and consisting entirely of nines is 999999. Number of digits in it = 6.

37.
$$\frac{-95}{19} = -5$$

38. Let
$$\frac{x}{148} = 78$$
. Then, $x = (148 \times 78) = 11544$.

.: Required digit = 1.

39. Let the one-digit numbers be x, y, z.

Sum of all possible 2-digit numbers

$$= (10x + y) + (10x + z) + (10y + z) + (10y + z) + (10z + x) + (10z + y) = 22(x + y + z)$$

- Sum of all possible 2-digit numbers when divided by sum of one-digit numbers gives 22.
- **40.** $n < 0 \implies 2n < 0, -n > 0 \text{ and } n^2 > 0.$
 - ∴ Least of 2n, 0, n and n² is 2n.
- 41. x < 0, y < 0 ⇒ (x + y) < 0, xy > 0 and x y may be + ve or ve.
 ∴ II is always true.

42.
$$y \ge 1 \implies 2y \ge 2$$

 $x \le 2 \implies -3x \ge -6$ $\implies (2y - 3x) \ge -4$.

- 43. Sum of two odd numbers is always even. The line and I all the line and line as
- 44. Product of two odd numbers is always odd.
 - 45. n^3 is odd \Rightarrow n is odd and n^2 is odd.
 - 46. The least prime number is 2.
 - Prime numbers less than 70 are:
 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61 and 67.
 Their number is 19.
 - 48. There is only one even prime number, namely 2.
 - 49. Required sum = (61 + 67 + 71 + 73) = 272.
 - 50. 100 is divisible by 2, so it is not prime.
 101 is not divisible by any of the numbers 2, 3, 5, 7. So, it is prime.
 Hence, the smallest 3-digit prime number is 101.
- 51. 161 is divisible by 7. So, it is not prime. 221 is divisible by 13. So, it is not prime. Now, 20 > √373. Prime numbers less than 20 are 2, 3, 5, 7, 11, 13, 17, 19. And, 373 is not divisible by any of them. So, 373 is prime. Since 437 is divisible by 19, so it is not prime.
 - 52. $(2 \times 1 + 1) = 3$, $(2 \times 2 + 1) = 5$, $(2 \times 3 + 1) = 7$, $(2 \times 4 + 1) = 9$, which is not prime. $\therefore n = 4$.
 - 53. $x + (x + 36) + y = 100 \Leftrightarrow 2x + y = 64$.
 - .. y must be even prime, which is 2.
 - $2x + 2 = 64 \implies x = 31.$

Third prime number = (x + 36) = (31 + 36) - 67.

- 54. Let the given prime numbers be a, b, c, d. Then, abc = 385 and bcd = 1001.
 - $\frac{abc}{bcd} = \frac{385}{1001} \Leftrightarrow \frac{a}{d} = \frac{5}{13}$. So, a = 5, d = 13.
- Numbers satisfying the given conditions are 405, 415, 425, 435, 445, 455, 465, 475, 485, 495 and 500 to 599.

Number of such numbers = (10 + 100) = 110.

- Required numbers from 200 to 300 are 207, 217, 227, 237, 247, 257, 267, 270, 271, 272, 273, 274, 275, 276, 278, 279, 287, 297. Their number is 18.
 Similarly, such numbers between 300 and 400 are also 18 in number.
 - .. Total number of such numbers = 36.
- Required digit = Unit digit in (4 × 8 × 7 × 3) = 2.
- 58. Required digit = Unit digit in $(1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9) = 0$.
- 59. (9 × 6 × 4) = 216. In order to obtain 2 at the unit place, we must multiply 216 by 2 or 7.
 - . Of the given numbers, we have 7.
- Unit digit in (3127)¹⁷³ = Unit digit in (7)¹⁷³. Now, 7⁴ gives unit digit 1.
 ∴ (7)¹⁷³ = (7⁴)⁴³ × 7¹. Thus, (7)¹⁷³ gives unit digit 7.
- 61. Unit digit in 74 is 1.
 - ∴ Unit digit in 7⁶⁸ is 1.
 Unit digit in 7⁷¹ is 3. [1 × 7 × 7 × 7 gives unit digit 3]
 Again, every power of 6 will give unit digit 6.

 - ... Unit digit in 364 is 1. Unit digit in 365 is 3.
 - .. Unit digit in (771 × 659 × 365) = Unit digit in (3 × 6 × 3) = 4.

- 62. Unit digit in 74 is 1. So, unit digit in 792 is 1. In appropriate the court is court in c
 - .. Unit digit in 795 is 3. Unit digit in 34 is 1.
- bloomer [ValUnit digit in $1 \times 7 \times 7 \times 7$ is 3]
- Unit digit in 356 is 1.
- Unit digit in 358 is 9.
- .. Unit digit in (795 358) = (13 9) = 4.
- 63. $x^{4n} = (2^4)^n$ or $(4^4)^n$ or $(6^4)^n$ or $(8^4)_n$. Clearly, the unit digit in each case is 6.
- **64.** $(3 \times 5)^{12} \times (2 \times 7)^{10} \times (10)^{25} = (3 \times 5)^{12} \times (2 \times 7)^{10} \times (2 \times 5)^{25}$ $= 3^{12} \times 5^{12} \times 2^{10} \times 7^{10} \times 2^{25} \times 5^{25} = 2^{35} \times 3^{12} \times 5^{37} \times 7^{10}$ Total number of prime factors = (35 + 12 + 37 + 10) = 94.
- **65.** Given Exp. = $a^2 + b^2 + 2ab$, where a = 397 and b = 104 and additional all 101. $= (a+b)^2 = (397+104)^2 = (501)^2 = (500+1)^2 = (500)^2 + 1^2 + 2 \times 500 \times 1$ = 250000 + 1 + 1000 = 251001.
- **66.** Given Exp. = $a^2 + b^2 2ab$, where a = 186 and b = 159 $=(a-b)^2=(186-159)^2=(27)^2$ $=(20+7)^2=(20)^2+7^2+2\times20\times7=400+49+280=729.$
- 67. Given Exp. = $(a + b)^2 4ab$, where a = 475 and b = 425 $= (a + b)^2 = (475 - 425)^2 = (50)^2 = 2500.$
- **68.** $20z = (64)^2 (36)^2 \Leftrightarrow 20z = (64 + 36) (64 36)$

$$\Rightarrow 20z - 100 \times 28 \Leftrightarrow z = \frac{100 \times 28}{20} = 140.$$

- **69.** Let $(46)^2 x^2 = 4398 3066$. Let $(46)^2 - x^2 = 4398 - 3066$. Then, $(46)^2 - x^2 = 1332 \iff x^2 = (46)^2 - 1332 = (2116 - 1332)$ \Leftrightarrow $x^2 = 784 \Leftrightarrow x = \sqrt{784} = 28.$
- 70. Given Exp. = $\frac{(a+b)^2 + (a-b)^2}{(a^2+b^2)} = \frac{2(a^2+b^2)}{(a^2+b^2)} = 2.$
 - 71. Given Exp. = $\frac{(a+b)^2 (a-b)^2}{ab} = \frac{4ab}{ab} = 4$.
 - 72. We know that : $(1+2+3+....+n) = \frac{n(n+1)}{2}$

$$\therefore (1+2+3+.....+45) = \left(\frac{45\times46}{2}\right) = 1035.$$

- 73. Required numbers are 2, 4, 6, ..., 30. This is an A.P. containing 15 terms,
- $\therefore \text{ Required sum} = \frac{n}{2} \left(\text{first term} + \text{last term} \right) = \frac{15}{2} (2 + 30) = 240.$

74.
$$(51 + 52 + 53 + \dots + 100)$$

$$= (1 + 2 = 3 + \dots + 100) - (1 + 2 + 3 + \dots + 50)$$

$$= \left(\frac{100 \times 101}{2} - \frac{50 \times 51}{2}\right) = (5050 - 1275) = 3775.$$

25

- Every such number must be divisible by L.C.M. of 4, 5, 6, i.e. 60.
 Such numbers are 240, 300, 360, 420, 480, 540.
 Clearly, there are 6 such numbers.
- 76. Required numbers are 102, 108, 114,, 996.
 This is an A.P. with α = 102 and d = 6.
 Let the number of its terms be n. Then,

$$a + (n - 1) d = 996 \Leftrightarrow 102 + (n - 1) \times 6 = 996 \Leftrightarrow n = 150.$$

77.
$$2^2 + 4^2 + \dots + 20^2 = (1 \times 2)^2 + (2 \times 2)^2 + (2 \times 3)^2 + \dots + (2 \times 10)^2$$

 $= 2^2 \times 1^2 + 2^2 \times 2^2 + 2^2 \times 3^2 + \dots + 2^2 \times 10^2$
 $= 2^2 \left[1^2 + 2^2 + 3^2 + \dots + 10^2\right]$
 $= 4 \times \frac{10 \times 11 \times 21}{6} = 4 \times 385 = 1540.$

$$= 4 \times \frac{}{6} = 4 \times 385 = 1540.$$
78. $11^2 + 12^2 + 13^2 + \dots + 20^2$

$$= (1^2 + 2^2 + 3^2 + \dots + 20^2) - (1^2 + 2^2 + 3^2 + \dots + 10^2)$$

$$= \left[\frac{20(20+1)(40+1)}{6} - \frac{10(10+1)(20+1)}{6} \right] = 2485.$$

- 1 + x + 5 + 4 + 8 = (18 + x). Clearly, when x = 0, then sum of digits is divisible by 3.
- 80. Let the required number be 357y25x.

Then, for divisibility by 5, we must have x = 0 or x = 5.

Case I. When x = 0.

Then, sum of digits = (22 + y). For divisibility by 3, (22 + y) must be divisible by 3. $\therefore y = 2 \text{ or } 5 \text{ or } 8$.

.. Numbers are (0, 2) or (0, 5) or (0, 8).

Case II. When x = 5.

Then, sum of digits = (27 + y). For divisibility by 3, we must have y = 0 or 3 or 6 or 9.

Numbers are (5, 0) or (5, 3) or (5, 6) or (5, 9).

So, correct answer is (b).

- 81. Let the number be 5x2. Clearly, it is divisible by 2.
 Now, 5 + x + 2 = (7 + x) must be divisible by 3. So, x = 2.
- 82. The given number is divisible by 8, if the number 6x2 is divisible by 8.
 Clearly, the least value of x is 3.
- 83. (4+5+1+x+6+0+3) = 19+x. Clearly, x = 8.
- 84. Taking the sum of the digits, we have:
 S₁ = 9, S₂ = 12, S₃ = 18, S₄ = 9, S₅ = 21, S₆ = 12, S₇ = 18, S₈ = 21, S₉ = 15, S₁₀ = 24.
 Clearly, S₂, S₅, S₆, S₈, S₉, S₁₀ are all divisible by 3 but not by 9.
 So, the number of required numbers = 6.
 - 85. (a) (1 + 6 + 3) (2 + 5 + 4) = 1 (No) (b) (2 + 6 + 4) (4 + 5 + 2) = 1 (No) (c) (4 + 6 + 1) (2 + 5 + 3) = 1 (No) (d) (4 + 6 + 1) (2 + 5 + 4) = 0 (Yes).
 - 86. (6+5+3+8)-(x+2+6)=(14-x). Now, (14-x) is divisible by 11, when x=3.
 - 87. (4 + 7 + 6 + x + y + 0) = [17 + (x + y)]. Also, (0 + x + 7) (y + 6 + 4) = (x y 3).
 Now, [17 + (x + y)] must be divisible by 3 and (x y 3) is either 0 or divisible by 11.
 Clearly, x = 8 and y = 5 satisfy both the conditions.
 - 88. (α) 639 is not divisible by 7.
- (b) 2079 is divisible by 3, 7, 9 and 11.
- (c) 3791 is not divisible by 3.
- (d) 37911 is not divisible by 9.
- .. Correct answer is (b).

- 89. Since 4864 is divisible by 4, so 9P2 must be divisible by 3.
 - :. (11 + P) must be divisible by 3.
 - : Least value of P is 1.
- 90. The required number should be divisible by 3 and 8.
 - (a) 718 is not divisible by 8.
- (b) 810 is not divisible by 8
- (c) 804 is not divisible by 8.
- Let the number of the between in a There (d) Sum of digits = 27, which is divisible by 3. And, 736 is divisible by 8. So, given number is divisible by 3 and 8.
- 91. The given number should be divisible by both 9 and 8.
 - (4 + 2 + 5 + 7 + 3 + x) = (21 + x) is divisible by 9 and (73x) is divisible by 8. . x = 6.
- 92. The required number should be divisible by both 9 and 11. Clearly, 114345 is divisible by both 9 and 11. So, it is divisible by 99.
- 93. The given number will be divisible by 99 if it is divisible by both 9 and 11. Now, (3+4+2+2+2+1+3+x+y) = 17 + (x+y) must be divisible by 9. Also, (y + 3 + 2 + 2 + 3) - (x + 1 + 2 + 4) = (y - x + 3) must be 0 or divisible by 11. x + y = 10 and y - x + 3 = 0.
- Clearly, x = 1, y = 9 satisfy both these equations.
 - 94. Since 653xy is divisible by 5 as well as 2, so y = 0. Now, 653x0 must be divisible by 8.

So, 3x0 must be divisible by 8. This happens when x = 2.

$$x + y = (2 + 0) = 2$$
.

95. A number is divisible by 132, if it is divisible by each one of 11, 3 and 4. Clearly, 968 is not divisible by 3. None of 462 and 2178 is divisible by 4. Also, 5184 is not divisible by 11.

Each one of remaining 4 is divisible by each one of 11, 3 and 4 and therefore, by 132.

- 96. Clearly, 6897 is divisible by both 11 and 19.
- 97. None of the numbers in (a) and (c) is divisible by 2. Number in (b) is not divisible by 3. Clearly, 510510 is divisible by each prime number between 1 and 17.
- 98. Clearly, 325325 is divisible by all 7, 11 and 13.
- 99. Sum of digits = 35 and so it is not divisible by 3. (Sum of digits at odd places) - (Sum of digits at even places) = (19 - 16) = 3, not So, the given number is neither divisible by 3 nor by 11.
- 100. Since 111111 is divisible by each one of 7, 11 and 13, so each one of given type of numbers is divisible by each one of 7, 11, 13, as we may write, 222222 = 2 × 111111. 333333 = 3 × 111111, etc.
- 101. Smallest 3-digit prime number is 101. Clearly, 2525 25 × 101; 3232 = 32 × 101, etc. .. Each such number is divisible by 101.
- 102. 256256 = 256 × 1001; 678678 = 678 × 1001, etc. So, any number of this form is divisible by 1001.
- 103. Required number = $1 \times 2 \times 3 \times 4 = 24$.
- 104. Required number = (2 × 4 × 6) = 48.
- 105. Let the three consecutive odd numbers be (2x + 1), (2x + 3) and (2x + 5). Their sum = (6x + 9) = 3(2x + 3), which is always divisible by 3.

- 106. Let the two consecutive odd integers be (2x + 1) and (2x + 3). Then, $(2x + 3)^2 - (2x + 1)^2 = (2x + 3 + 2x + 1)(2x + 3 - 2x - 1) = (4 + 4) \times 2$ = 8 (x + 1), which is always divisible by 8.
- 107. Let the required number be x. Then, (11x + 11) = 11 (x + 1) is divisible by 13. So, x = 12.
- 108. Let the 3-digit number be xyz. Then, (100x + 10y + z) - (x + y + z) = 99x + 9y = 9 (11x + y), which is divisible by 9.
- 109. Putting x = 5 and y = 1, we get $(3x + 7y) = (3 \times 5 + 7 \times 1) = 22$, which is divisible by 11.
- ∴ 4x + 5y = (4 × 5 + 5 × 1) = 25, which is not divisible by 11.
 x + y + 4 = (5 + 1 + 4) = 9, which is not divisible by 11.
 9x + 4y = (9 × 5 + 4 × 1) = 49, which is not divisible by 11.
 4x 9y = (4 × 5 9 × 1) = 11, which is divisible by 11.
- 110. 4×3 $\begin{array}{c} 9 \times 4 \\ \hline 13 \times 5 \end{array} \Rightarrow \alpha + 8 = b \Rightarrow b \alpha = 8$

Also, 13b7 is divisible by 11.

$$(7+3)-(b+1)=(9-b) \implies (9-b)=0 \implies b=9.$$

$$b = 9 \text{ and } a = 1 \implies (a + b) = 10.$$

- 111. Required number = (2⁵ 2) = (32 2) = 30.
- Required number = Product of first three multiples of 3 = (3×6×9) = 162.
- 113. On dividing 1000 by 45, we get remainder = 10.
 - :. Required number to be added = (45 10) = 35.
- 114. On dividing 803642 by 11, we get remainder = 4.
 - Required number to be added = (11 4) = 7.
- 115. On dividing 11158 by 77, we get remainder = 70.
 - Required number to be added = (77 70) = 7.
- 116. On dividing 6709 by 9, we get remainder = 4.
 - :. Required number to be subtracted = 4.
- 117. On dividing 427398 by 15, we get remainder = 3.
 - :. Required number to be subtracted 3.
- 118. On dividing 13294 by 97, we get remainder = 5.
 - :. Required number to be subtracted = 5.
- 119. Clearly, 5 × (sum of numbers) is divisible by 15.
 - :. Sum of numbers must be divisible by 3.

Now, (250 + 341) = 591 is divisible by 3. So, required pair is 250, 341.

 Required number is divisible by 72 as well as by 112, if it is divisible by their LCM, which is 1008.

Now, 1008 when divided by 72, gives quotient = 14.

- ∴ Required number = 14.
- Let it be n times. Then, (1111 99n) < 99.
 By hit and trial, we find that n = 11.
- 122. On dividing 457 by 11, remainder is 6.
 - .. Required number is either 451 or 462. Nearest to 456 is 462.

- 123. On dividing 99547 by 687, the remainder is 619, which is more than half of 687.
 So, we must add (687 619) = 68 to the given number.
 - : Required number (99547 + 68) = 99615.
- 124. Largest number of 5 digits = 99999. On dividing 99999 by 99, we get 9 as remainder.
 ∴ Required number = (99999 9) = 99990.
- 125. Smallest number of 5 digits = 10000. On dividing 10000 by 476, we get remainder = 4.
 - :. Required number = [10000 + (476 4)] = 10472.
- 126. Required number = $999 \times 366 + 103 = (1000 1) \times 366 + 103 = 366000 366 + 103 = 365737$.
- = 365737. 127. $4150 = 55 \times x + 25 \iff 55x = 4125 \iff x = \frac{4125}{55} = 75$.
- 128. Required number = $(555 + 445) \times 2 \times 110 + 30 = 220000 + 30 = 220030$.
- 129. Largest number of 4 digits = 9999. On dividing 9999 by 7, we get remainder = 3. Largest number of 4 digits divisible by 7 is (9999 3) = 9996. Let (9996 x + 10) be divisible by 3. By hit and trial, we find that x = 7.
 ∴ Required number = (9996 7) = 9989.
- 130. Number = (114 × Q) + 21 = 19 × 6 × Q + 19 + 2 = 19 × (6Q + 1) + 2.
 ∴ Required remainder = 2.
- 131. Number = (296 × Q) + 75 = (37 × 8Q) + (37 × 2) + 1 = 37 × (8Q + 2) + 1.
 ∴ Required remainder = 1.
- Number = (119 × Q) + 19 = 17 × (7Q) + (17 + 2) = 17 × (7Q + 1) + 2.
 ∴ Required remainder = 2.
- Number = (899 × Q) + 63 = (29 × 31 × Q) + (29 × 2) + 5 = 29 × (31Q + 2) + 5.
 ∴ Required remainder = 5.
- 134. Number = (31 × Q) + 29. Given data is inadequate.
- 135. Given number = 13p + 11. And, Given number = 17q + 9.
 - $\therefore 13p + 11 = 17q + 9 \Leftrightarrow 17q 13p = 2.$ By hit and trial, we find that p = 26 and q = 20.
 - :. Required number = (13 × 26 + 11) = 349.
- Divisor = (5 × 46) = 230. Also, 10 × Q = 230 ⇒ Q = 23. And, R = 46.
 ∴ Dividend = (230 × 23 + 46) = 5336.
- 137. Let the smaller number be x. Then, larger number = (1365 + x).
 ∴ 1365 + x = 6x + 15 ⇔ 5x = 1350 ⇔ x = 270.

Hence, the required number is 270.

- 138. Dividend = (12 × 35) = 420. Now, dividend = 420 and divisor = 21.
 - $\therefore \quad \text{Correct quotient} = \frac{420}{21} = 20.$
- 139. Let $n = 4q + 3 \implies 2n = 8q + 6 = (8q + 4) + 2 \implies 2n = 4(2q + 1) + 2$. So, when 2n is divided by 4, remainder = 2.
- 140. Let x = 6q + 3. Then, $x^2 = (6q + 3)^2 = 36q^2 + 36q + 9 = 6(6q^2 + 6q + 1) + 3$. So, when x^2 is divided by 6, remainder = 3.
- 141. 4 x 5 y-1
 - $y = (5 \times 1 + 4) = 9$
 - $x = (4y + 1) = (4 \times 9 + 1) = 37$

Now, 37 when divided successively by 5 and 4, we get:

5	37
4	7 - 2
	1 - 3

.. Respective remainders are 2, 3.

142. 4 x

var se 5 13.7.2 reduces reclions activity a reducer will a satisfied these request 6 x - 3 s to elegistem a field or at a core and all of to retain a st a tactro (M.C. D. 2.4 and anomalous feet sectors (H.C. C. D. 2.4 and anomalous feet sectors (H.C. C. D. D. 1.4 and anomalous feet sectors)

reducing any state small to our b. 4 at H. at T. at C. C. D. D. turing the manuscript of the sectors (H.C. C. D. D. turing the sectors of the sectors (H.C. C. D. D. turing the sectors of the sectors (H.C. C. D. D. turing the sectors of the sectors (H.C. C. D. D. turing the sectors of the sectors (H.C. C. D. D. turing the sectors of the sectors of

Now, 1169 when divided by 585 gives remainder = 584.

144. Let n = 3q + 1 and let q = 2p + 1. Then, n = 3 (2p + 1) + 1 = 6p + 4.
 ∴ The number when divided by 6, we get remainder = 4.

Placehold the H.C.P. of store than two numbers : flurgons we have to find the

- 145. $4^{61} + 4^{62} + 4^{63} + 4^{64} = 4^{61} (1 + 4 + 4^2 + 4^3) = 4^{61} \times 85 = 4^{60} \times 340$, which is clearly divisible by 10.
- 146. Putting x = 2, we get $2^2 (2^2 1) = 12$. So, $x^2 (x^2 1)$ is always divisible by 12.