Sample Question Paper - 25 Mathematics-Basic (241) Class- X, Session: 2021-22 TERM II

Time Allowed : 2 hours

General Instructions :

- 1. The question paper consists of 14 questions divided into 3 sections A, B, C.
- 2. Section A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
- *3. Section B comprises of 4 questions of 3 marks each. Internal choice has been provided in one question.*
- 4. Section C comprises of 4 questions of 4 marks each. An internal choice has been provided in one question. It contains two case study based questions.

SECTION - A

- 1. If the price of a book is reduced by ₹ 5, a person can buy 5 more books for ₹ 300. Find the original marked price of the book.
- **2.** In a continuous frequency distribution, the median of the data is 21. If each observation is increased by 5, then find the new median.
- 3. Two parallel lines touch the circle at points *A* and *B*. If area of the circle is 16π cm², then find the length of *AB*.

OR

In the given figure, *O* is the centre of the circle, *AB* is a chord and *AT* is the tangent at *A*. If $\angle AOB = 100^\circ$, then find $\angle BAT$.

- **4.** There are three sections *A*, *B* and *C* in class X with 25, 40 and 35 students respectively. The mean marks obtained by section *A*, *B* and *C* are 70%, 65% and 50% respectively. Find the mean marks of entire class X.
- **5.** A cone and a sphere have equal radii and equal volume. What is the ratio of the diameter of the sphere to the height of cone?
- 6. If $\frac{2}{3}$, k, $\frac{5k}{8}$ are in A.P., then find the value of k.

OR

How many terms of the A.P.: 9,17,25, must be taken to give a sum 636?

Maximum Marks : 40

SECTION - B

- 7. Solve for $x: 3^{2x+3} 730(3^x 1) = 703$.
- **8.** The angle of elevation of the top of a chimney from the foot of a tower is 60° and the angle of depression of the foot of the chimney from the top of the tower is 30°. If the height of the tower is 40 m, then find the height of the chimney.

OR

A kite is flying at a height of 60 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60°. Find the length of the string assuming that there is no slack in the string.

- **9.** Draw a circle of radius 8 cm and draw a tangent to this circle making an angle of 55° with a line passing through the centre.
- 10. The sum of first 20 terms of an A.P. is 400 and sum of first 40 terms is 1600. Find the sum of its first 10 terms.

SECTION - C

11. The rainwater from a roof of $22 \text{ m} \times 20 \text{ m}$ drains into a cylindrical vessel having diameter of base 2 m and height 3.5 m. If the vessel is just full, find the height of the rainfall in cm.

OR

A solid consists of a circular cylinder with an exact fitting right circular cone placed at the top. The height of the cone is *h*. If the total volume of the solid is 3 times the volume of the cone, then what is the height of the circular cylinder?

12. An aeroplane flying at a height of 9000 m from the ground passes vertically above another aeroplane at an instant, when the angles of elevation of the two planes from the same point on the ground are 60° and 30° respectively. Find the vertical distance between the aeroplanes at that instant.

Case Study - 1

- **13.** If a tangent is drawn to a circle from an external point, then the radius at the point of contact is perpendicular to the tangent. Answer the following questions using the above condition.
 - (i) In the given figure, *O* is the centre of two concentric circles. From an external point *P* tangents *PA* and *PB* are drawn to these circles such that PA = 6 cm and PB = 8 cm. If OP = 10 cm, then find *AB*.

(ii) The diameter of two concentric circles are 10 cm and 6 cm. *AB* is a diameter of the bigger circle and *BD* is the tangent to the smaller circle touching it at *D* and intersecting the larger circle at *P* on producing. Find the length of *BP*.

Case Study - 2

14. Coach wants to analyses the time taken by a student to complete the race track of 100 m, for which he recorded the data of 50 students, which is given below.

Time (in minutes)	14.5-19.5	19.5-24.5	24.5-29.5	29.5-34.5	34.5-39.5
No. of students	10	15	12	8	5

Based on the above information, answer the following questions :

- (i) Find the mean time taken by the students to complete the track.
- (ii) Find the modal class of the given data.

Solution

MATHEMATICS BASIC 241

Class 10 - Mathematics

1. Let the marked price of the book be ₹ *x*. Total cost = ₹ 300

 $\therefore \text{ Number of books} = \frac{300}{x}$ If price of the book is $\notin (x - 5)$, then Number of books $= \frac{300}{x - 5}$ According to question, $\frac{300}{x - 5} - \frac{300}{x} = 5 \implies \frac{300x - 300(x - 5)}{(x - 5)x} = 5$ $\Rightarrow 1500 = 5(x^2 - 5x) \implies x^2 - 5x - 300 = 0$ $\Rightarrow x^2 - 20x + 15x - 300 = 0$ $\Rightarrow x(x - 20) + 15(x - 20) = 0$ $\Rightarrow (x - 20)(x + 15) = 0 \implies x = 20 \text{ or } x = -15$ Since, x has to be a positive integer, so x = -15 is rejected.

 $\therefore x = 20$

Hence, original marked price of the book is \gtrless 20.

2. If each observation of a continuous frequency distribution is increased by a number, then median is also increased by the same number.

:. New median = 21 + 5 = 26

3. Let the radius of the circle be
$$r$$
 cm.
Area of circle = 16π cm² [Given]
 $\Rightarrow \pi r^2 = 16 \pi \Rightarrow r^2 = 16 \Rightarrow r = 4$
 $\therefore AB = 2 OA = 2r = 8$ cm

Given, $\angle AOB = 100^{\circ}$ Now, $OA = OB \Rightarrow \angle OAB = \angle OBA$... (i) In $\triangle AOB$, $\angle AOB + \angle OAB + \angle OBA = 180^{\circ}$ $\Rightarrow 100^{\circ} + \angle OAB + \angle OAB = 180^{\circ}$ [Using (i)] $\Rightarrow 2\angle OAB = 80^{\circ} \Rightarrow \angle OAB = 40^{\circ}$ Now, $\angle OAT = 90^{\circ}$ [\because Tangent at any point of a circle is

Now, $\angle OAT = 90^\circ$ [. Tangent at any point of a circle is perpendicular to the radius through point of contact] Thus, $\angle BAT = \angle OAT - \angle OAB = 90^\circ - 40^\circ = 50^\circ$

4. Mean marks obtained by section A = 70%

:. Sum of marks of 25 students = $70\% \times 25 = 1750\%$ Mean marks obtained by section B = 65%

:. Sum of marks of 40 students = $40 \times 65\% = 2600\%$ Mean marks obtained by section *C* = 50%

:. Sum of marks of 35 students = $35 \times 50\% = 1750\%$ Mean marks of class X

_ Sum of marks of section *A*, *B*, *C* Total number of students $=\frac{(1750+2600+1750)\%}{25+40+35} = \left(\frac{6100}{100}\right)\% = 61\%$ 5. Let *r* be the radius of sphere and cone and *h* be the height of the cone. Volume of sphere = Volume of cone [Given] $\Rightarrow \frac{4}{2}\pi r^3 = \frac{1}{2}\pi r^2 h \Rightarrow 4r = h$ \therefore Height of cone = 4*r* Also, diameter of sphere = 2r \therefore Required ratio $= \frac{2r}{4r} = \frac{1}{2} = 1:2$ 6. Given, $\frac{2}{3}$, k, $\frac{5k}{9}$ are in A.P. $\implies k - \frac{2}{3} = \frac{5k}{8} - k \implies k + k - \frac{5k}{8} = \frac{2}{3}$ $\Rightarrow \frac{11k}{8} = \frac{2}{3} \Rightarrow k = \frac{16}{33}$ OR We have, A.P. 9, 17, 25, ... And $S_n = 636$ Here, a = 9 and $d = a_2 - a_1 = 17 - 9 = 8$ We know that $S_n = \frac{n}{2}[2a + (n-1)d]$ $\Rightarrow 636 = \frac{n}{2} [2 \times 9 + (n-1)8]$

$$\Rightarrow 1272 = n[18 + 8n - 8]$$

 $\Rightarrow 1272 = n[10 + 8n]$ $\Rightarrow 8n^2 + 10n - 1272 = 0$

 $\Rightarrow 4n^2 + 5n - 636 = 0$

 $\Rightarrow 4n^{2} + 53n - 48n - 636 = 0$ $\Rightarrow n(4n + 53) - 12(4n + 53) = 0$

$$\Rightarrow (n - 12)(4n + 53) = 0$$

$$\Rightarrow$$
 $n = 12$ or $-\frac{53}{4}$ (Not possible)

$$\therefore \quad n = 12$$

7. We have, $3^{2x+3} - 730 (3^x - 1) = 703$
$$\Rightarrow \quad 27(3^x)^2 - 730(3^x) + 730 - 703 = 0$$

$$\Rightarrow \quad 27 t^2 - 730 t + 27 = 0$$
 [Put

[Putting $3^x = t$]

 \Rightarrow 27 $t^2 - 729 t - t + 27 = 0$

$$\Rightarrow 27t(t-27) - 1(t-27) = 0$$

$$\Rightarrow (t - 27)(27 t - 1) = 0 \Rightarrow (t - 27)(27t - 1) = 0$$

$$\Rightarrow t = 27 \text{ or } t = \frac{1}{27} \therefore 3^{x} = 27 \text{ or } 3^{x} = \frac{1}{27}$$

$$\Rightarrow 3^{x} = 3^{3}$$

or $3^{x} = 3^{-3} \Rightarrow x = 3 \text{ or } x = -3$

8. Let *AB* be the tower and CD = x m be the height of the chimney.

In $\triangle ABD$, we have

$$\Rightarrow \quad \sqrt{3} = \frac{x}{40\sqrt{3}} \qquad \qquad [Using (i)]$$

 $\Rightarrow x = 40 \times 3 = 120$

$$\therefore$$
 Height of chimney = 120 m

OR

Let *A* be the position of kite and *CA* be the string attached to the kite such that its one end is tied to a point *C* on the ground. The inclination of the string *CA* with the ground is 60° .

In $\triangle ABC$, we have

$$\sin C = \frac{AB}{AC} \implies \sin 60^\circ = \frac{AB}{AC} \implies \frac{\sqrt{3}}{2} = \frac{60}{AC}$$
$$\implies AC = \frac{120}{\sqrt{3}} = 40\sqrt{3} \text{ m}$$

Hence, the length of the string is $40\sqrt{3}$ m.

9. Steps of construction :

Step-I : Draw a circle with
centre O and radius 8 cm.Step-II : Draw a radius OA.

Step-III : Draw an $\angle AOP$ equal to the complement of 55° *i.e.*,

equal to 35°.

Step-IV : Draw a perpendicular *OP* at *P* which intersects *OA* produced at point *Q*.

Hence, *PQ* is the required tangent such that $\angle OQP = 55^{\circ}$. **10.** Let the first term of the A.P. be *a* and common difference be *d*.

 \therefore The sum of first 20 terms is,

$$S_{20} = \frac{20}{2} [2a + (20 - 1)d]$$

$$\Rightarrow 400 = 10(2a + 19d) \Rightarrow 2a + 19d = 40 \qquad \dots(i)$$

Also, $S_{40} = \frac{40}{2} (2a + 39d)$

$$\Rightarrow 1600 = 20(2a + 39d)$$

$$\Rightarrow 2a + 39d = 80 \qquad \dots(ii)$$

On solving (i) and (ii), we get

$$a = 1$$
 and $d = 2$

$$\therefore S_{10} = \frac{10}{2} [2 \times 1 + (10 - 1)(2)]$$

= 5 (2 + 9 × 2) = 5 (2 + 18) = 5 × 20 = 100

11. Length of roof = 22 m, breadth of roof = 20 m Let the height of the rainfall be x cm.

Volume of water on the roof = $\left(22 \times 20 \times \frac{x}{100}\right) \text{m}^3$ = $\frac{22x}{5} \text{m}^3$

Radius of the base of the cylindrical vessel = 1 m Height of the cylindrical vessel = 3.5 m

Volume of water in the cylindrical vessel when it is just

full =
$$\left(\frac{22}{7} \times 1 \times 1 \times \frac{7}{2}\right) \mathbf{m}^3 = 11 \mathbf{m}^3$$
 [:: $V = \pi r^2 h$]

Now, volume of water on the roof = volume of water in the vessel

$$\Rightarrow \quad \frac{22x}{5} = 11 \quad \Rightarrow \quad x = \left(\frac{11 \times 5}{22}\right) = 2.5$$

Hence, height of the rainfall is 2.5 cm.

OR

Let *H* be the height of cylinder

Since, volume of solid = $3 \times$ Volume of cone

$$= 3 \times \frac{1}{3}\pi r^2 h = \pi r^2 h$$

Now, volume of the cylinder

= Volume of solid – Volume of the cone

$$= \pi r^{2}h - \frac{1}{3}\pi r^{2}h = \frac{2}{3}\pi r^{2}h$$
$$\Rightarrow \pi r^{2}H = \frac{2}{3}\pi r^{2}h \Rightarrow H = \frac{2}{3}h$$

Hence, height of the cylinder $=\frac{2h}{3}$

12. Let *A* and *B* be the positions of two aeroplanes when *A* is vertically above *B* and AC = 9000 m.

Let *D* be the point of observation on the ground such that $\angle ADC = 60^\circ$ and $\angle BDC = 30^\circ$.

:. Vertical distance between *A* and B = AB = AC - BC = 9000 - 3000 = 6000 m

13. (i) Here, $OP^2 - PB^2 = OB^2$ and $OP^2 - PA^2 = OA^2$ ∴ $OB = \sqrt{100 - 64} = \sqrt{36} = 6$ cm

and $OA = \sqrt{100 - 36} = \sqrt{64} = 8 \text{ cm}$ $\therefore AB = OA - OB = 8 - 6 = 2 \text{ cm}$

Here, in right angled $\triangle OBD$, OB = 5 cm and OD = 3 cm.

:.
$$BD = \sqrt{25 - 9} = \sqrt{16} = 4 \text{ cm}$$

Since, chord BP is bisected by radius OD.

 $\therefore BP = 2BD = 8 \text{ cm}$

14.

Class interval	Class mark	Frequency	$f_i x_i$
	(<i>x</i> _{<i>i</i>})	(f_i)	
14.5-19.5	17	10	170
19.5-24.5	22	15	330
24.5-29.5	27	12	324
29.5-34.5	32	8	256
34.5-39.5	37	5	185
	Total	50	1265

(i) Required mean = $\frac{\Sigma f_i x_i}{\Sigma f_i} = \frac{1265}{50} = 25.3 \text{ min}.$

(ii) Here maximum frequency is 15, which lies in the interval 19.5-24.5.

.:. Modal class is 19.5-24.5.