Chapter : 12. CIRCLES

Exercise : 12A

Question: 1

Find the length o

Solution:

Let us consider a circle with center O and radius 8 cm.

The diagram is given as:

Consider a point A 17 cm away from the center such that OA = 17 cm

A tangent is drawn at point A on the circle from point B such that OB = radius = 8 cm

To Find: Length of tangent AB = ?

As seen $OB \perp AB$

[Tangent at any point on the circle is perpendicular to the radius through point of contact]

 \therefore In right - angled $\Delta AOB,$ By Pythagoras Theorem

```
[i.e. (hypotenuse)<sup>2</sup> = (perpendicular)<sup>2</sup> + (base)<sup>2</sup>]
```

$$(OA)^2 = (OB)^2 + (AB)^2$$

$$(17)^2 = (8)^2 + (AB)^2$$

 $289 = 64 + (AB)^2$

 $(AB)^2 = 225$

AB = 15 cm

 \therefore The length of the tangent is 15 cm.

Question: 2

A point P is 25 c

Solution:

Let us consider a circle with center O.

Consider a point P 25 cm away from the center such that OP = 25 cm

A tangent PQ is drawn at point Q on the circle from point P such that PQ = 24 cm

To Find : Length of radius OQ = ?

Now, $OQ \perp PQ$

[Tangent at any point on the circle is perpendicular to the radius through point of contact]

 \therefore In right - angled $\triangle POQ$,

By Pythagoras Theorem,

[i.e. $(hypotenuse)^2 = (perpendicular)^2 + (base)^2$]

 $(OP)^2 = (OQ)^2 + (PQ)^2$ $(25)^2 = (OQ)^2 + (24)^2$ $625 = (OQ)^2 + 576$ $(OQ)^2 = 49$ OQ = 7 cm**Question: 3**

Two concentric ci

Solution:

Given: Two concentric circles (say C_1 and C_2) with common center as O and radius $r_1 = 6.5$ cm and $r_2 = 2.5$ cm respectively.

To Find: Length of the chord of the larger circle which touches the circle C_2 . i.e. Length of AB.

As AB is tangent to circle C_2 and we know that "Tangent at any point on the circle is perpendicular to the radius through point of contact"

So, we have,

 $\mathbf{OP} \perp \mathbf{AB}$

 \therefore OPB is a right - angled triangle at P,

By Pythagoras Theorem in $\triangle OPB$

[i.e. $(hypotenuse)^2 = (perpendicular)^2 + (base)^2$]

We have,

 $(OP)^2 + (PB)^2 = (OB)^2$

$$r_2^2 + (PB)^2 = r_1^2$$

 $(2.5)^2 + (PB)^2 = (6.5)^2$

 $6.25 + (PB)^2 = 42.25$

 $(PB)^2 = 36$

PB = 6 cm

Now, AP = PB ,

[as perpendicular from center to chord bisects the chord and OP $_{\perp}$ AB]

So,

```
AB = AP + PB = PB + PB
= 2PB = 2(6)
= 12 cm
Question: 4
In the given figu
Solution:
Let AD = x cm, BE = y cm and CF = z cm
As we know that,
Tangents from an external point to a circle are equal,
In given Figure we have
AD = AF = x [Tangents from point A]
BD = BE = y [Tangents from point B]
CF = CE = z [Tangents from point C]
Now, Given: AB = 12 \text{ cm}
AD + BD = 12
x + y = 12
y = 12 - x....[1]
and BC = 8 \text{ cm}
BE + EC = 8
y + z = 8
12 - x + z = 8 [From 1]
z = x - 4....[2]
and
AC = 10 \text{ cm}
AF + CF = 10
x + z = 10 [From 2]
x + x - 4 = 10
2x = 14
x = 7 cm
Putting value of x in [1] and [2]
y = 12 - 7 = 5 \text{ cm}
z = 7 - 4 = 3 \text{ cm}
So, we have AD = 7 \text{ cm}, BE = 5 \text{ cm} and CF = 3 \text{ cm}
Question: 5
In the given figu
Solution:
```

Given: PA and PB are tangents to a circle with center O

To show : A, O, B and P are concyclic i.e. they lie on a circle i.e. AOBP is a cyclic quadrilateral. Proof: $OB \perp PB$ and $OA \perp AP$

[Tangent at any point on the circle is perpendicular to the radius through point of contact]

 $\angle OBP = \angle OAP = 90^{\circ}$

 $\angle \text{OBP} + \angle \text{OAP} = 90 + 90 = 180^{\circ}$

AOBP is a cyclic quadrilateral i.e. A, O, B and P are concyclic.

[As we know if the sum of opposite angles in a quadrilateral is 180° then quadrilateral is cyclic] Hence Proved.

Question: 6

In the given figu

Solution:

Given: Two concentric circles with common center as O

To Prove: AC = CB

Construction: Join OC, OA and OB

Proof :

 $OC \perp AB$

[Tangent at any point on the circle is perpendicular to the radius through point of contact]

In $\triangle OAC$ and $\triangle OCB$, we have

OA = OB

[∵ radii of same circle]

OC = OC

[\because common]

 $\angle \text{OCA} = \angle \text{OCB}$

[\because Both 90° as OC \perp AB]

 $\triangle OAC \cong \triangle OCB$

[By Right Angle - Hypotenuse - Side]

AC = CB

[Corresponding parts of congruent triangles are congruent]

Hence Proved.

Question: 7

From an external

Solution:

Given : From an external point P, two tangents, PA and PB are drawn to a circle with center O. At a point E on the circle tangent is drawn which intersects PA and PB at C and D, respectively. And PA = 14 cm

To Find : Perimeter of $\triangle PCD$

As we know that, Tangents drawn from an external point to a circle are equal.

So we have

AC = CE ...[1] [Tangents from point C]

ED = DB ...[2] [Tangents from point D]

Now Perimeter of Triangle PCD

= PC + CD + DP

= PC + CE + ED + DP

= PC + AC + DB + DP [From 1 and 2]

= PA + PB

Now,

PA = PB = 14 cm as tangents drawn from an external point to a circle are equal

So we have

Perimeter = PA + PB = 14 + 14 = 28 cm

Question: 8

A circle is inscr

Solution:

As we know that tangents drawn from an external point to a circle are equal ,

In the Given image we have,

 $AP = AR = 7 \text{ cm} \dots [1]$ [tangents from point A] $CR = QC = 5 \text{ cm} \dots [2]$ [tangents from point C] BQ = PB ...[3][tangents from point B] Now, AB = 10 cm [Given] AP + PB = 10 cm7 + PB = 10 [From 1] PB = 3 cm $BQ = 3 \text{ cm} \dots [4]$ [From 3] BC = BQ + QC = 5 + 3 = 8 cm [From 2 and 4]**Question: 9** In the given figu

Solution:

Let sides AB, BC, CD, and AD touches circle at P, Q, R and S respectively.

As we know that tangents drawn from an external point to a circle are equal, In the given image we have,

AP = AS = w (say) [Tangents from point A] BP = BQ = x (say) [Tangents from point B] CP = CR = y (say) [Tangents from point C] DR = DS = z (say) [Tangents from point D] Now, Given, AB = 6 cmAP + BP = 6 $w + x = 6 \dots [1]$ BC = 7 cmBP + CP = 7 $x + y = 7 \dots [2]$ CD = 4 cmCR + DR = 4 $y + z = 4 \dots [3]$ Also, $AD = AS + DS = w + z \dots [4]$ Add [1] and [3] and substracting [2] from the sum we get, w + x + y + z - (x + y) = 6 + 4 - 7

w + z = 3 cm; From [4]

AD = 3 cm

Question: 10

In the given figu

Solution:

As we know that tangents drawn from an external point to a circle are equal,

BR = BP [Tangents from point B] [1] QC = CP [Tangents from point C] [2] AR = AQ [Tangents from point A] [3] As ABC is an isosceles triangle, AB = BC [Given] [4] Now substract [3] from [4]

AB - AR = BC - AQ

BR = QC

BP = CP [From 1 and 2]

 \therefore P bisects BC

Hence Proved.

Question: 11

In the given figu

Solution:

In given Figure,

 $OA \perp AP$

[Tangent at any point on the circle is perpendicular to the radius through point of contact]

 \therefore In right - angled $\triangle OAP$,

By Pythagoras Theorem

[i.e. $(hypotenuse)^2 = (perpendicular)^2 + (base)^2$]

 $(OP)^2 = (OA)^2 + (PA)^2$

Given, PA = 10 cm and OA = radius of outer circle = 6 cm

 $(OP)^2 = (6)^2 + (100)^2$

$$(OP)^2 = 36 + 100 = 136 [1]$$

Also,

 $\mathbf{OB}\perp \mathbf{BP}$

[Tangent at any point on the circle is perpendicular to the radius through point of contact]

 \therefore In right - angled $\triangle OBP$,

By Pythagoras Theorem

[i.e. $(hypotenuse)^2 = (perpendicular)^2 + (base)^2$]

 $(OP)^2 = (OB)^2 + (PB)^2$

Now, OB = radius of inner circle = 4 cm

And from [2]

 $(\mathrm{OP})^2 = 136$

 $136 = (4)^2 + (PB)^2$

 $(PB)^2 = 136 - 16 = 120$

PB = 10.9 cm

Question: 12

In the given figu

Solution:

Given : $\triangle ABC$ that is drawn to circumscribe a circle with radius r = 3 cm and BD = 6 cm DC = 9cm

Also, area(\triangle ABC) = 54 cm²

To Find : AB and AC

Now,

As we know tangents drawn from an external point to a circle are equal.

Then,

FB = BD = 6 cm [Tangents from same external point B]

DC = EC = 9 cm [Tangents from same external point C]

AF = EA = x (let) [Tangents from same external point A]

Using the above data, we get

AB = AF + FB = x + 6 cmAC = AE + EC = x + 9 cmBC = BD + DC = 6 + 9 = 15 cm

Now we have heron's formula for area of triangles if its three sides a, b and c are given

 $ar = \sqrt{s(s-a)(s-b)(s-c)}$

Where,

 $\Rightarrow s = \frac{a+b+c}{2}$ So for $\triangle ABC$

a = AB = x + 6 b = AC = x + 9 c = BC = 15 cm \Rightarrow s = $\frac{x+6+x+9+15}{2}$ = x + 15

And

ar(\triangle ABC) = $\sqrt{(x + 15)(x + 15 - (x + 6))(x + 15 - (x + 9))(x + 15 - 15)}$ $\Rightarrow 54 = \sqrt{(x + 15)(9)(6)(x)}$ Squaring both sides, we get, 54(54) = 54x(x + 15) $x^2 + 15x - 54 = 0$ $x^2 + 18x - 3x - 54 = 0$ x(x + 18) - 3(x + 18) = 0 (x - 3)(x + 18) = 0 x = 3 or - 18but x = - 18 is not possible as length can't be negative. So

AB = x + 6 = 3 + 6 = 9 cm

AC = x + 9 = 3 + 9 = 12 cm

Question: 13

PQ is a chord of

Solution:

Given : A circle with center O and radius 3 cm and PQ is a chord of length 4.8 cm. The tangents at P and Q intersect at point T $\,$

To Find : Length of TP

Construction : Join OQ

Now in $\triangle OPT$ and $\triangle OQT$ OP = OQ [radii of same circle]

PT = PQ

[tangents drawn from an external point to a circle are equal]

OT = OT [Common]

 $\triangle OPT \cong \triangle OQT$ [By Side - Side - Side Criterion]

 $\angle POT = \angle OQT$

[Corresponding parts of congruent triangles are congruent]

or $\angle POR = \angle OQR$

Now in $\triangle OPR$ and $\triangle OQR$

OP = OQ [radii of same circle]

OR = OR [Common]

 $\angle POR = \angle OQR$ [Proved Above]

 $\triangle OPR \cong \triangle OQT$ [By Side - Angle - Side Criterion]

 $\angle ORP = \angle ORQ$

[Corresponding parts of congruent triangles are congruent]

Now,

 $\angle ORP + \angle ORQ = 180^{\circ}$ [Linear Pair]

 $\angle ORP + \angle ORP = 180^{\circ}$

 $\angle \text{ORP} = 90^{\circ}$

 \Rightarrow OR \perp PQ

 $\Rightarrow \mathrm{RT} \perp \mathrm{PQ}$

As $\mathsf{OR} \perp \mathsf{PQ}$ and Perpendicular from center to a chord bisects the chord we have

$$PR = QR = \frac{PQ}{2} = \frac{4.8}{2} = 2.4 \text{ cm}$$

 \therefore In right - angled $\triangle OPR$,

By Pythagoras Theorem

[i.e. $(hypotenuse)^2 = (perpendicular)^2 + (base)^2$]

 $(OP)^2 = (OR)^2 + (PR)^2$ $(3)^2 = (OR)^2 + (2.4)^2$ $9 = (OR)^2 + 5.76$ $(OR)^2 = 3.24$ OR = 1.8 cm

Now,

In right angled $\ensuremath{\bigtriangleup} TPR$,

By Pythagoras Theorem

 $(PT)^2 = (PR)^2 + (TR)^2 \dots [1]$

Also, $OP \perp OT$

[Tangent at any point on the circle is perpendicular to the radius through point of contact]

In right angled ${\bigtriangleup}\textsc{OPT}$, By Pythagoras Theorem

 $(PT)^{2} + (OP)^{2} = (OT)^{2}$ $(PR)^{2} + (TR)^{2} + (OP)^{2} = (TR + OR)^{2} \dots [From 1]$ $(2.4)^{2} + (TR)^{2} + (3)^{2} = (TR + 1.8)^{2}$ $4.76 + (TR)^{2} + 9 = (TR)^{2} + 2(1.8)TR + (1.8)^{2}$ 13.76 = 3.6TR + 3.24 3.6TR = 10.52 TR = 2.9 cm [Appx]Using this in [1] $PT^{2} = (2.4)^{2} + (2.9)^{2}$ $PT^{2} = 4.76 + 8.41$ $PT^{2} = 13.17$ PT = 3.63 cm [Appx]

Question: 14

Prove that the li

Solution:

Given: A circle with center O and AB and CD are two parallel tangents at points P and Q on the circle.

To Prove: PQ passes through O

Construction: Draw a line EF parallel to AB and CD and passing through O

Proof:

 $\angle OPB = 90^{\circ}$

[Tangent at any point on the circle is perpendicular to the radius through point of contact]

Now, AB || EF $\angle OPB + \angle POF = 180^{\circ}$ $90^{\circ} + \angle POF = 180^{\circ}$ $\angle POF = 90^{\circ} \dots [1]$

Also,

 $\angle OQD = 90^{\circ}$

[Tangent at any point on the circle is perpendicular to the radius through point of contact]

Now, CD || EF

 $\angle OQD + \angle QOF = 180^{\circ}$

 $90^{\circ} + \angle QOF = 180^{\circ}$

 $\angle QOF = 90^{\circ} [2]$

Now From [1] and [2]

 $\angle POF + \angle QOF = 90 + 90 = 180^{\circ}$

So, By converse of linear pair POQ is a straight Line

i.e. O lies on $\ensuremath{\mathsf{PQ}}$

Hence Proved.

Question: 15

In the given figu

Solution:

In quadrilateral POQB

 $\angle OPB = 90^{\circ}$

[Tangent at any point on the circle is perpendicular to the radius through point of contact]

$$\angle OQB = 90^{\circ}$$

[Tangent at any point on the circle is perpendicular to the radius through point of contact]

 $\angle PQB = 90^{\circ}$ [Given]

By angle sum property of quadrilateral PQOB

 $\angle OPB + \angle OQB + \angle PBQ + \angle POQ = 360^{\circ}$

 $90^{\circ} + 90^{\circ} + 90^{\circ} + \angle POQ = 360^{\circ}$

$$\angle POQ = 90^{\circ}$$

As all angles of this quadrilaterals are 90° The quadrilateral is a rectangle

Also, OP = OQ = r

i.e. adjacent sides are equal, and we know that a rectangle with adjacent sides equal is a square

 \therefore POQB is a square

And OP = PB = BQ = OQ = r [1]

Now,

As we know that tangents drawn from an external point to a circle are equal

In given figure, We have

DS = DR = 5 cm[Tangents from point D and DS = 5 cm is given] AD = 23 cm [Given]AR + DR = 23AR + 5 = 23AR = 18 cmNow, AR = AQ = 18 cm[Tangents from point A] AB = 29 cm [Given] AQ + QB = 2918 + QB = 29QB = 11 cmFrom [1] QB = r = 11 cmHence Radius of circle is 11 cm.

Question: 16

In the given figu

Solution:

In Given Figure, we have a circle with center O let the radius of circle be r.

Construction : Join OP

Now, In $\triangle APB$

 $\angle ABP = 30^{\circ}$

 $\angle APB = 90^{\circ}$

[Angle in a semicircle is a right angle]

By angle sum Property of triangle,

 $\angle ABP + \angle APB + \angle PAB = 180$

 $30^\circ + 90^\circ + \angle PAB = 180$

$$\angle PAB = 60^{\circ}$$

OP = OA = r [radii]

$$\angle PAB = \angle OPA = 60^{\circ}$$

[Angles opposite to equal sides are equal]

By angle sum Property of triangle

 $\angle OPA + \angle OAP + \angle AOP = 180^{\circ}$ $60^{\circ} + \angle PAB + \angle AOP = 180$ $60 + 60 + \angle AOP = 180$ $\angle AOP = 60^{\circ}$ As all angles of $\triangle OPA$ equals to 60°, $\triangle OPA$ is an equilateral triangle So, we have, OP = OA = PA = r [1] $\angle OPT = 90^{\circ}$ [Tangent at any point on the circle is perpendicular to the radius through point of contact] $\angle OPA + \angle APT = 90$ $60 + \angle APT = 90$ $\angle APT = 30^{\circ}$ Also, $\angle PAB + \angle PAT = 180^{\circ}$ [Linear pair] $60^{\circ} + \angle PAT = 180^{\circ}$ $\angle PAT = 120^{\circ}$ In ∆APT $\angle APT + \angle PAT + \angle PTA = 180^{\circ}$ $30^{\circ} + 120^{\circ} + \angle PTA = 180^{\circ}$ $\angle PTA = 30^{\circ}$ So, We have $\angle APT = \angle PTA = 30^{\circ}$ AT = PA[Sides opposite to equal angles are equal] AT = r [From 1] [2]Now, AB = OA + OB = r + r = 2r[3]From [2] and [3] AB: AT = 2r: r = 2: 1Hence Proved !

Exercise : 12B

Question: 1

In the adjoining

Solution:

Let sides AB, BC, CD, and AD touches circle at P, Q, R and S respectively.

As we know that tangents drawn from an external point to a circle are equal ,

In the given image we have,

AP = AS = w (say) [Tangents from point A] BP = BQ = x (say) [Tangents from point B] CP = CR = y (say) [Tangents from point C] DR = DS = z (say) [Tangents from point D] Now,

Given,

AB = 6 cm

AP + BP = 6

w + x = 6[1]

BC = 9 cm

BP + CP = 9

x + y = 9 [2]

CD = 8 cm

CR + DR = 8

y + z = 8 [3]

Also,

AD = AS + DS = w + z [4]

Add [1] and [3] and substracting [2] from the sum we get,

w + x + y + z - (x + y) = 6 + 8 - 9

w + z = 5 cm

From [4]

AD = 5 cm

Question: 2

In the given figu

Solution:

In the given figure, PA and PB are two tangents from common point P

 \therefore PA = PB

[Tangents drawn from an external point are equal]

 $\angle PBA = \angle PAB$

[Angles opposite to equal angles are equal] [1]

By angle sum property of triangle in ${\bigtriangleup} APB$

```
\angle APB + \angle PBA + \angle PAB = 180^{\circ}
50° + \angle PAB + \angle PAB = 180^{\circ} [From 1]
```

2∠PAB = 130°

 $\angle PAB = 65^{\circ} [2]$

Now,

 $\angle OAP = 90^{\circ}$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

 $\angle OAB + \angle PAB = 90^{\circ}$

 $\angle OAB + 65^{\circ} = 90^{\circ} [From 2]$

 $\angle OAB = 25^{\circ}$

Question: 3

In the given figu

Solution:

Given: In the figure, PT and PQ are two tangents and $\angle TPQ = 70^{\circ}$

To Find: $\angle TRQ$

Construction: Join OT and OQ

In quadrilateral OTPQ

 $\angle \text{OTP} = 90^{\circ}$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

 $\angle OQP = 90^{\circ}$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

 $\angle TPQ = 70^{\circ} [Common]$

By Angle sum of Quadrilaterals,

In quadrilateral OTPQ we have

 $\angle OTP + \angle OQP + \angle TPQ + \angle TOQ = 360^{\circ}$

 $90^{\circ} + 90^{\circ} + 70^{\circ} + \angle TOQ = 360^{\circ}$

 $250^\circ + \angle TOQ = 360$

$$\angle TQO = 110^{\circ}$$

Now,

As we Know the angle subtended by an arc at the center is double the angle subtended by it at any $% \left({{{\mathbf{x}}_{i}}} \right)$

point on the remaining part of the circle.

 \therefore we have

 $\angle TOQ = 2 \angle TRQ$

 $110^\circ = 2 \angle \text{TRQ}$

 $\angle TRQ = 55^{\circ}$

Question: 4

In the given figu

Solution:

Given: AB and CD are two tangents to two circles which intersects at ${\ensuremath{\mathsf{E}}}$.

To Prove: AB = CD

Proof:

As

AE = CE ...[1]

[Tangents drawn from an external point to a circle are equal]

And

EB = ED ...[2]

[Tangents drawn from an external point to a circle are equal]

Adding [1] and [2]

AE + EB = CE + ED

AB = CD

Hence Proved.

Question: 5

If PT is a tangen

Solution:

Given: PT is a tangent to a circle with center O and PQ is a chord of the circle such that \angle QPT = 70°

To Find: $\angle POQ = ?$

Now,

 $\angle OPT = 90^{\circ}$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

 $\angle OPQ + \angle QPT = 90^{\circ}$

 $\angle OPQ + 70^{\circ} = 90^{\circ}$

 $\angle OPQ = 20^{\circ}$

Also,

OP = OQ [Radii of same circle]

 $\angle OQP = \angle OPQ = 20^{\circ}$

[Angles opposite to equal sides are equal]

In $\triangle OPQ$ By Angle sum property of triangles,

 $\angle OPQ + \angle OQP + \angle POQ = 180^{\circ}$

 $20^{\circ} + 20^{\circ} + \angle POQ = 180^{\circ}$

 $\angle POQ = 140^{\circ}$

Question: 6

In the given figu

Solution:

Given: $\triangle ABC$ that is drawn to circumscribe a circle with radius r = 2 cm and BD = 4 cm DC = 3cm

Also, area(\triangle ABC) = 21 cm²

To Find: AB and AC

Now,

As we know tangents drawn from an external point to a circle are equal.

Then,

FB = BD = 4 cm [Tangents from same external point B]

DC = EC = 3 cm [Tangents from same external point C]

AF = EA = x (let) [Tangents from same external point A]

Using the above data, we get

AB = AF + FB = x + 4 cmAC = AE + EC = x + 3 cmBC = BD + DC = 4 + 3 = 7 cm

Now we have heron's formula for area of triangles if its three sides a, b and c are given

area =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

Where, $s = \frac{a+b+c}{2}$
So, for $\triangle ABC$
 $a = AB = x + 4$
 $b = AC = x + 3$
 $c = BC = 7 \text{ cm}$
 $\Rightarrow s = \frac{x+4+x+3+7}{2} = x + 7$

And

$$ar(\triangle ABC) = \sqrt{(x + 7)(x + 7 - (x + 4))(x + 7 - (x + 3))(x + 7 - 7)}$$

⇒ 21 = $\sqrt{(x + 7)(3)(4)(x)}$

Squaring both sides,

$$21(21) = 12x(x + 7)$$
$$12x^{2} + 84x - 441 = 0$$
$$4x^{2} + 28x - 147 = 0$$

As we know roots of a quadratic equation in the form $ax^2 + bx + c = 0$ are,

$$\Rightarrow X = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

So roots of this equation are,

$$x = \frac{-28 \pm \sqrt{(28)^2 - 4(4)(-147)}}{2(4)}$$
$$\Rightarrow x = \frac{-28 \pm \sqrt{3136}}{8}$$

 $\Rightarrow x = \frac{-28\pm 56}{8} = 3.5 \text{ or} - 10.5$

but x = -10.5 is not possible as length can't be negative.

So

AB = x + 4 = 3.5 + 4 = 7.5 cm

AC = x + 3 = 3.5 + 3 = 6.5 cm

Question: 7

Two concentric ci

Solution:

Given : Two concentric circles (say C_1 and C_2) with common center as O and radius $r_1 = 5$ cm and $r_2 = 3$ cm respectively.

To Find : Length of the chord of the larger circle which touches the circle C_2 . i.e. Length of AB.

As AB is tangent to circle $\ensuremath{C_2}$ and,

We know that "Tangent at any point on the circle is perpendicular to the radius through point of contact"

So, we have,

 $\mathbf{OP} \perp \mathbf{AB}$

 \therefore OPB is a right - angled triangle at P,

By Pythagoras Theorem in $\triangle OPB$

[i.e. (hypotenuse)² = (perpendicular)² + (base)²]

We have,

$$(OP)^{2} + (PB)^{2} = (OB)^{2}$$

 $r_{2}^{2} + (PB)^{2} = r_{1}^{2}$
 $(3)^{2} + (PB)^{2} = (5)^{2}$

 $9 + (PB)^2 = 25$

 $(PB)^2 = 16$

PB = 4 cm

Now, AP = PB,

[as perpendicular from center to chord bisects the chord and OP $_{\perp}$ AB]

So,

AB = AP + PB = PB + PB

= 2PB = 2(4) = 8 cm

Question: 8

Prove that the pe

Solution:

Let us consider a circle with center O and XY be a tangent

To prove : Perpendicular at the point of contact of the tangent to a circle passes through the center i.e. the radius OP $_\perp$ XY

Proof :

Take a point \boldsymbol{Q} on $\boldsymbol{X}\boldsymbol{Y}$ other than \boldsymbol{P} and join $\boldsymbol{O}\boldsymbol{Q}$.

The point Q must lie outside the circle. (because if Q lies inside the circle, XY

will become a secant and not a tangent to the circle).

 \therefore OQ is longer than the radius OP of the circle. That is,

OQ > OP.

Since this happens for every point on the line XY except the point P, OP is the

shortest of all the distances of the point O to the points of XY.

So OP is perpendicular to XY.

[As Out of all the line segments, drawn from a point to points of a line not passing through the point, the smallest is the perpendicular to the line.]

Question: 9

In the given figu

Solution:

Given : In the figure ,

Two tangents RQ and RP are drawn from an external point R to the circle with center O and $\angle PRQ$ = 120°

To Prove: OR = PR + RQ

Construction: Join OP and OQ

Proof :

In ${\bigtriangleup}{\bigcirc}OPR$ and ${\bigtriangleup}OQR$

OP = OQ [radii of same circle]

OR = OR [Common]

 $PR = PQ \dots [1]$

[Tangents drawn from an external point are equal]

 $\triangle OPR \cong \triangle OQR$

[By Side - Side - Side Criterion]

 $\angle ORP = \angle ORQ$

[Corresponding parts of congruent triangles are congruent]

Also,

 $\angle PRQ = 120^{\circ}$ $\angle ORP + \angle ORQ = 120^{\circ}$ $\angle ORP + \angle ORP = 120^{\circ}$ $2\angle ORP = 120^{\circ}$

 $\angle ORP = 60^{\circ}$

Also, $OP \perp PR$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

So, In right angled triangle OPR,

 $\cos \angle ORP = \frac{Base}{Hypotenuse} = \frac{PR}{OR}$ $\cos 60^\circ = \frac{PR}{OR} = \frac{1}{2}$ \therefore OR = 2PR OR = PR + PROR = PR + RQ [From 1] Hence Proved. **Question: 10** In the given figu Solution: Let AD = x cm, BE = y cm and CF = z cmAs we know that, Tangents from an external point to a circle are equal, In given Figure we have AD = AF = x[Tangents from point A] BD = BE = y[Tangents from point B]6CF = CE = z [Tangents from point C] Now, Given: AB = 14 cmAD + BD = 14x + y = 14 $y = 14 - x \dots [1]$ and BC = 8 cmBE + EC = 8y + z = 8

 $14 - x + z = 8 \dots$ [From 1] z = x - 6 [2] and CA = 12 cm AF + CF = 12 x + z = 12 [From 2] x + x - 6 = 12 2x = 18 x = 9 cmPutting value of x in [1] and [2] y = 14 - 9 = 5 cm z = 9 - 6 = 3 cmSo, we have AD = 9 cm, BE = 5 cm and CF = 3 cm

Question: 11

In the given figu

Solution:

Given : PA and PB are tangents to a circle with center O

To show : AOBP is a cyclic quadrilateral.

Proof:

 $OB \perp PB$ and $OA \perp AP$

[Tangent at any point on the circle is perpendicular to the radius through point of contact]

 $\angle OBP = \angle OAP = 90^{\circ}$

 $\angle OBP + \angle OAP = 90 + 90 = 180^{\circ}$

AOBP is a cyclic quadrilateral

[As we know if the sum of opposite angles in a quadrilateral is 180° then quadrilateral is cyclic] Hence Proved.

Question: 12

In two concentric

Solution:

Let us consider circles C_1 and C_2 with common center as O. Let AB be a tangent to circle C_1 at point P and chord in circle C_2 . Join OB

 $OP \perp AB$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

 \therefore OPB is a right - angled triangle at P,

By Pythagoras Theorem,

[i.e. $(Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2$]

 $(OB)^2 = (OP)^2 + (PB)^2$

Now, 2PB = AB

[As we have proved above that OP $_{\perp}$ AB and Perpendicular drawn from center to a chord bisects the chord]

2PB = 8 cm

PB = 4 cm

 $(OB)^2 = (5)^2 + (4)^2$

[As OP = 5 cm, radius of inner circle]

 $(OB)^2 = 41$

 \Rightarrow OB = $\sqrt{41}$ cm

Question: 13

In the given figu

Solution:

Given : , PQ is a chord of a circle with center 0 and PT is a tangent and $\angle QPT = 60^{\circ}$.

To Find : $\angle PRQ$

 $\angle OPT = 90^{\circ}$

 $\angle OPQ + \angle QPT = 90^{\circ}$

 $\angle OPQ + 60^\circ = 90^\circ$

$$\angle OPQ = 30^{\circ} \dots [1]$$

Also.

OP = OQ [radii of same circle]

 $\angle OQP = \angle OPQ$ [Angles opposite to equal sides are equal]

From [1], $\angle OQP = \angle OQP = 30^{\circ}$

In $\triangle OPQ$, By angle sum property

 $\angle OQP + \angle OPQ + \angle POQ = 180^{\circ}$

 $30^\circ + 30^\circ + \angle POQ = 180^\circ$

 $\angle POQ = 120^{\circ}$

As we know, the angle subtended by an arc at the center is double the angle subtended by it at any point on the remaining part of the circle.

So, we have $2 \angle PRQ = reflex \angle POQ$ $2 \angle PRQ = 360^{\circ} - \angle POQ$ $2 \angle PRQ = 360^{\circ} - 120^{\circ} = 240^{\circ}$ $\angle PRQ = 120^{\circ}$

Question: 14

In the given figu

Solution:

In the given figure, PA and PB are two tangents from common point P

 $\therefore PA = PB$

[\because Tangents drawn from an external point are equal]

 $\angle PBA = \angle PAB$

[\because Angles opposite to equal angles are equal] ...[1]

By angle sum property of triangle in $\triangle APB$

 $\angle APB + \angle PBA + \angle PAB = 180^{\circ}$

 $60^{\circ} + \angle PAB + \angle PAB = 180^{\circ} [From 1]$

 $2 \angle PAB = 120^{\circ}$

 $\angle PAB = 60^{\circ} \dots [2]$

Now,

 $\angle OAP = 90^{\circ}$ [Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

 $\angle OAB + \angle PAB = 90^{\circ}$

 $\angle OAB + 60^\circ = 90^\circ$ [From 2]

 $\angle OAB = 30^{\circ}$

Exercise : MULTIPLE CHOICE QUESTIONS (MCQ)

Question: 1

The number of tan

Solution:

The maximum number of tangents that can be drawn from an external point to a circle is two and they are equal in length.

Question: 2

In the given figu

Solution:

As SQ is diameter and OQ is radius in the given circle,

 \therefore 2OQ = SQ [As 2 × radius) = diameter]

2OQ = 6 cm

OQ = 3 cm

Now, QR is tangent

 $\therefore \ OQ \perp QR$

In right - angled $\triangle OQR$,

By Pythagoras Theorem, [i.e. (Hypotenuse)² = (Base)² + (Perpendicular)²] $(QR)^{2} + (OQ)^{2} = (OR)^{2}$ $(4)^{2} + (3)^{2} = (OR)^{2}$ $16 + 9 = (OR)^{2}$ $(OR)^{2} = 25$

OR = 5 cm

Question: 3

In a circle of ra

Solution:

We have given, PT is a tangent drawn at point T on the circle.

 $\therefore \text{ OT} \perp \text{TP}$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

So, In $\triangle OTP$ we have,

By Pythagoras Theorem,

[i.e. $(Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2$]

 $(OP)^2 = (OT)^2 + (PT)^2$

$$(OP)^2 = (7)^2 + (24)^2$$

 $(OP)^2 = 49 + 576$

 $(OP)^2 = 625$

 \Rightarrow OP = 25 cm

Question: 4

Which of the foll

Solution:

As all diameters of a circle passes through center O it is not possible to have two parallel diameters in a circle.

Question: 5

The chord of a ci

Solution:

Let us consider a circle with center O and AB be any chord that subtends 90° angle at its center.

Now, In $\triangle OAB$ OA = OB = 10 cm And as $\angle AOB = 90^{\circ}$, By Pythagoras Theorem,

[i.e. (Hypotenuse)² = (Base)² + (Perpendicular)²] (OA)² + (OB)² = (AB)² (10)² + (10)² = (AB)²

 $100 + 100 = (AB)^2$

 $\Rightarrow AB = \sqrt{200} = 10\sqrt{2}$

So, Correct option is $\ensuremath{\mathsf{C}}$.

Question: 6

In the given figu

Solution:

We have given, PT is a tangent drawn at point T on the circle.

 $\therefore \text{ OT} \perp \text{TP}$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

So, In ${\bigtriangleup} OTP$ we have,

By Pythagoras Theorem,

[i.e. $(Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2$]

 $(OP)^2 = (OT)^2 + (PT)^2$

$$(10)^2 = (6)^2 + (PT)^2$$

$$(PT)^2 = 100 - 36$$

 $(PT)^2 = 64$

$$\Rightarrow$$
 PT = 8 cm

Question: 7

In the given figu

Solution:

We have given, PT is a tangent drawn at point T on the circle and OP = 26 cm and PT = 24 cm Join OT

 \therefore OT \perp TP

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

So, In \triangle OTP we have,

 $(OT)^2 = 676 - 576$

By Pythagoras Theorem,

```
[i.e. (Hypotenuse)<sup>2</sup> = (Base)<sup>2</sup> + (Perpendicular)<sup>2</sup>]
(OP)<sup>2</sup> = (OT)<sup>2</sup> + (PT)<sup>2</sup>
(26)<sup>2</sup> = (OT)<sup>2</sup> + (24)<sup>2</sup>
```

 $(OT)^2 = 100$

OT = 10 cm

Hence, radius of circle is 10 cm.

Question: 8

PQ is a tangent t

Solution:

Let us consider a circle with center O and PQ is a tangent on the circle, Joined OP and OQ But OPQ is an isosceles triangle, \therefore OP = PQ $\angle OQP = \angle POQ$ [Angles opposite to equal sides are equal] In $\triangle OQP$ $\angle OQP + \angle OPQ + \angle POQ = 180^{\circ}$ [Angle sum property of triangle] $\angle OQP + 90^{\circ} + \angle OPQ = 180^{\circ}$ 2 $\angle OPQ = 90^{\circ}$ $\angle OPQ = 45^{\circ}$

Question: 9

In the given figu

Solution:

As AB and AC are tangents to given circle,

We have,

 $OB \perp AB$ and $OC \perp AC$

[\because Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

So, $\angle OBA = \angle OCA = 90^{\circ}$

In quadrilateral AOBC, By angle sum property of quadrilateral, we have,

 $\angle OBA + \angle OCA + \angle BOC + \angle BAC = 360^{\circ}$

 $90^{\circ} + 90^{\circ} + \angle BOC + 40^{\circ} = 360^{\circ}$

 $\angle BOC = 140^{\circ}$

Question: 10

If a chord AB sub

Solution:

Let us consider a circle with center O and AB be a chord such that $\angle AOB = 60^{\circ}$

AP and BP are two intersecting tangents at point P at point A and B respectively on the circle.

To find : Angle between tangents, i.e. ∠APB

As AP and BP are tangents to given circle,

We have,

 $OA \perp AP$ and $OB \perp BP$ [Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

So, $\angle OAP = \angle OBP = 90^{\circ}$

In quadrilateral AOBP, By angle sum property of quadrilateral, we have

 $\angle OAP + \angle OBP + \angle APB + \angle AOB = 360^{\circ}$

 $90^{\circ} + 90^{\circ} + \angle APB + 60^{\circ} = 360^{\circ}$

 $\angle APB = 120^{\circ}$

Question: 11

In the given figu

Solution:

Given: Two concentric circles (say C_1 and C_2) with common center as O and radius $r_1 = 6$ cm(inner circle) and $r_2 = 10$ cm (outer circle) respectively.

To Find : Length of the chord AB.

As AB is tangent to circle C_1 and we know that "Tangent at any point on the circle is perpendicular to the radius through point of contact"

So, we have,

 $OP \perp AB$

 \therefore OPB is a right - angled triangle at P,

By Pythagoras Theorem in $\triangle OPB$

[i.e. $(hypotenuse)^2 = (perpendicular)^2 + (base)^2$]

We have,

```
(OP)^{2} + (PA)^{2} = (OA)^{2}

r_{1}^{2} + (PA)^{2} = r_{2}^{2}

(6)^{2} + (PA)^{2} = (10)^{2}

36 + (PA)^{2} = 100

(PA)^{2} = 64

PA = 8 cm
```

Now, PA = PB,

[as perpendicular from center to chord bisects the chord and $\mbox{OP} \perp \mbox{AB}]$

So,

AB = PA + PB = PA + PA = 2PA = 2(8) = 16 cm

Question: 12

In the given figu

Solution:

As AB is tangent to the circle at point B

 $OB \perp AB$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

In right angled triangle AOB,

By Pythagoras Theorem,

[i.e. $(Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2$]

$$(OA)^2 = (OB)^2 + (AB)^2$$

 $(17)^2 = (8)^2 + (AB)^2$

[As OA = 17 cm is given and OB is radius]

 $289 = 64 + (AB)^2$

 $(AB)^2 = 225$

AB = 15 cm

Now, AB = AC [Tangents drawn from an external point are equal]

 \therefore AC = 15 cm

Question: 13

In the given figu

Solution:

In $\triangle ABC$

 $\angle ABC = 90^{\circ}$

[Angle in a semicircle is a right angle]

 $\angle ACB = 50^{\circ}$ [Given]

By angle sum Property of triangle,

```
\angle ACB + \angle ABC + \angle CAB = 180^{\circ}
```

```
90^{\circ} + 50^{\circ} + \angle CAB = 180^{\circ}
```

 $\angle CAB = 40^{\circ}$

Now,

 $\angle CAT = 90^{\circ}$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

 $\angle CAB + \angle BAT = 90^{\circ}$ $40^{\circ} + \angle BAT = 90^{\circ}$ $\angle BAT = 50^{\circ}$

Question: 14

In the given figu

Solution:

In $\triangle OPQ$ $\angle POQ = 70^{\circ}$ [Given] OP = OQ [radii of same circle] $\angle OQP = \angle OPQ$ [Angles opposite to equal sides are equal] By angle sum Property of triangle, $\angle POQ + \angle OQP + \angle OPQ = 180^{\circ}$ $70^{\circ} + \angle OPQ + \angle OPQ = 180^{\circ}$ $2 \angle OPQ = 110^{\circ}$ $\angle OPQ = 55^{\circ}$

Now,

 $\angle \text{OPT} = 90^{\circ}$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

 $\angle OPQ + \angle TPQ = 90^{\circ}$

 $55^{\circ} + \angle TPQ = 90^{\circ}$

 $\angle TPQ = 35^{\circ}$

Question: 15

In the given figu

Solution:

Given: AT is a tangent to the circle with center O such that OT = 4 cm and $\angle OTA = 30^{\circ}$.**To**

 $\text{OA} \perp \text{AT}$ [Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

 $\therefore \textsc{OAT}$ is a right - angled triangle at A and

$$\cos \angle OTA = \frac{Base}{Hypotenuse} = \frac{AT}{OT}$$

 $\cos 30^\circ = \frac{AT}{4}$
 $\frac{\sqrt{3}}{2} = \frac{AT}{4}$
 $AT = 2\sqrt{3} \text{ cm}$

Question: 16

If PA and PB are

Solution:

As AP and BP are tangents to given circle,

We have,

 $OA \perp AP$ and $OB \perp BP$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

So, $\angle OAP = \angle OBP = 90^{\circ}$

In quadrilateral AOBP,

By angle sum property of quadrilateral, we have

 $\angle OAP + \angle OBP + \angle AOB + \angle APB = 360^{\circ}$

 $90^{\circ} + 90^{\circ} + 110^{\circ} + \angle APB = 360^{\circ}$

 $\angle APB = 70^{\circ}$

Question: 17

In the given figu

Solution:

As we know,

Tangents drawn from an external point are equal, We have

AF = AE = 4 cm

[Tangents from common point A]

BF = BD = 3 cm

[Tangents from common point B]

CE = CD = x (say)

[Tangents from common point C]

Now,

AC = AE + CE

11 = 4 + x

x = 7 cm [1]

and, BC = BD + BC

BC = 3 + x = 3 + 7 = 10 cm

Question: 18

In the given figu

Solution: We know that the sum of angles subtended by opposite sides of a quadrilateral having a circumscribed circle is 180°Therefore, $\angle AOD + \angle BOC = 180°135° + \angle BOC = 180°∠BOC = 45°$

Question: 19

In the given figu

Solution:

In the given figure PT is a tangent to circle \therefore we have

 $\angle OPT = 90^{\circ}$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

 $\angle OPQ + \angle QPT = 90^{\circ}$ $\angle OPQ + 50^{\circ} = 90^{\circ}$ $\angle OPQ = 40^{\circ}$ Now, In $\triangle POQ$ OP = OQ $\angle PQO = \angle QPO = 40^{\circ}$

[Angles opposite to equal sides are equal]

Now,

 \angle PQO + \angle QPO + \angle POQ = 180°

[By angle sum property of triangle]

 $40^\circ + 40^\circ + \angle POQ = 180^\circ$

 $\angle POQ = 100^{\circ}$

Question: 20

In the given figu

Solution:

In the given figure, PA and PB are two tangents from common point P

 $\therefore PA = PB$

[Tangents drawn from an external point are equal]

 $\angle PBA = \angle PAB...[1]$

[Angles opposite to equal angles are equal]

By angle sum property of triangle in $\triangle APB$

 $\angle APB + \angle PBA + \angle PAB = 180^{\circ}$

 $60^{\circ} + \angle PAB + \angle PAB = 180^{\circ}$ [From 1]

 $2 \angle PAB = 120^{\circ}$

 $\angle PAB = 60^{\circ}...[2]$

Now,

 $\angle OAP = 90^{\circ}$ [Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

```
\angle OAB + \angle PAB = 90^{\circ}
```

```
\angle OAB + 60^\circ = 90^\circ [From 2]
```

 $\angle OAB = 30^{\circ}$

Question: 21

If two tangents i

Solution:

Let us consider a circle with center O and AP and BP are two tangents such that angle of inclination i.e. $\angle APB$ = 60°

Joined OA, OB and OP.

To Find : Length of tangents

Now,

PA = PB [Tangents drawn from an external point are equal] [1]

In $\triangle AOP$ and $\triangle BOP$

PA = PB [By 1]

OP = OP [Common] OA = OB [radii of same circle] $\triangle AOP \cong \triangle BOP$ [By Side - Side - Side Criterion] $\angle OPA = \angle OPB$ [Corresponding parts of congruent triangles are congruent] Now, $\angle APB = 60^{\circ} [Given]$ $\angle OPA + \angle OPB = 60^{\circ}$ $\angle OPA + \angle OPA = 60^{\circ}$

 $2 \angle OPA = 60^{\circ}$ $\angle OPA = 30^{\circ}$

 $In \ \triangle AOP$

 $OA \perp PA$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact \therefore AOP is a right - angled triangle.

So, we have

 $\tan \angle OPA = \frac{Perependicular}{Base} = \frac{OA}{PA}$ $\tan 30^{\circ} = \frac{3}{PA}$ $\frac{1}{\sqrt{3}} = \frac{3}{PA}$ $\implies PA = 3\sqrt{3} \text{ cm}$ From [1]PA = PB = 4 cmi.e. length of each tangent is 3\sqrt{3} cm Question: 22

In the given figu

Solution:

In Given Figure,

PQ = PR...[1]

[Tangents drawn from an external point are equal]

In $\triangle AOP$ and $\triangle BOP$

PQ = PR [By 1]

AP = AP [Common]

AQ = AR [radii of same circle]

 $\triangle AQP \cong \triangle ARP$ [By Side - Side - Side Criterion]

 $\angle QPA = \angle RPA$

[Corresponding parts of congruent triangles are congruent]

Now,

 $\angle QPA + \angle RPA = \angle QPR$

 $\angle QPA + \angle QPA = \angle QPR$

 $2 \angle QPA = \angle QPR$

 $\angle QPR = 2(27) = 54^{\circ}$

As PQ and PQ are tangents to given circle,

We have,

 $AQ \perp PQ$ and $AR \perp PR$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

So, $\angle AQP = \angle ARP = 90^{\circ}$

In quadrilateral AQRP, By angle sum property of quadrilateral, we have

 $\angle AQP + \angle ARP + \angle QAR + \angle QPR = 360^{\circ}$

 $90^{\circ} + 90^{\circ} + \angle QAR + 54^{\circ} = 360^{\circ}$

 $\angle QAR = 126^{\circ}$

Question: 23

In the given figu

Solution:

Join AC, BC and CP To Find: Length of tangents Now,

PA = PB...[1]

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

In $\triangle ACP$ and $\triangle BCP$

PA = PB [By 1]

CP = CP [Common]

CA = CB [radii of same circle]

 $\triangle ACP \cong \triangle BCP$ [By Side - Side - Side Criterion]

 $\angle CPA = \angle CPB$

[Corresponding parts of congruent triangles are congruent]

Now,

 $\angle APB = 90^{\circ}$

[Given that $\text{PA} \perp \text{PB}]$

 $\angle CPA + \angle CPB = 90^{\circ}$

 $\angle CPA + \angle CPA = 90^{\circ}$

 $2 \angle CPA = 90^{\circ}$

 $\angle CPA = 45^{\circ}$

 $In \ \triangle ACP$

 $\text{CA} \perp \text{PA}$ [Tangents drawn at a point on circle is perpendicular to the radius through point of contact

 \therefore ACP is a right - angled triangle.

So, we have

 $\tan \angle CPA = \frac{Perependicular}{Base} = \frac{CA}{PA}$ $\frac{\tan 45^\circ = \frac{4}{PA}}{1}$ $1 = \frac{4}{PA}$ $\implies PA = 4 \text{ cm}$ From [1]PA = PB = 4 cmi.e. length of each tangent is 4 cmQuestion: 24

If PA and PB are

Solution:

In Given Figure,

PA = PB...[1]

[Tangents drawn from an external point are equal]

In $\triangle AOP$ and $\triangle BOP$

PA = PB [By 1]

OP = OP [Common]

$$OA = OB$$

[radii of same circle]

 $\triangle AOP \cong \triangle BOP$

[By Side - Side - Side Criterion]

 $\angle OPA = \angle OPB$

[Corresponding parts of congruent triangles are congruent]

Now,

 $\angle APB = 80^{\circ} [Given]$ $\angle OPA + \angle OPB = 80^{\circ}$ $\angle OPA + \angle OPA = 80^{\circ}$ $2 \angle OPA = 80^{\circ}$ $\angle OPA = 40^{\circ}$ In $\triangle AOP$, $\angle OAP = 90^{\circ}$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

And

 $\angle OAP + \angle OPA + \angle AOP = 180^{\circ}$

 $90^{\circ} + 40^{\circ} + \angle AOP = 180^{\circ}$

 $\angle AOP = 50^{\circ}$

Question: 25

In the given figu

Solution:

A B

In the given Figure, Join OP

Now, $OP \perp AB$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

 $\therefore \angle OPA = 90^{\circ}$

 $\angle OPQ + \angle APQ = 90^{\circ}$

 $\angle OPQ + 58^{\circ} = 90^{\circ}$

[Given, $\angle APQ = 58^{\circ}$]

 $\angle OPQ = 32^{\circ}$

 $In \ \triangle OPQ$

OP = OQ

[Radii of same circle]

 $\angle OQP = \angle OPQ$

[Angles opposite to equal sides are equal]

 $\angle PQB = 32^{\circ}$

 $[As \angle OQP = \angle PQB]$

Question: 26

In the given figu

Solution:

In given Figure, Join OP In \triangle OPC, OP = OC [Radii of same circle] \angle OCP = \angle OPC

[Angles opposite to equal sides are equal]

 $\angle ACP = \angle OPC$

 $[As \angle OCP = \angle ACP] \dots [1]$

Now,

 $\angle OPB = 90^{\circ}$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

 $\angle OPC + \angle CPB = 90^{\circ}$ $\angle ACP + \angle CPB = 90^{\circ} [By 1]$

So,

 $\angle CPB + \angle ACP = 90^{\circ}$

Question: 27

In the given figu

Solution:

In the given Figure, Join OA

Now,

 $OA \perp PQ$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

$$\angle OAP = \angle OAQ = 90^{\circ} [1]$$

$$\angle OAB + \angle PAB = 90^{\circ}$$

 $\angle OAB + 67^{\circ} = 90^{\circ}$

 $\angle OAB = 23^{\circ}$

Now,

 $\angle BAC = 90^{\circ}$

[Angle in a semicircle is a right angle]

 $\angle OAB + \angle OAC = 90^{\circ}$

 $23^{\circ} + \angle OAC = 90^{\circ}$

 $\angle OAC = 67^{\circ}$

 $\angle OAQ = 90^{\circ} [From 1]$

 $\angle OAC + \angle CAQ = 90^{\circ}$

 $67^{\circ} + \angle CAQ = 90^{\circ}$

∠CAQ = 23° [2]

Now,

OA = OC

[radii of same circle]

 $\angle OCA = \angle OAC$

[Angles opposite to equal sides are equal]

 $\angle \text{OCA} = 67^{\circ}$

 $\angle OCA + \angle ACQ = 180^{\circ}$ [Linear Pair] 67° + $\angle ACQ = 180^{\circ}$ $\angle ACQ = 113^{\circ}$ [3] Now, In $\triangle ACQ$ By Angle Sum Property of triangle

 $\angle ACQ + \angle CAQ + \angle AQC = 180^{\circ}$

 $113^{\circ} + 23^{\circ} + \angle AQC = 180^{\circ} [By 2 and 3]$

 $\angle AQC = 44^{\circ}$

Question: 28

In the given figu

Solution:

Question: 29

O is the center o

Solution:

In Given Figure,

PQ = PR...[1]

[Tangents drawn from an external point are equal]

In $\triangle QOP$ and $\triangle ROP$

PQ = PR [By 1]

OP = OP [Common]

OQ = OR [radii of same circle]

 $\bigtriangleup QOP \cong \bigtriangleup ROP$

[By Side - Side - Side Criterion]

 $area(\Delta \text{ QOP}) = area(\Delta \text{ ROP})$

[Congruent triangles have equal areas]

 $area(PQOR) = area(\Delta QOP) + area(\Delta ROP)$

 $area(PQOR) = area(\Delta QOP) + area(\Delta QOP) = 2[area(\Delta QOP)]$

Now,

 $OQ \perp PQ$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

So, QOP is a right - angled triangle at Q with OQ as base and PQ as height.

In \triangle QOP,

By Pythagoras Theorem in $\triangle OPB$

[i.e. $(hypotenuse)^2 = (perpendicular)^2 + (base)^2$]

 $(OQ)^2 + (PQ)^2 = (OP)^2$

 $(5)^2 + (PQ)^2 = (13)^2$

 $25 + (PQ)^2 = 169$

 $(PQ)^2 = 144$

PQ = 12 cm

Area(ΔQOP) = 1/2 × Base × Height

 $= 1/2 \times OQ \times PQ$

 $= 1/2 \times 5 \times 12$

 $= 30 \text{ cm}^2$

So,

 $Area(PQOR) = 2(30) = 60 \text{ cm}^2$

Question: 30

In the given figu

Solution:

In given figure, as PR is a tangent

 $\mathbf{OQ} \perp \mathbf{PR}$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

 \Longrightarrow LQ \perp PR

 \Longrightarrow LQ \perp AB

[As, AB || PR]

AL = LB

[Perpendicular from center to the chord bisects the chord]

Now,

 $\angle LQR = 90^{\circ}$ $\angle LQB + \angle BQR = 90^{\circ}$ $\angle LQB + 70^{\circ} = 90^{\circ}$

 $\angle LQB = 20^{\circ}...[1]$

In $\triangle AQL$ and $\triangle BQL$

 $\angle ALQ = \angle BLQ$ [Both 90° as LQ $\perp AB$]

AL = LB [Proved above]

```
QL = QL [Common]
```

 $\triangle AQL \cong \triangle BQL$

[Side - Angle - Side Criterion]

 $\angle LQA = \angle LQB$

[Corresponding parts of congruent triangles are congruent]

 $\angle AQB = \angle LQA + \angle LQB = \angle LQB + \angle LQB$

 $= 2 \angle LQB = 2(20) = 40^{\circ} [By 1]$

Question: 31

The length of the

Solution:

Let us consider a circle with center O and TP be a tangent at point A on the circle, Joined OT and $\ensuremath{\mathsf{OP}}$

Given Length of tangent, TP = 10 cm, and OT = 5 cm [radius]

To Find : Distance of center O from P i.e. OP

Now,

 $OP \perp TP$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

So OPT is a right - angled triangle,

By Pythagoras Theorem in ΔOPB

[i.e. (hypotenuse)² = (perpendicular)² + (base)²]

 $(OT)^2 + (TP)^2 = (OP)^2$

 $(OP)^2 = (5)^2 + (10)^2$

 $(OP)^2 = 25 + 100 = 125$

 $OP = \sqrt{125} \text{ cm}$

Question: 32

In the given figu

Solution:

In $\triangle BOP$

OB = OP [radii of same circle]

 $\angle OPB = \angle PBO$

[Angles opposite to equal sides are equal]

As, $\angle PBO = 30^{\circ}$

 $\angle OPB = 30^{\circ}$

Now,

 $\angle OPT = 90^{\circ}$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

 $\angle BPT = \angle OPB + \angle OPT = 30^{\circ} + 90^{\circ} = 120^{\circ}$ Now, In $\triangle BPT$ $\angle BPT + \angle PBO + \angle PTB = 180^{\circ}$ $120^{\circ} + 30^{\circ} + \angle PTB = 180^{\circ}$ $\angle PTB = 30^{\circ}$ $\angle PTA = \angle PTB = 30^{\circ}$

Question: 33

In the given figu

Solution:

Given : In the given figure, a circle touches the side DF of Δ EDF at H and touches ED and EF produced at K and M respectively and EK = 9 cm

To Find : Perimeter of $\triangle EDF$

As we know that, Tangents drawn from an external point to a circle are equal.

So, we have

KD = DH ...[1]

[Tangents from point D]

 $HF = FM \dots [2]$

[Tangents from point F]

Now Perimeter of Triangle PCD

= ED + DF + EF

= ED + DH + HF + EF

= ED + KD + FM + EF [From 1 and 2]

= EK + EM

Now,

EK = EM = 9 cm as tangents drawn from an external point to a circle are equal

So, we have

Perimeter = EK + EM = 9 + 9 = 18 cm

Question: 34

To draw a pair of

Solution:

Let us consider a circle with center O and PA and PB are two tangents from point P, given that angle of inclination i.e. $\angle APB = 45^{\circ}$

As PA and PB are tangents to given circle,

We have,

 $OA \perp PA$ and $OB \perp PB$ [Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

So, $\angle OAP = \angle OBP = 90^{\circ}$

In quadrilateral AQRP,

By angle sum property of quadrilateral, we have

 $\angle OAP + \angle OBP + \angle ABP + \angle AOB = 360^{\circ}$

 $90^\circ + 90^\circ + 45^\circ + \angle AOB = 360^\circ$

 $\angle AOB = 135^{\circ}$

Question: 35

In the given figu

Solution:

As PL and PM are tangents to given circle,

We have,

 $OR \perp PM$ and $OQ \perp PL$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

So, $\angle ORM = \angle OQL = 90^{\circ}$ $\angle ORM = \angle ORS + \angle SRM$ $90^\circ = \angle \text{ORS} + 60^\circ$ $\angle ORS = 30^{\circ}$ And $\angle OQL = \angle OQS + \angle SQL$ $90^\circ = \angle OQS + 50^\circ$ $\angle OQS = 40^{\circ}$ Now, In \triangle SOR OS = OQ [radii of same circle] $\angle ORS = \angle OSR$ [Angles opposite to equal sides are equal] $\angle OSR = 30^{\circ}$ $[as \angle ORS = 30^{\circ}]$ Now, In \triangle SOR OS = SQ [radii of same circle] $\angle OQS = \angle OSQ$ [Angles opposite to equal sides are equal] $\angle OSQ = 40^{\circ} [as \angle OQS = 40^{\circ}]$ As, $\angle QSR = \angle OSR + \angle OSQ$ $\angle QSR = 30^{\circ} + 40^{\circ} = 70^{\circ}$ **Question: 36** In the given figu

Solution:

Given : \triangle PQR that is drawn to circumscribe a circle with radius r = 6 cm and QT = 12 cm QR = 9cm

Also, area(\triangle PQR) = 189 cm²

Let tangents PR and PQ touch the circle at X and Y respectively.

To Find : PQ and QR

Now,

As we know tangents drawn from an external point to a circle are equal.

Then,

QT = QY = 12 cm

[Tangents from same external point B]

TR = RX = 9 cm

[Tangents from same external point C]

PX = PY = x (let)

[Tangents from same external point A]

Using the above data we get

PQ = PY + QT = x + 12 cm

PR = PC + RX = x + 9 cm

QR = QT + TR = 12 + 9 = 21 cm

Now we have heron's formula for area of triangles if its three sides a, b and c are given

area =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

Where,

$$s = \frac{a+b+c}{2}$$

So for $\triangle PQR$

a = PQ = x + 12
b = PR = x + 9
c = QR = 21 cm
s =
$$\frac{x+12+x+9+21}{2} = x + 12$$

And

$$ar(PQR) = \sqrt{(x + 21)(x + 21 - (x + 12))(x + 21 - (x + 9))(x + 21 - 21)}$$

189 = $\sqrt{(x + 21)(9)(12)(x)}$
Squaring both side
189(189) = 108(x + 21)
7(189) = 4(x + 21)
4x² + 84x - 1323 = 0

21

As we know roots of a quadratic equation in the form $ax^2 + bx + c = 0$ are,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

So, roots of this equation are,

 $x = \frac{-84 \pm \sqrt{(84)^2 - 4(4)(-1323)}}{2(4)}$ $x = \frac{-84 \pm \sqrt{28224}}{8}$ $x = \frac{-84 \pm 168}{8}$

x = 10.5 or - 31.5

but x = -31.5 is not possible as length can't be negative.

So

PQ = x + 12 = 10.5 + 12 = 22.5 cm

Question: 37

In the given figu

Solution:

Let the bigger circle be C1 and Smaller be C2,

Now,

PQ and PT are two tangents to circle C1,

 \therefore PT = QP

[Tangents drawn from an external point are equal]

QP = 3.8 cm

[As PT = 3.8 cm is given]

Also,

PR and PT are two tangents to circle C2,

 \therefore PT = PR

[Tangents drawn from an external point are equal]

PR = 3.8 cm

[As PT = 3.8 cm is given]

QR = QP + PR = 3.8 + 3.8 = 7.6 cm

Question: 38

In the given figu

Solution:

As we know Tangents drawn from an external point are equal]

In the given Figure, we have

AP = AQ = 5 cm

[Tangents from point A] [AP = 5 cm is given]

BQ = BR = x(say)

[Tangents from point B]

CR = CS = 3 cm [:: CS = 3 cm is given]

[Tangents from point C]

Given,

BC = 7 cm

CR + BR = 73 + x = 7 cm x = 4 cmNow, AB = AQ + BQ = 5 + x = 5 + 4 = 9 cm**Question: 39** In the given figu Solution: As we know Tangents drawn from an external point are equal] In the given Figure, we have AP = AS = 6 cm [AP = 6 cm is given][: Tangents from point A] BP = BQ = 5 cm [BP = 5 cm is given][\because Tangents from point B] CR = CQ = 3 cm [CQ = 3 cm is given][∵ Tangents from point C] DR = DS = 4 cm][DR = 4 cm is given] [∵ Tangents from point D] Now. Perimeter of ABCD = AB + BC + CA + DA= AP + BP + BQ + CQ + CR + DR + DS + AS= 6 + 5 + 5 + 3 + 3 + 4 + 4 + 6 = 36 cm **Question: 40** In the given figu Solution: In $\triangle AOB$ OA = OB [radii of same circle] $\angle OBA = \angle OAB$ [Angles opposite to equal sides are equal] Also, By Triangle sum Property $\angle AOB + \angle OBA + \angle OAB = 180^{\circ}$ $100 + \angle OAB + \angle OAB = 180^{\circ}$

 $2 \angle OAB = 90^{\circ}$

 $\angle OAB = 40^{\circ}$

As AT is tangent to given circle,

We have,

 $OA \perp AT$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

So, $\angle OAT = 90^{\circ}$ $\angle OAB + \angle BAT = 90^{\circ}$ $40^{\circ} + \angle BAT = 90^{\circ}$

 $\angle BAT = 50^{\circ}$

Question: 41

In a right triang

Solution:

Let AB, BC and AC touch the circle at points P, Q and R respectively.

As ABC is a right triangle, By Pythagoras Theorem [i.e. (hypotenuse)² = (perpendicular)² + (base)²] $(AC)^2 = (BC)^2 + (AB)^2$ $(AC)^2 = (12)^2 + (5)^2$ $(AC)^2 = 144 + 25 = 169$ AC = 13 cmLet O be the center of circle, Join OP, OQ and PR Let the radius of circle be r, We have r = OP = OQ = OR[radii of same circle] [1] Now, $ar(\triangle ABC) = ar(\triangle AOB) + ar(\triangle BOC) + ar(\triangle AOC)$ As we know, Area of triangle is $1/2 \times \text{Base} \times \text{Height}$ (Altitude) Now, $\mathbf{OP} \perp \mathbf{AB}$ [Tangents drawn at a point on circle is perpendicular to the radius through point of contact] \therefore OP is the altitude in $\triangle AOB$ $OQ \perp BC$ [Tangents drawn at a point on circle is perpendicular to the radius through point of contact] \therefore OQ is the altitude in \triangle BOC

 $\mathsf{OR} \perp \mathsf{AC}$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

 \therefore OR is the altitude in $\triangle AOC$

So, we have

 $1/2 \times BC \times AB = (1/2 \times AB \times OP) + (1/2 \times BC \times OQ) + (1/2 \times AC \times OR)$

12(5) = 5(r) + 12(r) + 13(r) [Using 1]

60 = 30r

r = 2 cm

Question: 42

In the given figu

Solution:

In quadrilateral ORDS

 $\angle \text{ORD} = 90^{\circ}$

[\because Tangent at any point on the circle is perpendicular to the radius through point of contact]

 $\angle \text{OSD} = 90^{\circ}$

[\because Tangent at any point on the circle is perpendicular to the radius through point of contact]

 \angle SDR = 90° [AD \perp CD]

By angle sum property of quadrilateral PQOB

 $\angle \text{ORD} + \angle \text{OSD} + \angle \text{SDR} + \angle \text{SOR} = 360^{\circ}$

 $90^{\circ} + 90^{\circ} + 90^{\circ} + \angle SOR = 360^{\circ}$

 $\angle SOR = 90^{\circ}$

As all angles of this quadrilaterals are 90° The quadrilateral is a rectangle

Also, OS = OR = r

i.e. adjacent sides are equal, and we know that a rectangle with adjacent sides equal is a square

∴ POQB is a square

And OS = OR = DR = DS = r = 10 cm [1]

Now,

As we know that tangents drawn from an external point to a circle are equal

In given figure, We have

 $CQ = CR \dots [2]$

[\because tangents from point C]

PB = BQ = 27 cm

[\therefore Tangents from point B and PB = 27 cm is given]

BC = 38 cm [Given]

BQ + CQ = 38

27 + CQ = 38

CQ = 11 cm

From [2]

CQ = CR = 11 cm

Now,

CD = CR + DR

CD = 11 + 10 = 21 cm [from 1, DR = 10 cm]

Question: 43

In the given figu

Solution:

As ABC is a right triangle, By Pythagoras Theorem [i.e. (hypotenuse)² = (perpendicular)² + (base)²] $(AC)^2 = (BC)^2 + (AB)^2$ $(AC)^2 = (6)^2 + (8)^2$ $(AC)^2 = 36 + 64 = 100$ AC = 10 cmNow, $ar(\triangle ABC) = ar(\triangle AOB) + ar(\triangle BOC) + ar(\triangle AOC)$ As we know, Area of triangle is $1/2 \times Base \times Height(Altitude)$ Now, $OP \perp AB$ [Given] \therefore OP is the altitude in $\triangle AOB$ $OQ \perp BC$ [Given] \therefore OQ is the altitude in \triangle BOC $OR \perp AC$ [Given] \therefore OR is the altitude in $\triangle AOC$ So, we have $1/2 \times BC \times AB = (1/2 \times AB \times OP) + (1/2 \times BC \times OQ) + (1/2 \times AC \times OR)$ 6(8) = 8(x) + 6(x) + 10(x)[: OP = OQ = OR = x, Given] 48 = 24xx = 2 cm

Question: 44

Quadrilateral ABC

Solution:

Let sides AB, BC, CD, and AD touches circle at P, Q, R and S respectively.

As we know that tangents drawn from an external point to a circle are equal,

So, we have,

```
AP = AS = w (say)
```

[\because Tangents from point A]

BP = BQ = x (say)

[∵Tangents from point B] CP = CR = y (say) [∵Tangents from point C] DR = DS = z (say) [∵Tangents from point D] Now, Given, AB = 6 cmAP + BP = 6w + x = 6 ... [1]BC = 7 cmBP + CP = 7x + y = 7 ...[2]CD = 4 cmCR + DR = 4y + z = 4 ...[3]Also, AD = AS + DS = w + z ...[4]Add [1] and [3] and substracting [2] from the sum we get, w + x + y + z - (x + y) = 6 + 4 - 7w + z = 3 cmFrom [4] AD = 3 cm**Question: 45**

In the given figu

Solution:

In the given Figure,

As PA and PB are tangents from common external point P, we have

PA = PB

[\because tangents drawn from an external point are equal]

 $\angle PBA = \angle PAB$

[\because Angles opposite to equal sides are equal]

Now,

In $\triangle APB$, By Angle sum Property of triangle

 $\angle APB + \angle PBA + \angle PAB = 180^{\circ}$

 $60^{\circ} + \angle PAB + \angle PAB = 180^{\circ}$

 $2 \angle PAB = 120^{\circ}$

 $\angle PAB = 60^{\circ}$

So, We have

 $\angle PBA = \angle PAB = \angle APB = 60^{\circ}$

i.e. APB is an equilateral triangle

so, we have

PA = PB = AB = 5 cm [As PA = 5 cm]

Question: 46

In the given figu

Solution:

•

Question: 47

In the given figu

Solution:

In the given Figure AR = AP = x(let) [Radii of same circle] BP = BQ = y(let) [Radii of same circle] CR = CQ = z(let) [Radii of same circle] Now, AB = 5 cm [Given] AP + BP = 5x + y = 5y = 5 - x ... [1]BC = 7 cm [Given]BQ + CQ = 7y + z = 75 - x + z = 7 [using 1] $z = 2 + x \dots [2]$ and AC = 6 cm [Given]x + z = 6x + 2 + x = 6 [Using 2] 2x = 4x = 2 cm**Question: 48**

In the given figu

Solution:

Let tangent BC touch the circle at point $\ensuremath{\mathsf{R}}$

As we know tangents drawn from an external point to a circle are equal.

We have

AP = AQ

[tangents from point A]

BP = BR ...[1][tangents from point B] CQ = CR ...[2][tangents from point C] Now, AP = AQ \Rightarrow AB + BP = AC + CQ \Rightarrow 5 + BR = 6 + CR [From 1 and 2] \Rightarrow CR = BR - 1 ...[3] Now, BC = 4 cmBR + CR = 4BR + BR - 1 = 4 [Using 3] 2BR = 5 cmBR = 2.5 cmBP = BR = 2.5 cm [Using 2]

AP = AB + BP = 5 + 2.5 = 7.5 cm

Question: 49

In the given figu

Solution:

In given Figure,

 $\text{OA} \perp \text{AP}$ [Tangent at any point on the circle is perpendicular to the radius through point of contact]

 \therefore In right - angled $\triangle \text{OAP}\!,$

By Pythagoras Theorem

[i.e. $(hypotenuse)^2 = (perpendicular)^2 + (base)^2$]

$$(OP)^2 = (OA)^2 + (PA)^2$$

Given, PA = 12 cm and OA = radius of outer circle = 5 cm

 $(OP)^2 = (5)^2 + (12)^2$

 $(OP)^2 = 25 + 144 = 136$

OP = 13 cm ...[1]

Also,

 $OB \perp BP$ [Tangent at any point on the circle is perpendicular to the radius through point of contact]

 \therefore In right - angled $\triangle OBP$,

By Pythagoras Theorem

[i.e. (hypotenuse)² = (perpendicular)² + (base)²]

 $(OP)^2 = (OB)^2 + (PB)^2$

Now, OB = radius of inner circle = 3 cm

And, from [2] (OP) = 13 cm

 $(13)^2 = (3)^2 + (PB)^2$ $(PB)^2 = 169 - 9 = 160$

 $PB = 4\sqrt{10} \text{ cm}$

Question: 50

Which of the foll

Solution:

A circle cannot have more than two tangents parallel, because tangents to be parallel they should be at diametrically ends and a diameter has two ends only.

Question: 51

Which of the foll

Solution:

A straight line can meet a circle at two points in case if it is a chord or diameter or a line intersecting the circle at two points.

Question: 52

Which of the foll

Solution:

If a tangent is drawn from a point inside a circle, it will intersect the circle at two points, so no tangent can be drawn from a point inside the circle.

Question: 53

Assertion - and -

Solution:

Let us consider a circle with center O and radius 12 \mbox{cm}

A tangent PQ is drawn at point P such that PQ = 16 cm

To Find : Length of OQ

Now, OP \perp PQ [Tangent at any point on the circle is perpendicular to the radius through point of contact]

 \therefore In right - angled $\triangle POQ$,

By Pythagoras Theorem

[i.e. $(hypotenuse)^2 = (perpendicular)^2 + (base)^2$]

$$(OQ)^2 = (OP)^2 + (PQ)^2$$

$$(OQ^2 = (12)^2 + (16)^2$$

625 = 144 + 256

 $(OQ)^2 = 400$

OQ = 20 cm

So,

Assertion is correct, and Reason is also correct.

Question: 54

Assertion - and -

Solution:

Let PT and PQ are two tangents from external point P to a circle with center O

In $\triangle OPT$ and $\triangle OQT$ OP = OQ[radii of same circle] OT = OT[common] PT = PQ[Tangents drawn from an external point are equal] $\triangle OPT \cong \triangle OQT$ [By Side - Side - Side Criterion] $\angle POT = \angle QOT$

[Corresponding parts of congruent triangles are congruent]

i.e. Assertion is true

Now,

Consider a circle circumscribed by a parallelogram ABCD, Let side AB, BC, CD and AD touch circles at P, Q, R and S respectively.

As ABCD is a parallelogram

AB = CD and BC = AD

[opposite sides of a parallelogram are equal] [1]

Now, As tangents drawn from an external point are equal.

We have

AP = AS

[tangents from point A]

BP = BQ[tangents from point B] CR = CQ[tangents from point C] DR = DS[tangents from point D] Add the above equations AP + BP + CR + DR = AS + BQ + CQ + DSAB + CD = AS + DS + BQ + CQAB + CD = AD + BCAB + AB = BC + BC [From 1] AB = BC ...[2]From [1] and [2] AB = BC = CD = ADAnd we know, A parallelogram with all sides equal is a rhombus So, reason is also true, but not a correct reason for assertion. Hence, B is correct option. **Question: 55** Assertion - and -Solution: For Assertion : In the given Figure, As tangents drawn from an external point are equal. We have AP = AS[tangents from point A] BP = BQ[tangents from point B] CR = CQ[tangents from point C] DR = DS[tangents from point D] Add the above equations AP + BP + CR + DR = AS + BQ + CQ + DSAB + CD = AS + DS + BQ + CQAB + CD = AD + BCSo, assertion is not true For Reason,

Consider two concentric circles with common center O and AB is a chord to outer circle and is tangent to inner circle P.

Now,

 $OP \perp AB$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

We know, that perpendicular from center to chord bisects the chord.

So, P bisects AB.

Reason is true

Hence, Assertion is false, But Reason is true.

Exercise : FORMATIVE ASSESSMENT (UNIT TEST)

Question: 1

In the given figu

Solution:

In the given figure PT is a tangent to circle \therefore we have

 $\angle OPT = 90^{\circ}$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

```
\angle OPQ + \angle QPT = 90^{\circ}

\angle OPQ + 50^{\circ} = 90^{\circ}

\angle OPQ = 40^{\circ}

Now, In \triangle POQ

OP = OQ

\angle PQO = \angle QPO = 40^{\circ}

[Angles opposite to equal sides are equal]

Now,

\angle PQO + \angle QPO + \angle POQ = 180^{\circ} [

By angle sum property of triangle]

40^{\circ} + 40^{\circ} + \angle POQ = 180^{\circ}

\angle POQ = 100^{\circ}

Question: 2

If the angle betw
```

Solution:

Let us consider a circle with center O and OA and OB are two radii such that $\angle AOB = 60^{\circ}$. AP and BP are two intersecting tangents at point P at point A and B respectively on the circle. To find : Angle between tangents, i.e. $\angle APB$ As AP and BP are tangents to given circle,

We have,

 $OA \perp AP \text{ and } OB \perp BP$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

So, $\angle OAP = \angle OBP = 90^{\circ}$

In quadrilateral AOBP,

By angle sum property of quadrilateral, we have

 $\angle OAP + \angle OBP + \angle APB + \angle AOB = 360^{\circ}$

 $90^{\circ} + 90^{\circ} + \angle APB + 130^{\circ} = 360^{\circ}$

 $\angle APB = 50^{\circ}$

Question: 3

If tangents PA an

Solution:

In $\triangle AOP$ and $\triangle BOP$

AP = BP

[Tangents drawn from an external point are equal]

OP = OP [Common]

OA = OB

[Radii of same circle]

 ${\bigtriangleup}AOP\,\cong\,{\bigtriangleup}BOP$

[By Side - Side - Side criterion]

 $\angle APO = \angle BPO$

[Corresponding parts of congruent triangles are congruent]

 $\angle APB = \angle APO + \angle BPO$ $80 = \angle APO + \angle APO$ $2\angle APO = 80$ $\angle APO = 40^{\circ}$ In $\triangle AOP$ $\angle APO + \angle AOP + \angle OAP = 180^{\circ}$ [By angle sum property] $40^{\circ} + \angle AOP + 90^{\circ} = 180^{\circ}$ [$\angle OAP = 90^{\circ}$ as $OA \perp AP$ because Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

 $\angle AOP = 50^{\circ}$

Question: 4

In the given figu

Solution:

Given : From an external point A, two tangents, AD and AE are drawn to a circle with center O. At a point F on the circle tangent is drawn which intersects AE and AD at B and C, respectively. And AE = 5 cm

To Find : Perimeter of $\triangle ABC$

As we know that, Tangents drawn from an external point to a circle are equal.

So we have

 $BE = BF \dots [1]$

[Tangents from point B]

CF = CD ...[2]

[Tangents from point C]

Now Perimeter of Triangle abc

= AB + BC + AC

= AB + BF + CF + AC

 $= AB + BE + CD + AC \dots [From 1 and 2]$

= AE + AD

Now,

AE = AD = 5 cm as tangents drawn from an external point to a circle are equal

So we have

Perimeter = AE + AD = 5 + 5 = 10 cm

Question: 5

In the given figu

Solution:

As we know, Tangents drawn from an external point are equal.

CR = CQ [tangents from point C] CQ = 3 cm [as CR = 3 cm]Also, BC = BQ + CQ 7 = BQ + 3 [BC = 7 cm] BQ = 4 cmNow, BP = BQ [tangents from point B] BP = 4 cm ...[1] AP = AS [tangents from point A] AP = 5 cm [As AC = 5 cm][2]

AB = AP + BP = 5 + 4 = 9 cm [From 1 and 2]

AB = x = 9 cm

Question: 6

In the given figu

Solution:

Given : PA and PB are tangents to a circle with center O

To show : A, O, B and P are concyclic i.e. they lie on a circle i.e. AOBP is a cyclic quadrilateral.

Proof :

 $OB \perp PB$ and $OA \perp AP$

[Tangent at any point on the circle is perpendicular to the radius through point of contact]

 $\angle OBP = \angle OAP = 90^{\circ}$

 $\angle \text{OBP} + \angle \text{OAP} = 90 + 90 = 180^{\circ}$

AOBP is a cyclic quadrilateral i.e. A, O, B and P are concyclic.

[As we know if the sum of opposite angles in a quadrilateral is 180° then quadrilateral is cyclic]

Hence Proved.

Question: 7

In the given figu

Solution:

In the given Figure,

PA = PB

[Tangents drawn from an external points are equal]

 $\angle PBA = \angle PAB$

[Angles opposite to equal sides are equal]

 $\angle PBA = \angle PAB = 65^{\circ}$

In $\triangle APB$

 $\angle PAB + \angle PBA + \angle APB = 180^{\circ}$

 $65^\circ + 65^\circ + \angle APB = 180^\circ$

 $\angle APB = 50^{\circ}$

Also,

 $OB \perp AP$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

 $\angle OAP = 90^{\circ}$

 $\angle OAB + \angle PAB = 90^{\circ}$

 $\angle OAB + 65^{\circ} = 90^{\circ}$

 $\angle OAB = 25^{\circ}$

Question: 8

Two tangent segme

Solution:

Given : A circle with center O , BC and BD are two tangents such that $\angle CBD$ = 120°

To Proof : OB = 2BCProof : $In \triangle BOC and \triangle BOD$ BC = BD[Tangents drawn from an external point are equal] OB = OB[Common] OC = OD[Radii of same circle] $\triangle BOC \cong \triangle BOD$ [By Side - Side criterion] $\angle OBC = \angle OBD$ [Corresponding parts of congruent triangles are congruent]

$$\angle OBC + \angle OBD = \angle CBD$$

 $\angle OBC + \angle OBC = 120^{\circ}$

 $2 \angle OBC = 120^{\circ}$

 $\angle OBC = 60^{\circ}$

 $In \ \triangle OBC$

 $\cos \angle OBC = \frac{Base}{Hypotenuse} = \frac{BC}{OB}$

 $\cos 60^\circ = \frac{BC}{OB} = \frac{1}{2}$

 $\Rightarrow OB = 2BC$

Hence Proved !

Question: 9

Fill in the blank

Solution:

(i) secant

(ii) two

(iii) point of contact

(iv) infinitely many

Question: 10

Prove that the le

Solution:

Let us consider a circle with center O.

TP and TQ are two tangents from point T to the circle.

To Proof : PT = QT

Proof:

 $OP \perp PT$ and $OQ \perp QT$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

 $\angle OPT = \angle OQT = 90^{\circ}$

In \triangle TOP and \triangle QOT \angle OPT = \angle OQT [Both 90°] OP = OQ [Common] OT = OT [Radii of same circle] \triangle TOP $\cong \triangle$ QOT [By Right Angle - Hypotenuse - Side criterion] PT = QT [Corresponding parts of congruent triangles are congruent]

Hence Proved.
Question: 11

Prove that the ta

Solution:

Let AB be the diameter of a circle with center O.

CD and EF are two tangents at ends A and B respectively.

To Prove : CD || EF

Proof:

 $OA \perp CD$ and $OB \perp EF$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

 $\angle OAD = \angle OBE = 90^{\circ}$

 $\angle OAD + \angle OBE = 90^\circ + 90^\circ = 180^\circ$

Considering AB as a transversal

 \Rightarrow CD || EF

[Two sides are parallel, if any pair of the interior angles on the same sides of transversal is supplementary]

Question: 12

In the given figu

Solution:

We know, that tangents drawn from an external point are equal.

AD = AF

[tangents from point A] [1]

BD = BE

[tangents from point B] [2] CF = CE [tangents from point C] [3] Now, AB = AC [Given] ...[4] Substracting [1] From [4] AB - AD = AC - AF BD = CF BE = CE [From 2 and 3] Hence Proved.

Question: 13

If two tangents a

Solution:

Let PT and PQ are two tangents from external point P to a circle with center O To Prove : PT and PQ subtends equal angles at center i.e. $\angle POT = \angle QOT$ In $\triangle OPT$ and $\triangle OQT$ OP = OQ [radii of same circle]

OT = OT [common]

PT = PQ [Tangents drawn from an external point are equal]

 $\triangle OPT \cong \triangle OQT$ [By Side - Side - Side Criterion]

 $\angle POT = \angle QOT$ [Corresponding parts of congruent triangles are congruent]

Hence, Proved.

Question: 14

Prove that the ta

Solution:

Let us consider a circle with center O and BC be a chord, and AB and AC are tangents drawn at end of a chord

To Prove : AB and AC make equal angles with chord, i.e. $\angle ABC = \angle ACB$

Proof:

 $In \ {\bigtriangleup} ABC$

AB = PC

[Tangents drawn from an external point to a circle are equal]

 $\angle ACB = \angle ABC$

[Angles opposite to equal sides are equal]

Hence Proved.

Question: 15

Prove that the pa

Solution:

Consider a circle circumscribed by a parallelogram ABCD, Let side AB, BC, CD and AD touch circles at P, Q, R and S respectively.

To Proof : ABCD is a rhombus.

As ABCD is a parallelogram

AB = CD and $BC = AD \dots [1]$

[opposite sides of a parallelogram are equal]

Now, As tangents drawn from an external point are equal.

We have

AP = AS

[tangents from point A]

BP = BQ

[tangents from point B]

CR = CQ

[tangents from point C]

DR = DS

[tangents from point D]

Add the above equations

AP + BP + CR + DR = AS + BQ + CQ + DSAB + CD = AS + DS + BQ + CQAB + CD = AD + BCAB + AB = BC + BC [From 1]AB = BC ...[2]From [1] and [2]AB = BC = CD = AD

And we know,

A parallelogram with all sides equal is a rhombus

So, ABCD is a rhombus.

Hence Proved.

Question: 16

Two concentric ci

Solution:

Given : Two concentric circles (say C_1 and C_2) with common center as O and radius $r_1 = 5$ cm and $r_2 = 3$ cm respectively.

To Find : Length of the chord of the larger circle which touches the circle C_2 . i.e. Length of AB.

As AB is tangent to circle C_2 and we know that "Tangent at any point on the circle is perpendicular to the radius through point of contact"

So, we have,

 $OP \perp AB$

 \therefore OPB is a right - angled triangle at P,

By Pythagoras Theorem in $\triangle OPB$

[i.e. $(hypotenuse)^2 = (perpendicular)^2 + (base)^2$]

We have,

 $(OP)^2 + (PB)^2 = (OB)^2$

$$r_2^2 + (PB)^2 = r_1^2$$

 $(3)^2 + (PB)^2 = (5)^2$

 $9 + (PB)^2 = 25$

 $(PB)^2 = 16$

PB = 4 cm

Now, AP = PB,

[as perpendicular from center to chord bisects the chord and OP \perp AB]

So,

AB = AP + PB = PB + PB = 2PB = 2(4) = 8 cm

Question: 17

A quadrilateral i

Solution:

Let us consider a quadrilateral ABCD, And a circle is circumscribed by ABCD Also, Sides AB, BC, CD and DA touch circle at P, Q, R and S respectively. To Proof : Sum of opposite sides are equal, i.e. AB + CD = AD + BCProof : In the Figure, As tangents drawn from an external point are equal. We have AP = AS[tangents from point A] BP = BQ[tangents from point B] CR = CQ[tangents from point C] DR = DS[tangents from point D] Add the above equations AP + BP + CR + DR = AS + BQ + CQ + DSAB + CD = AS + DS + BQ + CQAB + CD = AD + BCHence Proved.

Question: 18

Prove that the op

Solution:

Consider a quadrilateral, ABCD circumscribing a circle with center O and AB, BC, CD and AD touch the circles at point P, Q, R and S respectively.

Joined OP, OQ, OR and OS and renamed the angles (as in diagram)

To Prove : Opposite sides subtends supplementary angles at center i.e.

 $\angle AOB + \angle COD = 180^{\circ} \text{ and } \angle BOC + \angle AOD = 180^{\circ}$

Proof : In $\triangle AOP$ and $\triangle AOS$ AP = AS[Tangents drawn from an external point are equal] AO = AO[Common] OP = OS[Radii of same circle] $\triangle AOP \,\cong\, \triangle AOS$ [By Side - Side - Side Criterion] $\angle AOP = \angle AOS$ [Corresponding parts of congruent triangles are congruent] $\angle 1 = \angle 2 ... [1]$ Similarly, We can Prove $\angle 3 = \angle 4 \dots [2]$ $\angle 5 = \angle 6 \dots [3]$ $\angle 7 = \angle 8 \dots [4]$ Now, As the angle around a point is 360° $\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5 + \angle 6 + \angle 7 + \angle 8 = 360^{\circ}$ $\angle 2 + \angle 2 + \angle 3 + \angle 3 + \angle 6 + \angle 6 + \angle 7 + \angle 7 = 360^{\circ}$ [From 1, 2, 3 and 4] $2(\angle 2 + \angle 3 + \angle 6 + \angle 7) = 360^{\circ}$ $\angle AOB + \angle COD = 180^{\circ}$ [As, $\angle 2 + \angle 3 = \angle AOB$ and $\angle 5 + \angle 6 = \angle COD$] [5] Also, $\angle AOB + \angle BOC + \angle COD + \angle AOD = 360^{\circ}$ [Angle around a point is 360°] $\angle AOB + \angle COD + \angle BOC + \angle AOD = 360^{\circ}$ $180^\circ + \angle BOC + \angle AOD = 360^\circ$ [From 5] $\angle BOC + \angle AOD = 180^{\circ}$ Hence Proved **Question: 19** Prove that the an Solution: 0

Let us consider a circle with center O and PA and PB are two tangents to the circle from an

external point P

```
To Prove : Angle between two tangents is supplementary to the angle subtended by the line segments joining the points of contact at center, i.e. \angle APB + \angle AOB = 180^{\circ}
```

Proof :

As AP and BP are tangents to given circle,

We have,

 $OA \perp AP$ and $OB \perp BP$

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

So, $\angle OAP = \angle OBP = 90^{\circ}$

In quadrilateral AOBP, By angle sum property of quadrilateral, we have

 $\angle OAP + \angle OBP + \angle AOB + \angle APB = 360^{\circ}$

 $90^{\circ} + 90^{\circ} + \angle AOB + \angle APB = 360^{\circ}$

 $\angle AOB + \angle APB = 180^{\circ}$

Hence Proved

Question: 20

PQ is a chord of

Solution:

Given : A circle with center O and radius 3 cm and PQ is a chord of length 4.8 cm. The tangents at P and Q intersect at point T $\,$

To Find : Length of PT

Construction : Join OQ

Now in $\triangle OPT$ and $\triangle OQT$

OP = OQ

[radii of same circle]

PT = PQ

[tangents drawn from an external point to a circle are equal]

OT = OT

[Common]

 $riangle OPT \cong riangle OQT$

[By Side - Side - Side Criterion]

 $\angle POT = \angle OQT$

[Corresponding parts of congruent triangles are congruent]

or $\angle POR = \angle OQR$

Now in $\triangle OPR$ and $\triangle OQR$

OP = OQ

[radii of same circle]

OR = OR [Common]

 $\angle POR = \angle OQR$ [Proved Above]

 $\triangle OPR \cong \triangle OQT$

[By Side - Angle - Side Criterion]

 $\angle ORP = \angle ORQ$ [Corresponding parts of congruent triangles are congruent] Now, $\angle ORP + \angle ORQ = 180^{\circ}$ [Linear Pair] $\angle ORP + \angle ORP = 180^{\circ}$ $\angle ORP = 90^{\circ}$ \Rightarrow OR | PO \Rightarrow RT \perp PQ As OR \perp PQ and Perpendicular from center to a chord bisects the chord we have PR = QR = PQ/2 = 16/2 = 8 cm \therefore In right - angled $\triangle OPR$, By Pythagoras Theorem [i.e. (hypotenuse)² = (perpendicular)² + (base)²] $(OP)^2 = (OR)^2 + (PR)^2$ $(10)^2 = (OR)^2 + (8)^2$ $100 = (OR)^2 + 64$ $(OR)^2 = 36$ OR = 6 cmNow, In right angled \triangle TPR, By Pythagoras Theorem $(PT)^2 = (PR)^2 + (TR)^2 [1]$ Also, OP | OT [Tangent at any point on the circle is perpendicular to the radius through point of contact] In right angled $\triangle OPT$, By Pythagoras Theorem $(PT)^2 + (OP)^2 = (OT)^2$ $(PR)^{2} + (TR)^{2} + (OP)^{2} = (TR + OR)^{2}$ [From 1] $(8)^{2} + (TR)^{2} + (10)^{2} = (TR + 6)^{2}$ $64 + (TR)^2 + 100 = (TR)^2 + 2(6)TR + (6)^2$ 164 = 12TR + 3612TR = 128TR = 10.7 cm [Appx]Using this in [1] $PT^2 = (8)^2 + (10.7)^2$ $PT^2 = 64 + 114.49$ $PT^2 = 178.49$

PT = 13.67 cm [Appx]