ELASTICITY

• Rigid Body :

A body whose size and shape cannot be changed, however large the applied force may be is called rigid body.

There is no perfectly rigid body in nature.

• Deformation force :

The force which changes the size or shape or both of a body without moving it as a whole is called deformation force.

• Restoring force :

The force which restores the size and shape of the body when deformation force is removed is called restoring force.

Magnitude of restoring force is equal to the deformation force. But they are in opposite direction. They do not form action, reaction pair. This force is responsible for the elastic nature of the body.

• Elasticity :

The property of a material by virtue of which it regains its original size and shape when defor mation force is removed is called elasticity. Ex : Steel, Rubber.

No body is perfectly elastic, but quartz is the nearest example.

Elasticity is molecular property of matter.

• Plasticity :

The property of a material by virtue of which it does not regain the size and shape when the de formation force is removed is called Plasticity. Ex : Putty dough, Chewing gum, Lead sholder. No body is perfectly plastic but putty is nearest example.

• Stress :

The restoring force per unit area is called stress.

Stress =
$$\frac{\text{restoring force}}{\text{area of cross section}} = \frac{F}{A}$$

Unit: N/m^2 or Pascal.

• Strain :

The change produced per unit dimension is called strain.

Strain =
$$\frac{\text{change in dimension}}{\text{original dimension}}$$

Longitudinal strain =
$$\frac{\text{change in length}}{\text{original length}} = \frac{e}{\lambda}$$

$$=\frac{\Delta x}{L}=\phi$$

This strain is due to the change in shape of the body.

Volumetric strain (or) Bulk strain

$$=\frac{\text{change in volume}}{\text{original volume}}=\frac{-\Delta V}{V}$$

Shearing strain = $2 \times e$

(e is longitudinal strain).

Bulk strain (or) Volumetric strain = $3 \times e$ Longitudinal strain : Shearing strain : Bulk strain = 1 : 2 : 3.

•. Elastic limit :

The maximum value of the stress with in which the body regains its original size and shape is called elastic limit.

• Hooke's law :

With in the elastic limit, stress is directly propor tional to strain.

$$\frac{\text{Stress}}{\text{Stresin}} = \text{E} = \text{const.}$$

Strain

With in the elastic limit, stress-strain graph is a straight line passing through the origin. Slope of the graph is E.

Spring balance works on the principle of Hooke's law.

Modulus of elasticity depends on the nature of the material, but it is independent of dimensions. **Young's modulus (Y) :**

 $Y = \frac{\text{longitudinal stress}}{\text{longitudinal strain}} = \frac{F\lambda}{Ae}$

If load attached to the wire is M, then F = Mg,

and
$$A = \pi r^2$$

 $Y = \frac{Mgl}{\pi r^2 e} e$

If the load attached to the wire and y are con stant

$$e \propto \frac{\lambda}{r^2}$$

If length is also constant

$$e \propto \frac{1}{r^2}$$

If volume of the wire is constant

$$e \propto \lambda^2 \ ; \ e \propto \frac{1}{A^2} \ ; \ e \propto \frac{1}{r^4}$$

• Elongation of a wire under its own weight

$$e = \frac{1^2 dg}{2Y}$$
 (d is density).

If λ_1, λ_2 are the lengths of a wire under tensions

 $T_1 \& T_2$ then the length of the unstretched wire.

$$\lambda \!=\! \frac{\lambda_1 T_2 - \lambda_2 T_1}{T_2 - T_1}$$

When a load is suspended from a wire its elon gation is e. If the load is immersed in a liquid of density ' ρ ' then the new elongation.

$$e^1 = e(1 - \rho/d)$$

d is density of load

• Stress required to double the length of the wire is numerically equal to the Young's modulus. If a load 'M' produced elongation e in a wire, the raise in temperature required to produce same elongation.

$$\lambda \alpha \Delta \theta = \frac{Mg\lambda}{AY}; \ \Delta \theta = \frac{Mg}{AY\alpha}$$

Two wires of same length and radius are joined end to end and loaded. If Young's moduli of the materials are $Y_1 \& Y_2$, the Young's modulus of

the combination is
$$\frac{2}{Y} = \frac{1}{Y_1} + \frac{1}{Y_2}$$
; $Y = \frac{2Y_1Y_2}{Y_1 + Y_2}$

For a perfectly elastic material e = 0. So Young's modulus is infinity.

For a plastic material the Young's modulus is zero. From Searle's experiment the Young's modulus of the material of wire.

$$Y = \frac{Mg\lambda}{\pi r^2 e}$$

The graph between load and elongation is a straight

line passing through the origin.

Behaviour of a wire under increasing load.

Proportional limit (A) :

Upto the point A stress is directly proportional to the strain and the wire obeys Hooke's law.

Elastic limit (B) :

In the region AB, the wire does not obey Hooke's law but it regains, the original length when load is removed.

Yield point C:

The point where elasticity ends and plasticity begins is called yield point.

Here the wire behaves like fluid and it elongates with time.

Permanent set (OP) :

The permanent increase in length of the wire af ter removing the load is called permanent set.

Permanent set = $OP x \lambda$

Breaking Point : The point in the graph where the wire breaks.

Breaking Stress :

The stress required to break the wire is called breaking stress.

The maximum stress the material can with stand without breaking is called breaking stress. Breaking stress

breaking force

initial area of cross section

$$=\frac{Mg}{A}=\frac{A\lambda dg}{A}=\lambda dg$$

The maximum length of the wire that can hang without breaking under its own weight

$$\lambda \!=\! \frac{breaking\,stress}{dg}$$

Breaking stress depends on the nature of the material, but it is independent of dimensions.

JR.PHYSICS

.

Breaking stress per unit area is called tensile strength.

Breaking force = Breaking stress x area Breaking force is independent of length of the wire, but it depends on the nature of material and area of cross section.

$F \propto A, F \propto r^2$

If we cut a wire that can support a maximum load W into two equal parts, then each part of the wire can support a maximum load W.

• Elastic fatigue :

The state of temporary loss of elastic property due to continuous strain is called elastic fatigue. If some rest is given to the wire, it regains the elastic property.

Due to elastic fatigue

a) A wire can be broken with in the elastic limit.b) A wire can be cut into two pieces without

using instruments.

c) Railway tracks and bridges declared unsafe after long use.

d) Spring balance show wrong reading on long use.

e) If the material doesn't break after the elastic limit, it is used to prepare thin wires. It is called ductile metal.

Ex : Copper, Silver, Gold etc.

f) If the material braeaking after elastic limit, it is not used to prepare thin wires . It is called brittle metal. Ex : Glass.

• Elastic after effect :

The delay in regaining the original state on re moval of the deforming force on a body is called elastic after effect.

For a perfectly elastic body, the elastic after ef fect is zero.

For a perfectly plastic body, the elastic after effect is infinity.

For a given load the elongation of steel wire is less than rubber. So steel is more elastic than rubber.

Springs are made of steel, because it is more elastic.

Elasticity of a material will decrease with increase of temperature.

For rubber elasticity will increase with tempera ture.

For invar steel elasticity is independent of tem perature.

Annealing means slow cooling after heating. It

decreases the elastic property.

Hammering and rolling increases with elastic property.

Elastic property of a material increase with ad dition of impurity.

Thermal force :

When a metal bar is fixed between two supports and heated, it tries to expand and exerts force on the walls. This is called thermal force.

 $F = AY\alpha\theta$

Thermal force is independent of length of the bar. Thermal stress (linear compressive stress)

$$\frac{\text{force}}{\text{area}} = \frac{AY\alpha\theta}{A} = Y\alpha\theta.$$

Rigidity modulus :

With in the elastic limit, the ratio of tangential stress to the shearing strain is called rigidity modulus.

Rigidity modulus = $\frac{\text{tangential stress}}{\text{shearing strain}}$

 $n = \frac{F}{A\theta}$

•

a) If n is small for a wire, it can be twisted eas ily.

- b) As the rigidity modulus of phsphor bronze is low, it is used as supspension wire in moving coil galvanometer.
- c) A rod of length '*l*' and radius r is fixed at one end. If the other free end is twisted through an angle θ . Then the angle of shear ' ϕ ' is given

One end of the rod is fixed the other free end is twisted through an angle θ by applying a torque τ . The work done on the rod is

$$W = \frac{1}{2}\tau\theta$$

When a spring is stretched, the strain involved is shear.

When a helical spring (thickness is large) is stretched, the strain involved is longitudinal and shearing strain.

•

Bulk modulus (K)Relation among elastic constants y.n.k.With in the clastic limit the ratio between volume
stress and bulk strain is called bulk modulus.
$$9 = \frac{1}{y} = \frac{1}{k} + \frac{3}{n}$$
 (or) $Y = \frac{9nk}{3K+n}$ Bulk modulus $= \frac{volume stress}{bulk strain}$ $9 = \frac{1}{y} = \frac{1}{k} + \frac{3}{n}$ (or) $Y = \frac{9nk}{3K+n}$ $K = \frac{F}{A} = -\frac{V}{V} = -\frac{PV}{\Delta V}$ Punching a hole of radius '' in a metal plate of
thickness ''. The force required is calaculated
by the formula.(-sign shows decrease in volume)I) fa block of coefficient of cubical expansin 'Y
is beated through a rise in temperature of 0,
the pressure to be applied on it to prevent its
expansion = Ky0 where K is its bulk modulus is
in its volume $\Delta V = \frac{hdgV}{K}$.(d -density of material)For an incompressible material, $\Delta V = 0$, so
bulk modulus of the gas -
P(pressure)Adiabatic bulk modulus of the gas -
P(pressure)Piscon's ratio (σ)The reciprocal of bulk modulus is called com
pressibily $E = \frac{1}{2}Kx^2 \Rightarrow \frac{1}{2}Lx = \frac{F^2}{2K}$ Two spring having force constants K₁ & K₂
($K_1 > K_2$) are stretched by same fore
the more work is done on the second spring.
 $W \ll 1/k$.• Disson's ratio (σ)The reciprocal of bulk modulus is called com
pressibily• Poisson's ratio (σ)The ratio lareal contraction strain
tubinal clongation strain
 $= \frac{Laranverse strain}{longitudinal strain strain $= \frac{Ln'r}{\Delta L/\lambda} - \frac{\Delta r^2}{\Delta X x} r$ i) As it is a ratio, it has no units and dimension,
ii) The oreical limits of $\sigma = 0$ to 0.5
iii) For an incompressible substance $\sigma = 0.5$ (b) As it is a ratio, it has no units and dimension,
iii) For an incompressible substance $\sigma = 0.5$ (abach$

F = kx; $k = \frac{F}{x}$ (or) force constant f Young's modulus area $h k = \frac{yA}{\lambda}.$ pring -2 K constants $K_1 \& K_2$ by same amount then first spring $W \propto K$. constants retched by same force on the second spring. the springs the relation constant $F \propto \sqrt{K}$. ing a wire *V*olume

ume (energy density)

$$E = \frac{1}{2}x \text{ stress } x \text{ strain} = \frac{1}{2}Y(Strain)^{2}$$

Also, $E = \frac{(Stress)^{2}}{2Y} \left[\therefore Y = \frac{Stress}{Strain} \right]$

CONCEPTUAL QUESTIONS

- The breaking stress of a wire depends upon
 1) material of the wire
 2) length of the wire
 3) radius of the wire
 4) shape of the cross section
- 2. A wire can sustain the weight of 40kg before breaking. If the wire is cut into 4 equal parts, each part can sustain a weight of ...kg

3. Which of the following relation is not correct ?

1)
$$\frac{y}{n} = 2(1+\sigma)$$

2) $\frac{y}{3k} = 1-2\sigma$
3) $\frac{y}{n} = \frac{9kn}{3k+n}$
4) $\frac{y}{n} + \frac{y}{3k} = 3$

4. When an elastic material with young's modulus 'y' is subjected to a stretching stress 's', the elastic energy stored per unit volume is

1)
$$\frac{s^2}{2y}$$
 2) $\frac{ys^2}{2}$ 3) $\frac{s}{2y}$ 4) $\frac{ys}{2}$

5. When an elastic material of young's modulus 'y' is subjected to certain stress, the strain is 'x'. The elastic energy stored per unit volume is

1)
$$\frac{1}{2}yx^2$$
 2) $\frac{x^2}{2y}$ 3) $\frac{y^2}{2x}$ 4) xy^2

6. A wire extends by 'I' on the application of load 'mg'. Then, the work done is

- 7. Elongation of a wire under its own weight is independent of
 - 1) Length 2) Area of cross section
 - 3) Density 4) Young's modulus
- 8. The following substances which possess rigidity modulus1) Only Solids 2) Only liquids

3) Liquids and Gases 4) Solids, Liquids and Gases

 The young's modulus of a wire of length 'L' and radius 'r' is 'Y'. If length is reduced to L/2 and radius r/2, Youngs modulus will be

- 10. A spiral spring is stretched by a force, the resultant strain produced in the spring is
 1) Volume strain
 2) shearing strain
 - 3) longitudinal strain 4) all the above
- 11. A long string is stretched by 2cm and the P.E. is U. If the string is stretched by 10cm its P.E. will be
 1) U/25 2) U/5 3) 5U 4) 25 U
- 12. Steel is preferred for making springs over copper because
 - 1) Y of steel is more than that of copper
 - 2) Steel is cheaper
 - 3) Y of copper is more than steel
 - 4) Steel is less likely to be oxidised

- 13. Reason for the deformation of a regular body is
 1) bulk strain
 3) linear strain
 4) lateral strain
- 14. A copper wire and a steel wire of the same diameter and length are connected end to end and a force is applied so that their combined length stretched by 1cm. The two wires have
 - 1) same stress, same strain
 - 2) same stress, different strains
 - 3) same strain different stress
 - 4) different stress, different strains
- 15. The poisson's ratio cannot have the value

 1) 0.7
 2) 0.2
 3) 0.1
 4) 0.3
- 16. A metallic rod of length 'L' and cross-section 'A' has Young's modulus 'Y' and coefficient of linear expansion 'a'. If the rod is heated to a temperature 'T' the energy stored per unit volume is :

1)
$$\frac{1}{2}$$
Y α^{2} T²
2) $\frac{1}{2}$ YA α^{2} T²
3) $\frac{1}{2}$ YA α T
4) $\frac{1}{2}$ YA α^{2} T²

17. Three wires A, B, C made of different materials elongated by 1.5, 2.5, 3.5 mm, under a load of 5kg. If the diameters of the wires are the same, the most elastic material is that of

radius have different lenghts. The graphs in the figure show the elongation-load variation. The longest wire is

- A 2) B 3) C 4)All
 In the above problem, all the wires have the same
- dimensions but are madeup of different, materials. The most elastic wire is

2) B

20. A wire is under a load. If α is the longitudial strain and Y, the young modulus of the material of the wire, the elastic strain energy per unit volume of the wire is

1)
$$\frac{1}{2}$$
Y α^2 2) $\frac{Y\alpha}{2}$ 3) $\frac{Y^2\alpha}{2}$ 4) 2Y α

- 21. The modulus of elasticity is dimensionally equivalent to
 1) Stress 2) Surface tension 3) Strain
 4) Coefficient of viscosity
- 22. Modulus of elasticity for a perfectly elastic body is1) Zero 2) Infinity 3) 1 4) 2

18.

1) A

and

23.	A wire of length 'L' and radius 'r' is fixed at one end. A force 'F' applied to the other end produces an extension 'I'. The extension produced in another wire of the same material of length '2L', radius '2 r' by a force F is	32.	A wire elongates by 1 mm when a load W is hung from it. If the wire goes over a pulley and two weights W each are hung at the two ends, the elongation of the wire will be
	1) l 2) $\frac{l}{2}$ 3) 8 l 4) 2 l	33.	The graph shows the behaviour of a steel wire in the
24.	An iron bar of length l, cross section A and Young's modulus Y is heated from 0 to 100°C. If this bar is held so that it is not permitted to bend to expand, the		graph is a part of a parabola. The variables x and y might represent.
	force F that is develoed, is proportional to $1 \cdot 1 = 2 \cdot \sqrt{1} = -3 \cdot 1^0 = -4 \cdot 1^{-1}$		[↓] Y
25.	As temperature increases the Young's modulus of the		×
	material of a wire1) increases2) decreases		1) $x = stress$; $y = strain$ 2) $x = strain$; $y = stress$ 3) $x = strain$; $y = elastic energy$
	3) remains the same 4) becomes infinite		(x = strain, y = clastic energy)
26.	When a rubber cord is stretched, the change in volume	34	A student plotted a graph from his readings on the
	is negligible compared to the change in its linear dimension. Then poisson's ratio for rubber is	54.	determination of Young's modulus of a metal wire but forgotten to label. The quantities on x and y cannot
	1) infinite 2) zero $(3) 0.5 (4) -1$		represent.
27.	Hooke's law states that		↓ Σ
	1) Stress is inversely proportional to strain		
	2) Stress is directly proportional to strain		×
	3) Stress is independent of strain		
20	4) Stress is proportional to elastic modulus		1) weight hung and extension
28.	If stress is numerically equal to young's modulus, the elongation will be		2) stress applied and extension
	1) 1/4 the original length		3) stress applied and strain produced
	2) $1/2$ the original length		4) stress applied and energy stored
	3) equal to the original length		KEY (1) (1) (2) (1) (2) (2) (4) (1) (5) (1) (6) (2)
	4) Twice the original length		07)2 $08)1$ $09)2$ $10)3$ $11)4$ $12)1$
29.	Force vs Elongation graph of a wire is shown in the		13) 2 14) 2 15) 1 16) 1 17) 1 18) 3
	figure. Then, at two different temperatures ${\rm T_1} \And {\rm T_2}$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	1211		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	ery Τ,		51)1 52)2 55)4 54)4 IEVEL 1
	gal / T.	1	LEVEL-I
	g	1.	0.4 mm^2 . The stress produced in N/m ² is
	O'Force X		1) 4.9×10^{-6} 2) 4.9×10^{8}
	1) $T_1 = T_2$ 2) $T_1 < T_2$ 3) $T_1 > T_2$		3) 49 x 10 ⁸ 4) 2.45 x 10 ⁻⁶
30.	4) cannot be predicted. A material has poisson's ratio of 0.5. If a uniform rod	2.	A force of 30N acts on a rod of area of cross section $5 \times 10^{-6} \text{ m}^2$. The stress produced in dyne/cm ² is
	suffers a longitudinal strain of 2×10^{-3} the percentage		1) 6×10^{6} 2) 6×0^{7} 3) 6×10^{5} 4) 0.16×10^{-6}
	increase in its volume is 1) 2% 2) $0.5\%3$) 4% 4) 0%	3.	The length of a wire is 4m. Its length is increased by
31.	The elastic after effect shows that the		211111 when a force acts on it. The strain is 1) 0.5×10^{-3} 2) 5×10^{-3} 2) 2×10^{-3} 4) 0.05
	1) strain in a material is lagging behind stress	1	$\frac{1}{10.5 \times 10^{-2} - 2} \frac{5 \times 10^{-5} - 5}{2 \times 10^{-5} - 5} \frac{2 \times 10^{-4} + 0.05}{2 \times 10^{-4} - 0.05}$
	2) strain produced is quick	4.	The strain produced is
	3) elasticity of the material vanishes		1) 1 x 10^{-4} 2) 0.01 3) 1 4) 104
	4) stress is developed very slowly.		

JR.PHYSICS

299

5)	Two steel wires have equal volumes. Their diameters		1) Wire of length 1 m and diameter 1 mm
	are in the ratio 2 : 1. When same force is applied on		2) Length 2m, diameter 2 mm
	them, the elongation produced will be in the ratio of		3) Length 3m, diameter 3 mm
	1) 1:8 2) 8:1 3) 1:16 4) 16:1		4) Length 0.5m, diameter 0.5mm
6.	Two wires of the same material and length have diameters in the ratio $2:3$ When they are stretched	17.	An elongation of 0.1% in a wire of cross section
	by same force, the ratio of energies stored in them is		10^{-6} m ² causes a tension of 100N. Y for the wire is
	1) $2:3$ 2) $3:2$ 3) $4:9$ 4) $9:4$		1) 10^{12} N/m ² 2) 10^{11} N/m ²
7.	The diameters of two steel wires are in the ratio $2:3$.		3) 10^{10} N/m ² 4) 100 N/m ²
	Their lengths are equal. When same force is applied	18.	When the load on a wire is slowly increased from 3
	on them, the ratio of the elongation produced is		to 5kg wt, the elongation increases from 0.61 to 1.02
	1) 4 : 9 2) 9 : 4 3) 3 : 2 4) 2 : 3		mm. The work done during the extension of wire is $(a=10 \text{ ms}^{-2})$
8.	A metallic wire of force constant 'k' is cut into two		(g-10008)
	of larger one is	10	1 0.103 2 0.0103 3 1.03 4 103
	1) k/3 = 2) 3k/2 = 3) 2k/3 = 4) k/2	17.	longitudinal strain of 2 x 10^{-3} , then the percentage
9.	The force that must be applied to a steel wire 6m		change in volume is
	long and diameter 1.6mm to produce an extension of		1)+0.12 2)-0.12 3) 0.28 4)-0.28
	$1 \text{ mm} [\text{y}=2.0 \text{ x } 10^{11} \text{ N.m}^2]$ is approximately.	20.	The breaking force for a wire of radius 'r' is 'F'. The
	1) 100N 2) 50N 3) 67N 4) 33.5N		breaking force for the wire of same material but
10.	Two wires A and B of same material have lengths in		1) E = 2) 2E = 3) 4E = 4) 8E
	stretched by same force, the ratio of the increase in	21	Vound's modulus of material of a wire is 200G Pa. The
	their lengths will be	21.	stress required to produce a strain of 4×10^{-3} in pa is
	1) 2:1 2) 1:4 3) 8:1 4) 1:8		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11.	A wire of length 'l' and radius 'r' is clamped rigidly at		3) 5 x 10 ⁷ 4) 8 x 10 ⁸
	one end. When the other end of the wire is pulled by	22.	A wire of 10m long and 1mm ² area of cross section is
	a force F', its length increases by X. Another wire of same material of length '21' and radius '2r' is pulled		stretched by a force of 20N. If the elongation is 2mm, the
	by a force '2F', the increase in its length will be		young's modulus of the material of the wire (in pa) is 1) 1×10^9
	1) x 2) 2x 3) x/2 4) 4x		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
12.	The area of cross section of a wire is $10^{-6}m^2$. When	23	The force required to double the length of a steel
	its length is increased by 0.1% , a tension of $1000N$ is	23.	wire of area of cross section $5 \times 10^{-5} \text{m}^2$
	produced. The young's modulus of the wire will be $1 > 10 2N /2$		(y=20 x10 ¹⁰ pa.) (in N) is
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1) 10^7 2) 10^6 3) 10^{-7} 4) 10^5
12	3) 10 ⁻¹ N/m ² 4) 10 ⁻¹ N/m ²	24.	The lengths of two wires of the same material and
13.	A steel with of length 1 m has cross sectional area 1 cm . If young's modulus of steel is 10ll M/m^2 , then force		diameter are 100cm and 125cm. If same force is
	required to increase the length of wire by 1mm will be		then the elongation in the second wire (in mm) is
	1) 10^{11} N 2) 10^{7} N 3) 10^{4} N 4) 10^{2} N		1) 4 2) 5 3) 0.8 4) 1.25
14.	If the poisson's ratio of a solid is 2/5, then the ratio of	25.	Ratio of lengths of two brass wires is 3 : 4; their
	its young's modulus to the rigidity modulus is		areas of cross section are in the ratio 2:3. When same
	1) 5/4 2) 7/15 3) 14/9 4) 14/5		torce is applied on them, the elongations produced
15.	Force required to increase the length of a wire of		
	area of cross-section 'A' by one percent, (Y is young's		1) 9 : 8 2) 8 : 9 3) $2\sqrt{2}$: 3 4) 1 : 1
	$\frac{1}{1} \Delta \mathbf{V} = 2 \Delta \mathbf{V} / 10 = 2 \Delta \mathbf{V} / 100 = 4 \Delta \mathbf{V} / 1000 = 1000$	26.	The length of two wires are in the ratio 3 : 4. Ratio of the diameters is 1.2: young's modulus of the wires
16	Four wires made of same materials are stretched by		are in the ratio 3:2; If they are subjected to same
10.	the same load. Their dimensions are given below.		tensile force, the ratio of the elongation produced is
	The one which elongates more is ?		1) 1 :1 2) 1 :2 3) 2 : 3 4) 2 : 1

27.	The compressibility of water is 4 x 10 ⁻⁵ per unit atmosphere pressure. The decrease in volume of	37.	The 'Y' of a material of a rod is 200G pa. Its coefficient of linear expansion is $15 \times 10^{-6/0}$ C. It is
	100 cm ⁻³ water under a pressure of 100 atm will be 1) 0.4 cm ³ 2) 4 x 10^{-5} cm ³		fixed at two ends and is cooled by 100°C. The thermal stress produced in the rod
	$2) 4 \times 10^{-10}$ cm $2) 4 \times 10^{-10}$ cm $3) 0.025 \text{ cm}^3$ $4) 0.04 \text{ cm}^3$		$(\text{in } N m^{-2})$ is
28.	A uniform wire of length 4m and area of cross section		1) 3×10^{-7} 2) 3×10^{8} 3) 3×10^{6} 4) 0.33×10^{7}
	2mm ² is subjected to longitudinal force produced an algorithm of 1 mm. If $X=0.2$ x 10 ¹¹ NM ² classic	38.	The fractional change in the volume of oil is 1 percent
	potential energy stored in the body is		when a presure of 2 x 10^7 N/m ² is applied. The bulk modulus and its compressibility is
	1) 0.5J 2) 0.05J 3) 0.005J 4) 5.0J		1) 3 x 10 ⁸ N/m ² , 0.33 x 10 ⁻⁹ m ² /N
29.	A solid sphere hung at the lower end of a wire is suspended from a fixed point so as to give an		2) 5 x 10 ⁹ N/m ² , 2 x 10 ⁻¹⁰ m ² /N
	replaced by another one made of same material but		3) 3 x 10° N/m ² , 5 x 10 ⁻¹⁰ m ² /N
	twice the radius, the new elongation is		4) 3 x 10 ⁺⁹ N/m ² , 5 x 10 ⁻⁹ m ² /N
20	1) 0.8mm 2)1.6mm 3) 3.2mm 4)1.2mm		KEY
30.	material is 2 :3. The ratio of their respective		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	longitudinal stress to produce same elongation is		13) 3 14) 4 15) 3 16) 4 17) 2 18) 2
	1) 4:9 2) 9:4 3) 2:3 4) 3:2		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
31.	The elongation produced in a copper wire of length		31)3 32)1 33)4 34)3 35)3 36)4
	is $[y=1x10^{11}N.M^{-2}]$		37) 2 38) 3 HINTS
	1) 8.5mm 2) 0.85mm 3) 0.085mm 4) 85mm		
32.	The breaking stress of a material is 10^{6} N.m ⁻² and its density is 3 x 10^{3} kg.m ⁻³ . The least length of the wire which when suspended vertically breaks under its	5.	$e = \frac{\Gamma L}{AY} = \frac{\Gamma V}{A^2 Y}, e \alpha \frac{1}{r^4}$
	own weight (in m) is $g = 10m/s^2$	6.	$E = \frac{1}{2}Fe = \frac{1}{2}\frac{F^{2}L}{L}; E\alpha \frac{1}{2}$
	1) 34m 2) 3.4m 3) 0.34m 4) 0.034m		2 2 AY r ⁻
33.	A metallic rod undergoes a strain of 0.05%. The energy stored per unit volume is	8.	$K_{\rm m} = \frac{(m+n)k}{m}$
	$(Y=2 \times 10^{11} \text{ Nm}^{-2})$	14.	$Y = 2n(1+\sigma)$
	1) 0.5 x 10 ⁴ Jm ⁻³ 2) 0.5 x 10 ⁵ J m ⁻³ 3) 2.5 x 10 ⁵ J m ⁻³ 4) 2.5 x 10 ⁴ Jm ⁻³	18.	$Y = \frac{1}{2} (F_1 e_1 - F_2 e_2)$
34.	The strain is 0.01%. Young's modulus for the material of the wire is 20×10^{10} N/m ² . The stress on the wire is		ΔV
	1) $5 \times 10^4 \text{ N/m}^2$ 2) $20 \times 10^4 \text{ N/m}^2$	27.	$Compressibility = \frac{1}{VP}$
	3) $20 \times 10^6 \text{ N/m}^2$ 4) $20 \times 10^8 \text{ N/m}^2$	32.	Breaking stress = $l dg$
35.	A steel wire of length 4m is stretched by a force of 100N. The work done to increase the length of the	37.	Stress = $Y \alpha t$
	wire by 2mm is		LEVEL - 2
	1) 0.4J 2) 0.2J 3) 0.1J 4) 1J	39.	A load of 4.0 kg is suspended from a ceiling through
36.	The length of a wire of cross sectional area $1 \times 10^{-6} \text{m}^2$ is 10m. The young's modulus of the material of the		found that the length of the wire increases by 0.031
	wire is 25 G.pa. When the wire is subjected to a tensile		mm. as equilibrium is achieved. If $g=3.1 \times \pi \text{ ms}^{-2}$, the value of young's modulus in N m ⁻² is
	force of 100N, the elongation produced in mm is		1) 2.0×10^{12} 2) 4.0×10^{11}
	1) 0.04 2) 0.4 3) 4 4) 40		3) $2.0 \ge 10^{11}$ 4) $0.02 \ge 10^{9}$

JR.PHYSIC

40.	The stress produced in a wire of young's modulus 1.2	52.	Two exactly similar wires of steel (y=20 x 10 ¹¹ dyne/
	x 10^{11} N.m ⁻² is 7 x 10^{6} pa. The strain it undergoes is		cm ²) and copper (y = $12 \times 10^{11} \text{ dyne/cm}^2$) are
	1) 5.8 x 10 ⁻⁵ 2) 3.5 x 10 ⁻³ 3) 3.5 4) 0.35		stretched by equal forces. If the total elongation is
41.	Two wires of equal cross section, but one made up		1 cm, elongation of copper wire is 1) $2/5$ are 2) $5/2$ are 2) $2/8$ are 4) $5/8$ are
	of steel and the other copper are joined end to end. When the combination is kept under tension, the	52	1) 3/5 cm 2) 5/3 cm 3) 3/8 cm 4) 5/8 cm
	elongations in the two wires are found to be equal. If	55.	A rubber cord of length 40cm and area of cross section $4 \times 10^{-6} \text{ m}^2$ is extended by 10cm. If the energy gained
	$Y_{steel} = 2.0 \text{ x } 10^{11} \text{ N.m}^{-2} \text{ and } Y_{copper} = 1.1 \text{ x } 10^{11} \text{ Nm}^{-1}$		is 20 joule, young's modulus of rubber is
	² , the ratio of the lengths of the two wires is		1) 10 ⁸ Nm ⁻² 2) 2 x 10 ⁸ Nm ⁻²
	1) 20 : 11 2) 11:20 3) 5 : 4 4) 4 : 5		3) $4 \times 10^8 \text{ Nm}^{-2}$ 4) $1.5 \times 10^6 \text{ Nm}^{-2}$
42.	A rope of 1 cm in diameter breaks if tension in it	54.	At 0°C, a square steel bar of 1 cm side is rigidly
	exceeds 500N. The maximum tension that may be given to a smaller rope of diameter 2cm (in N) is		clamped at both ends so that its length cannot
	(1) 500 = 2) 250 = 3) 1000 = 4) 2000		increase. Young's modulus for steel is 20×10^{10} Nm ⁻
43.	A stress 10^7 pa produces a strain of 4 x 10^3 . The energy		² and coefficient of linear expansion of steel is 11 x 10^{-6} per 9 C. When the temperature is reised to 10^{9} C
	stored per unit volume of the body (in J.m ⁻³) is		the force exerted on the clamps is
	1) 2×10^3 2) 2×10^4 3) 2.5×10^{10} 4) 0.8×10^4		1) 2200N 2) 1100 N 3) 100N 4) 50N
44.	The force constant of a spring is $4 \times 10^4 \text{ N.m}^{-1}$. The	55.	A steel wire is 1 m long and 1mm ² in area of cross-
	energy stored in the spring when it is stretched by		section. If it takes 200N to stretch this wire by 1mm,
	1) 1 2) 2 3) 0.2 4) 4		the force that will be required to stretch the wire of
45.	Young's modulus of a metal is 15×10^{11} pa. If its poisson's		the same material and cross-sectional area from a legath of $10m$ to 1002 cm
	ratio is 0.4. The bulk modulus of the metal in pa is 1) 25×10^{11} 2) 2.5×10^{11}		1) 100N 2) 200 N 3) 400 N 4) 2000N
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56	When load is applied to a wire, the extension is 3mm
46.	Young's modulus of a metal is 15×10^9 pa. Its rigidity	50.	The extension in the wire of same material and length
	modulus is 6 x 10^{9} pa. Its poisson's ratio is 1) 0 25 2) 0 5 3) 0 2 4) 0 15		but half the radius extended by the same load is :
47.	If Young's modulus of iron be 2 x 10^{11} N/m ⁻² and		1) 0.75mm 2) 6mm 3) 1.5mm 4) 12.0mm
	interatomic distance be 3 x 10^{-10} m, the interatomic force constant will be	57.	Two wires A and B of the same dimensions are under
	1) 60 N/m 2) 120 N/m 3) 30 N/m 4) 180 N/m		loads of 4 and 5.5 kg respectively. The ratio of Young's moduli of the materials of the wires for the same
48.	Breaking stress for steel is 8×10^6 N/m ² . The density		elongation is
	of steel is 8 x 10 ⁵ Kg/m ³ and $g = 10m/s^2$. The maximum length of steel wire which can be hung		1) $64 \cdot 121 = 2$) $\sqrt{11} \cdot \sqrt{8} = 3$) $11 \cdot 8 = 4$) $8 \cdot 11$
	without breaking under its load is	50	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$
	1) 200m 2) 100m 3) 50m 4) 25m	58.	A force of 10° N is applied on the uper surface of a cube of side 10 cm keeping the lower surface fixed
49.	A wire can be broken by 400kg.wt. The load required		The upper surface shifts by 0.05 cm parallel to itself.
	material will be		The rigidity modulus of the material of the cube is
	1) 800 kg.wt 2) 1600 kg.wt.		1
	3) 3200 kg. wt 4) 6400 kg. wt.		1) 5 x 10 ⁸ N/m ² 2) $\frac{1}{5} \times 10^{\circ} N / m^{2}$
50.	A cube of getatin /cm on an edge is resting in a dish. Pushing horizontally on the top face with a force of		3) 2 x 10 ⁹ N/m ² 4) 10 ¹⁰ N/m ²
	0.21N causes the top to undergo a displacement of	59.	A sphere contracts in volume by 0.01%. When
	3mm. Then, the rigidity modulus of gelatin is 1) $100N/m^2 2$ $10N/m^2 3$ $1000N/m^2 4$ $10^4N/m^2$		subjected to a pressure of 100 atmosphere. The bulk
51	A sphere contracts in volume by 0.01% when taken		modulus of the material of the ball is $(1 \text{ atm} = 10^{5} \text{ pa})$
	to the bottom of lake 1km deep. If the density of		1) 10^{10} N/m^2 2) 10^{9} N/m^2 3) 5 x 10^{10}N/m^2 4) 10^{11}N/m^2
	water is 1gm/cc, the bulk modulus of water is	60	A lift is tied with thick iron wire and its mass is 1000kg
	1) 9.8 x 10^{5} N/m ² 2) 9.8 x 10^{8} N/m ²		If the maximum acceleration of the lift is 1.2 ms^{-2}
	$3)9.8 \times 10^{10} \text{N/m}^2 \qquad 4) 9.8 \times 10^6 \text{N/m}^2$		and the maximum stress of the wire is 1.4×10^8 Nm ⁻² what should be the minimum diameter of the wire 2
			what should be the minimum diameter of the wile $($
			1) 10^{-2} m 2) 10^{-4} m b 3) 10^{-1} m 4) 0.5×10^{-2} m
.IR	PHYSICS	302	EL ASTICITY

61.	On taking a solid rubber ball from the surface to the bottom of a lake 200m deep, the reduction in volume is found to be 0.5% If the density of water is 10^3		its free end. The elongation in the wire in mm is (if y = 2.0×10^{11} N.m ⁻² , g = 10 ms ⁻²)
	kgm ⁻³ and $g=10 \text{ ms}^{-2}$, find the bulk modulus of rubber.		1) 2.4×10^{-3} 2) 2.4 3) 0.024 4) 0.0024
	1) 2×10^8 Pa 2) 4×10^8 Pa	67.	A force of 15N increases the length of a wire by 1mm. The additional force required to increase the
	3) 6 x10 ⁸ Pa 4) 8 x10 ⁸ Pa		length by 2.5mm in N is 1) 22.5 2) 27.5 2) 52.5 (1) 75
62.	Mild steel ruptures, when a shear stress of 5 x 10^8 Pa is applied. Find the force needed to punch a 1 cm diameter hole in a steel sheet 7mm thick.	68.	Two wires each of length 1m and area of cross section 1sq.mm are joined end to end and suspended at the lower end of composite wire. If their young's moduli are 2 x
	1) 2.2×10^5 N 2) 3.3×10^5 N		10^{10} pa and 5 x 10^{10} pa, the total elongation in mm is
	3) $4.4 \times 10^5 \text{ N}$ 4) $1.1 \times 10^5 \text{ N}$		1) 2 2) 2.5 3) 3 4) 3.5
63.	On loading a steel wire of radius 0.5mm and length 2m by a mass of 250 kg, it extended by 20mm and suddenly broken from the point of support. Find the rise in temperature of the wire if the density of steel is 9000 kgm ⁻³ and specific heat is 420 Jkg ⁻¹ K ⁻¹ .	69.	A piece of copper wire has twice the radius of steel wire. One end of the copper wire is joined to one end of steel wire so that both of them can be subjected to the same longitudinal force. Y for steel is twice that of copper. When the length of copper wire is
	1) $3.1^{\circ}C$ 2) $4.7^{\circ}C$ 3) $4.1^{\circ}C$ 4) $5.1^{\circ}C$		increased by 1%, the steel wire will be stretched by
64.	A body of mass 10 kg is attached to a wire 0.3m long. Its breaking stragg is 4.8×10^7 Pa. The error of		1) 2% of its original length 2) 1% of its original length 2) 4% of its original length 4) 0.5% of its original length
	cross-section of the wire is 10^{-6} m ² . What is the	70	3)4% of its original length $4)0.5%$ of its original length A uniform metal rod of $2mm^2$ cross section is heated
	maximum angular velocity with which it can be	/0.	from 0° C to 20° C. The coefficient of linear expansion
	1) 1 rad/s 2) 4 rad/s 3) 3 rad/s 4) 2 rad/s		of the rod is $12 \times 10^{-6/0}$ C. Its young's modulus of
	KEY		elasticity is 10^{11} N/m ² . The energy stored per unit volume of the rod is
	39) 1 40) 1 41) 1 42) 4 43) 2 44) 2		1) 2800 J/m ³ 2) 1500 J/m ³ 3) 5760 J/m ³ 4) 1440 J/m ³
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	71.	A 8m long string of rubber, having density 1.5×10^3 kg/m ³ and young's modulus 5×10^6 N/m ² is suspended from the ceiling of a room. The increase in its length due to its own weight will be (g = 10m/s ²)
17	HIN1S		1) 9.6 x 10 ⁻² m 2) 19.2 x 10 ⁻⁵ m
52	Stress is equal e $y = e y$		3) 9.6 x 10 ⁻³ m 4) 9.6 m
52.	bitess is equal $e_s y_s = e_c y_c$ $e = e_s + e_c; \qquad e_c = \frac{eY_s}{Y_s + Y_c}$ $1 e^2 A Y$	72.	A steel wire of length 20cm and cross sectional area 1.0 mm ² is clamped at both the ends. The coefficient of linear expansion for steel $\alpha = 1.1 \times 10^{-5/0}$ C and Y=2 x 10 ¹¹ N/m ² . If the temperature of wire is reduced from 40°C to 20°C, the tension developed in the wire will be
53.	$E = \frac{1}{2} \frac{1}{1}$		1) 2.2 x 10 ⁶ N 2) 8 N 3) 16N 4) 44N
54.	$F = YA\alpha t$	73.	A brass rod has a length of 0.2m, area of cross section 1.0 cm^2 and young's modulus 10^{11} Nm^{-2} . If it is compressed by 5kg wt along its length, then the
55.	$\underline{F_1I_1} = \underline{F_2I_2}$		change in its energy will be
			1) an increase of 2.4 x 10^{-5} J
65			2) a decrease of 2.4 x 10° J 3) an increase of 2.4 x 10° J
65.	A wire of length 1 m fixed at one end has a sphere attached to it at the other end. The sphere is projected		4) a decrease of 2.4 x 10^{-3} J
	horizontally with a velocity of $\sqrt{9g}$. When it describes a vertical circle, the ratio of elongations of the wire when the sphere is at the top and bottom of the circle is 1) 2:5 2) 5:2 3) 3:5 4) 5:3	74.	A 20 kg load is sxuspended from the lower end of a wire 10cm long and 1mm ² in cross sectional area. The upper half of the wire is made of iron and the lower half with aluminium. The total elongation in the wire is (Y = 20 x 10^{10} N/m ² Y = 7 x 10^{10} N/m ²)
66.	One end of a wire $2m \log and 0.2cm^2$ in cross section		1) $18.9 \times 10^{-3} \text{m}$ 2) $17.8 \times 10^{-3} \text{m}$
	is fixed to a ceiling and a load of 4.8kg is attached to		$3) 1.78 \times 10^{-3} \text{ m} \qquad 4) 1.89 \times 10^{-3} \text{ m}$

JR.PHYSICS

75.	A body of mass 10kg is attached to a wire 0.3m long. It breaking stress is $4.8 \times 10^7 \text{ N/m^2}$. The area of cross section of the wire is 10^{-6}m^2 . The maximum angular velocity with which it can be rotated in a horizontal circle without breaking is	83.	The volume press is 0 per atmo when sub = 1.02 x
	1) 2 rad/s 2) 4 rad/s 3)6 rad/d 4) 8 rad/s		1) 4 x 10 ⁻
76.	The rubber cord of a catapult has a cross-sectional area 1mm^2 and total unstretched length 10cm. It is stretched to 12cm and then released to project a missile of mass 5gm. Taking 'Y' for rubber 5 x 10 ⁸ N/m ² , the velocity of projection is	84.	3) 16 x 10 One end c attached suspende cross-sec
	1) 10m/s 2) 15 m/s 3) 20 m/s 4) 25 m/s		height (3
77.	A mass 'm' kg is whirled in a vertical plane by tieing it at the end of a flexible wire of length T and area of cross- section 'A' such that it just completes the vertical circle. When the mass is at its lowest position, the strain produced in the wire is (Young's modulus of the wire is 'Y') 1) $AY/6$ mg 2) $6mg(AY/4) 5mg(AY/4) AY/5mg$	85.	1) $\frac{W_1}{S}$ 2) A steel wi
78.	Two rods of different materials having coefficient of linear expansions α_1 and α_2 and Young's modulii y_1 and y_2 are rigidly fixed between two pillars. If they are raised to the same temperature and they do not bend, the ratio of their elasticities for the same stress to be developed in the two, will be		When loa when the the extendensity of 1. $\frac{l_a}{l_w}$
79.	1) 2:3 2) 1:1 3) 3:2 4) 4:9 When a sphere of radius 2 cm is suspended at the end of a wire, elongation is 'e'. When the same wire is loaded with a sphere of radius 3 cm and made of the same material, the elongation would be :	86.	A solid sy modulus container surface of piston to
	1) $\frac{8}{27}e$ 2) $\frac{27}{8}e$ 3) $\frac{4}{9}e$ 4) $\frac{9}{4}e$		in the rac
80.	A wire suspended from one end carries a sphere at its other end. The elongation in the wire reduces from 2 mm to 1.6mm on completely immersing the sphere in water. The density of the material of the sphere is		1) $\frac{\text{mg}}{\text{AK}}$
	1) 3200 kg/m³ 2) 800 kg/m³ 3) 1250 kg/m³ 4) 5000 kg/m³		65) 1 71) 1
81.	The length of an elastic spring is 'a' when tension is 4 N and 'b' when the tension is 5N. The length of the spring when tensionis 9N is		77) 2 83) 2
82.	1) 4a - 5b 2) 5b - 4a 3) 5b + 4a 4) 5(b-a) A uniform pressure 'P' is exerted on all sides of a	65.	$V_{top} = $
	solid cube at temperature 0° C. In order to bring the volume of the cube to the original volume, the temperature of the cube must be increased by t° c. If		$V_{top} = \sqrt{2}$
	α is the linear coefficient and K the bulk modulus of the material of the cube, then t is equal to		T _{bottom} =
	1) $\frac{3P}{K\alpha}$ 2) $\frac{P}{2\alpha K}$ 3) $\frac{P}{3\alpha K}$ 4) $\frac{P}{\alpha K}$		$T_{top} = \frac{m}{2}$

me of oil contained in a certain hydraulic $.2m^3$. The compressibility of oil is 20×10^{-6} sphere. The decrease in volume of the oil jected to 200 atmospheres is (1 atmosphere 10^{5} N/m^{2})

1) 4 x 10^{-4} m ³	2) 8 x 10^{-4} m ³
3) 16 x 10 ⁻⁴ m ³	4) 2 x 10 ⁻⁴ m ³

of uniform wire of length L and weight W is to rigid point in the roof and a weight w_1 is ed from its lower end. If S is the area of ction of the wire the stress in the wire at a L/4) from its lower end is

1)
$$\frac{w_1}{S}$$
 2) $\frac{\left(w_1 + \frac{w}{4}\right)}{S}$ 3) $\frac{\left(w_1 + \frac{3w}{4}\right)}{S}$ 4) $\frac{\left(w_1 + w\right)}{S}$

ire is suspended vertically to a rigid support. aded with a weight in air, it extends by l_a and weight is immersed completely in water, nsion is reduced to l_w . Then, the relative of the material of weight is

1.
$$\frac{l_a}{l_w}$$
 2) $\frac{l_a}{l_a - l_w}$ 3) $\frac{l_w}{l_a - l_w}$ 4) $\frac{l_w}{l_a}$

phere of radius R made of material of bulk K is surrounded by a liquid in a cylindrical r. A massless piston of area A floats on the of liquid. When a mass 'm' is placed on the compress the liquid, the fractional change

in the radius of the sphere
$$\frac{\delta R}{R}$$
 is

1)
$$\frac{\text{mg}}{\text{AK}}$$
 2) $\frac{\text{mg}}{3\text{AK}}$ 3) $\frac{\text{mg}}{\text{A}}$ 4) $\frac{3\text{mg}}{\text{AK}}$
KEY
65) 1 66) 3 67) 1 68) 4 69) 1 70) 1
71) 1 72) 4 73) 1 74) 3 75) 2 76) 3
77) 2 78) 3 79) 2 80) 4 81) 2 82) 3

 $\sqrt{\text{xrg}}; \text{V}_{\text{bottom}} = \sqrt{(x+4)\text{rg}}$

$$V_{top} = \sqrt{5g}$$

$$\Gamma_{\rm bottom} = \frac{mv_b^2}{r} + mg = 10mg$$

$$\Gamma_{top} = \frac{mv_t^2}{r} - mg = 4mg$$

JR.PHYSICS

$$\frac{e_{i}}{e_{b}} = \frac{4mg}{10mg}$$
68. $e = e_{1} + e_{2}$ but $e = e_{2} = \frac{FI}{AY}$
69. $F = AY\left(\frac{e}{1}\right) = constant$
69. $F = AY\left(\frac{e}{1}\right) = constant$
69. $F = AY\left(\frac{e}{1}\right) = constant$
67. $F = forget strain = \frac{F}{AY}$
76. $\frac{1}{2} mv^{2} = \frac{1}{2} Fe; F = \frac{YAe}{1}$
77. $F = 6mg$ strain $= \frac{F}{AY}$
78. $Y_{i}(a_{1} = Y_{2}a_{2})$
78. $Y_{i}(a_{1} = Y_{2}a_{2})$
78. $Y_{i}(a_{1} = Y_{2}a_{2})$
79. $\frac{e_{w}}{e_{w}} = \frac{d_{1} - d_{w}}{d_{v}} = 2d_{v} = 5000 kg/m^{3}$
79. 1 Let T be the original length, then
71. $\frac{16}{2} = \frac{d_{v} - d_{w}}{d_{v}} = 2d_{v} = \frac{9\lambda}{A(x - \lambda)}$
73. $\frac{AV}{V} = PC$ (C is compressibility)
74. $\frac{A\lambda}{V} = PC$ (C is compressibility)
75. $\frac{1}{v} = \frac{mg}{mg\left(1 - \frac{1}{d_{w}}\right)} \left[9 c\alpha F\right]$
76. $\frac{AV}{V} = \frac{F}{AK} = \frac{mg}{AK}$
77. $\frac{1}{v} = \frac{mg}{mg\left(1 - \frac{1}{d_{w}}\right)} \left[9 c\alpha F\right]$
78. $\frac{A}{V} = FY C(C = \frac{1}{a} - \frac{1}{d_{w}}$
77. $\frac{1}{v} = \frac{mg}{mg\left(1 - \frac{1}{d_{w}}\right)} \left[9 c\alpha F\right]$
78. $\frac{1}{V_{v}} = \frac{F}{K} = \frac{mg}{AK}$
79. $\frac{4}{V} = \frac{F}{K} = \frac{mg}{MK}$
70. $\frac{1}{V_{v}} = \frac{F}{K} = \frac{mg}{K}$
71. $\frac{1}{V_{v}} = \frac{1}{K} = \frac{1}{K}$
72. $\frac{1}{V_{v}} = \frac{F}{K} = \frac{mg}{K}$
73. $\frac{V}{V} = PC$ (C is compressibility)
74. $\frac{1}{V_{v}} = \frac{1}{K} = \frac{1}{M} = \frac{mg}{mg\left(1 - \frac{1}{d_{w}}\right)} \left[9 c\alpha F\right]$
75. $\frac{1}{V_{v}} = \frac{mg}{M} = \frac{1}{AK}$
75. $\frac{1}{V_{v}} = \frac{mg}{M} = \frac{1}{AK}$
75. $\frac{1}{V_{v}} = \frac{mg}{M} = \frac{1}{AK}$
75. $\frac{1}{V_{v}} = \frac{1}{K} = \frac{mg}{AK}$
75. $\frac{1}{V_{v}} = \frac{1}{K} = \frac{mg}{AK}$
75. $\frac{1}{V_{v}} = \frac{1}{K} = \frac{1}{K}$
76. $\frac{1}{V_{v}} = \frac{1}{K} = \frac{1}{K}$
77. $\frac{1}{K} = \frac{1}{K}$
78. $\frac{1}{K} = \frac{1}{K}$
79. $\frac{1}{K} = \frac{1}{K}$
70. $\frac{1}{K} = \frac{1}{K}$
71. $\frac{1}{K} = \frac{1}{K}$
72. $\frac{1}{K} = \frac{1}{K}$
73. $\frac{1}{K} = \frac{1}{K}$
74. $\frac{1}{K} = \frac{1}{K}$
75. $\frac{1}{K} = \frac{1}{K}$
76. $\frac{1}{K} = \frac{1}{K}$
77. $\frac{1}{K} = \frac{1}{K}$
77. $\frac{1}{K} = \frac{1}{K}$
78. $\frac{1}{K}$
79. $\frac{1}{K} = \frac{1}{K}$
79. $\frac{1}{K}$

9	The increase in pressure required to decrease the	18	An iron wire of length 4m and diameter 2 mm is
	200 litres volume of a liquid by 0.004% in kPa is	10.	loaded with a weight of 8kg. If the young's modulus
	(bulk modulus of the liquid = 2100 MDe) (M 2002)		'Y' for iron is 2×10^{11} N/m ² then the increase in the
	(buik modulus of the liquid - 2100 MPa) (M-2002)		length of the wire is $(M, 1008)$
	1) 8.4 2) 84 3) 92.4 4) 168		1) 0.2 mm 2) 0.5 mm
10.	The Poisson's ratio of a material is 0.4. If a force is		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	applied to a wire of this material, there is a decrease	10	$\frac{5}{211111} \qquad \qquad 4) 1 111111$ The Deigeonic metric $-$ should estimize the relation
	of cross-sectional area by 2%. The percentage	19.	The Poisson's ratio σ should satisfy the relation
	increase in its length is : (M-2002)		(M-1998)
	1) 3% 2) 2.5% 3) 1% 4) 0.5%		$1) - 1 < \sigma < 0.5$ 2) $- 0.5 < \sigma < 1.0$
11.	A metal cube of side length 8.0 cm has its uper		$3)0.5 < \sigma < 1.0$ $4) - 1.0 < \sigma < -0.5$
	surface displaced with respect to the bottom by 0.10	20.	A copper solid cube of 60mm side is subjected to a
	mm when a tangential force of 4×10^9 N is applied		pressure of 2.5 x 10^7 Pa. If the bulk modulus of
	at the top with bottom surface fixed. The rigidity		copper is 1.25×10^{11} pascals, the change in the
	at the top with bottom surface fixed. The fightly modulus of the meterical of the sub-		volume of cube is (M-1997)
	$\frac{1}{1} \frac{1}{4} \frac{108}{100} \frac{1}{2} \frac{2}{100} \frac{1}{2} \frac{108}{100} \frac{1}{100} \frac{1}{100$		1) -43.2 mm^3 2) -43.2m^3
	1) $4 \times 10^{9} \text{ N/m}^{2}$ 2) $5 \times 10^{9} \text{ N/m}^{2}$		3) -43.2 cm^3 4) $-432 \text{ m} \text{ m}^3$
	3) 8 x 10^9 N/m ² 4) 1x 10^8 N/m ²	21.	A wire whose cross sectional area is 2 mm ² is
12.	The length of an elastic string is 'a' metres when the		stretched by 0.1 mm by a certasin load. If a similar
	longitudinal tension is 4N and 'b' meters when the		wire of triple the area of cross section is stretched
	longitudinal tension is 5N. The length of the string in		by the same load, the elongation of the second wire
	metres when the longitudinal tension is 9 N is		would be (E-1996)
	(M-2001)		1) 0.33m 2) 0.033mm
	1) a-b 2) 5b-4a 3) 2b-(1/4)a 4) 4a-3b		3) 0.3mm 4) 0.0033 mm
13.	When a tension F is applied, the elongation produced	22.	According to Hook's law of elasticity, the ratio of
	in uniform wire of length 'L', radius 'r' is 'e'. When		stress to strain (M-1996)
	tension 2 F is applied, the elongation produced in		1) does not remain constant 2) remains constant
	another uniform wire of length '2L' and radius '2r'		3) increases 4) decreases
	made of same material is (M-2000)	23.	Possible value of Poisson's ratio is (M-1995)
	1) $0.5e$ 2) $1.0e$ 3) $1.5e$ 4) $2.0e$		1)1 $2)0.9$ $3)0.8$ $4)0.4$
14	When a uniform wire of radius r is stretched by a 2	24.	Strain energy in a stretched string is (M-1995)
1	kg weight, the increase in its length is 2.00 mm. If		1) $1/2$ x stress x strain 2) stress x strain
	the radius of the wire is $r/2$ and other conditions		3) (stress x strain) ² 4) stress / strain
	remain in the same increase in its length is	25	When a certain force is applied on a string it extends
	(E-2000)		by 0.01cm When the same force is applied on
	1) 2 00mm 2) 4 00 mm 3) 6 00 mm 4) 8 00mm		another string of same material twice the length and
15	Y k n represent respectively the young's modulus		double the diameter, then the extension in second
10.	hulk modulus and rigidity modulus of a body. If		string is $(M_{-}1995)$
	rigidity modulus is twice the bulk modulus then		$\frac{1}{0.005} \times \frac{1}{0.02} \times $
	(M_1000)	26	The length of a cube increases by 0.10° what is the
	1) $Y = 5k/18$ 2) $V = 5n/0$	20.	hulk strain?
	3) $V = 9k/5$ 4) $V = 18k/5$		$\begin{array}{c} (E-1993) \\ 1 \\ 0 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
16	The elongation of a steel wire stratched by a force	27	Two wires made of same material have their lengths
10.	is 'e' If a wire of the same material of double the	21.	I and 2 I and the radii 2R and R. If they are stretched
	length and half the diameter is subjected to double		by the same force their extensions are e and e
	the force its elongatin will be (E 1000)		then $e^{-1}e^{-1}$ (M_1004)
	1) $16a = 2$ $1/4a = 2$ $(1/4)a = 4)(1/16)a$		$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
17	A spring balance is suspended from a spiling and	28	Which of the following relations is not correct $V = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
1/.	another spring balance is suspended to the and of the	20.	volume's modulus $K = $ hulk modulus $n = $ rigidity
	first A 5 ha maga is hung to the lower holene. The		modulus $\sigma = \text{noisons ratio}$ (M-1994)
	Inst. A 5 kg mass is nung to the lower balance. Then		1) $1/Y = 9n K/(3K + n)$ 2) $V/n = 2(1 + \sigma)$
	(M-1998)		$\begin{array}{c} 1 & 1 & 2 & 1 & 0 \\ 3 & 1 & 2 & 1 & 0 \\ 3 & 1 & 2 & 1 & 0 \\ 3 & 1 & 2 & 1 & 0 \\ 3 & 1 & 1 & 2 & 1 \\ 4 & 1 & 2 & 1 & 0 \\ 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 2 & 1 & 0 \\ 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 2 & 1 & 0 \\ 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$
	1) Down balances will read 5kg weight each	29	A steel wire of length 5m is nulled to have an
	2) the upper reads 5Kg weight and lower zero	27.	extension of 1mm Its V is 1.0×10^4 N/m ² The
	3) both of them read 2.5 kg weight each		energy per unit volume stored in it is $(F_100/1)$
	4) the reading may be different but add up to 5kg		1) $3.8 \times 10^4 \text{ J/m}^3$ 2) $7.6 \times 10^4 \text{ J/m}^3$
	weight.		3) $1.9 \times 10^{-4} \text{ J/m}^3$ 4) $0.95 \times 10^{-4} \text{ J/m}^3$
.JR	PHYSICS	306	EL ASTICITY

30.	A spring of force constant K is cut into two equal	42.	A copp	er and steel w	ire of same d	liameter a	nd length
	parts. Then the force constant of each piece is		are con	nected end to	end and a for	ce is appl	ied which
	(E-1994)		stretche	es their comb	oined length	by 1 cm	, the two
	1) 2K 2) K/2 3) 4K 4) K		wires w	vill have (M	[-1988]		
31.	An aluminium wire and steel wire of the same length		1) The	same stress a	ind strain		
	and cross section are joined end to end. The		2) The	same stress b	out different	strains	
	composite wire is hung from a rigid support and a		3) the s	same strain bi	at different s	stresses	
	modulus of steel is $20/7$ times the aluminium. The	13	4) unite	extends by 1	mm when	a force is	annlied
	ratio of increase of length of steel aluminium is	J.	Double	the force is a	nnlied to an	other wire	e of same
	(M-1993)		materia	and length l	but of half t	he radius	of cross-
	1) 20/7 2) 400/49 3) 7/20 4) 49/400		section.	The elongation	n of wire in m	m will be	(M-1986)
32.	The extension of a wire by the application of a load		1) 8	2) 4	3) 2	4) 1	
	is 0.3 cm. The extension in the wire of the same	44.	A wire	is subjected to	o a longitudii	nal strain o	of 0.05. If
	material but of double the length and half the radius		its mat	erial has a Po	oisson's rati	o 0.25, tl	he lateral
	of cross section in cm is $(E-1993)$		strain e	experienced by	y it is		(E-1986)
22	1) 3 2) 0.3 3) 1.2 4) 2.4 Ease a material $\mathbf{N} = 6 \exp(10^{10} \text{ N/m}^2)$ and having a share of the set of t	15	1) 0.00	$625 \ 2) \ 0.125$	3) 0.0125	4) 0.062	25 Jan ath af
33.	For a material Y = 0.0×10^{-5} N/m ⁻ and bulk modulus $K = 11 \times 10^{10}$ N/m ² then its Poissons's ratio is	43.	A tensi	tic cord whose	10 [°] dynes do	oubles the	n is 2 sa
	1) 0.8 2) 0.35 3) 0.7 4) 0.4		cm Yo	ung's modulus	s of the mate	rial of the	cord is
34.	A steel wire is 1 m long and 1 mm ² in area of cross-		•	angomodulu	(M	-1985)	cord is
	section. If it taken 200 N to stretch this wire by 1		1) 1 x 1	10 ⁵ dynes /cm	x^{2} 2) 2 x	10 ⁵ dynes	s /cm ²
	mm, how much force will be required to stretch the		3)0.5 x	x 10 ⁵ dynes /c	m^2 4) 4 x	10 ⁵ dynes	/cm ²
	wire of the same material and diameter from its			_			
	normal length of 10 m to a length of 1002 cm		1 2	2.2		4.2	5.2
	(M-1992) 1) 100N 2) 200N 3) 400N 4) 2000N		1.2	2.2	3. I 8 1	4. Z 0.2	5. 5 10 2
35	A uniform spring of force constant K is cut into two		11 2	12 2	13.2	9.2 14 4	15.2
55.	pieces whose lengths are in the ratio 1:2. The force		16.1	17.1	18.2	19.1	20.1
	constant of the larger piece of the spring is		21.2	22.2	23.4	24.1	25.1
	(M-1992)		26.1	27.1	28.1	29.1	30.1
	1) 2K/3 2) 3K/2 3) K/2 K/3		31.3	32.4	33.4	34.3	35.2
36.	When a spring is stretched by a force the resultant		36.3	37.1	38.4	39.2	40.1
	strain is (M-1992)		41.2	42.2	43.1	44.3	
	a) shear (1) both longitudinal and transverse		43.1				
37	If the work done in stretching a wire by 1 mm is 2 I		0	DUESTION	S FROM (THER	
57.	the work necessary for stretching another wire of			COMPETI	TIVEEXA	MS	
	same material but withdouble radius of cross section	1.	Dimen	sional formula	a of youngs r	nodulus i	s
	and half the length by 1mm is in joules				5 0	B.TEC	CH-1983
	(M-1991)		1) M ¹ J	L ⁻¹ T ⁻²	2) $M^{1}L^{1}$	T^1	
20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3) M ⁻¹ I	$L^{2}T^{-1}$	4) $M^{-1}L^{3}$	³ T ⁻²	
38.	For a given material the Young's modulus is 2.4 times	2.	An iron	h bar of length	L, cross-sec	tion A and	d Young's
	that of its rigidity modulus. Its Poisson's fail is $(M_{-}1990)$		moduli	is Y is pulled	by a force F	from end	is so as to
	(1) 24 2) 12 3) 04 4) 02		produc	e an elongati	on χ . Which	h of the i	tollowing
39.	The stress required to double the length of a wire of		stateme	ents is correct	t ?	(NC	ERI-/6)
	Youngs modulus E is (M-1990)		1) λα-	$\frac{1}{2}$ 2) 1 or 1	$2) \lambda \alpha - \frac{1}{2}$	- 1)) a	v
	1) 2E 2) E 3) E/2 4) 3E		1) /	$L^{2/1}\alpha A$	3) / A	+) AU	, 1
40.	The Poisson ratio cannot have the value	3.	A wire	of length L ar	nd radius r fi	xed at on	e end and
	(M-1989)		a force	e F applied to	the other	end prod	uces and
	1) 0.7 2) 0.2 3) 0.1 4) -0.5		extensi	on λ . The exte	ension produ	iced in and	other wire
41.	I he Y of a material having a cross section area of 1		of the s	ame material	of length 2L	and radi	us 2r by a
	CIT is 2×10^{12} dynes/cm ² . If the length is to be		torce 2	F 18 (NCERT	1 -1980)		
	aoublea the force required is $(M-1989)$		1) ^	2) 2 1	$(\lambda) \frac{\lambda}{2}$	4) 4 4	
	1) 1 x 10 ¹² dynes 2) 2 x 10 ¹² dynes 3) 0 5 x 10 ¹² dynes 4) 4 x 10 ¹² dynes		IJλ	2) 2 N	$\frac{3}{2}$	4)4λ	
	3 0.3×10 uynes 4 3×10^{-2} dynes						

JR.PHYSICS

4.	Two rods of different materials having coefficients				KEY		
	of linear expansion α_1 : α_2 and Young's modulii Y.:		1)1	2) 3	3) 1	4)3	5) 2
	Y_2 are fixed between two rigid massibve walls. The rods are heated such that they undergo the same increase in temperature. There is no bending of the		6) 1 11) 2	7) 1 12) 3	8) 1 13) 3	9) 1	10) 1
	rods. If α_1 : $\alpha_2 = 2$: 3, the thermal stress developed		NE	W MOD	EL QUES	TIONS	
	in the rods are equal, provided $Y_1: Y_2$ is equal to IIT-1989	1.	Conside identify	er the follow the correct	wing two state t answer .	ements A	and B and
	1) 2 : 3 2) 1 : 1 3) 3 : 2 4) 4 : 9		A. A me	tal wire he	ld vertically i	s longer t	han when
5.	A fixed volume of iron is drawn into a wire of length		it placed	l on a horiz	ontal table.		
	λ . The extension produced in this wire by a constant		B) Due	to its ow	n weight, so	ome elon	igation is
	force F is proportional to (MP-PMT=1999)		produce	d when it is	s held vertical	ly.	D • •
	1) $\frac{1}{2}$ 2) 2^2 3) $\frac{1}{2}$ 4) $\frac{1}{2}$		1) Both	A & B are	true 2) A is $(1 + 1)$ D	false but	B is true
	$ \begin{array}{c} 1 \\ 1 \\ \lambda^{3} \\ \lambda^{3} \end{array} $	2	3) A 18 t	rue but B 1	is Talse 4) Bol	In A & B	are false
6.	A force of 10^6 N/m ² is required for breaking a	2.	identify	the correct	t answer	ments A	anu D anu
	material. If the density of the material is 3×10^{5} kg/m ³ then what should be the length of the wire made		A) The bi	ulkmodulus	for an incompre	ssible liqui	d is infinite.
	of the same material so that it breaks by its own		B) You	ng's mod	ulus increas	ses with	raise of
	weight ? (g=10m/s ²) (ROORKEE-1979)		tempera	ture.			
	1) 34m 2) 3.4m 3) 34cm 4) 3.4cm		1) Both	A & B are	true 2) A is	true but I	B is false
/.	A ball failing in a lake to a depth 200m shows a decrease of 0.1% in its volume at the bottom. What		3) Both	A & B are	false 4) A is	false but	t B is true
	is bulk modulus ? AFMC - 1997	3.	Conside	er the follow	ving two state	ments A	and B and
	1) 19.6 x 10 ⁸ N/m ² 2) 19.6 x 10 ⁻¹⁰ N/m ²		identify	the correc	t answer.		
	3) 19.6 x 10^{10} N/m ² 4) 19.6 x 10^{-8} N/m ²		A) The	reciproca	l of rigidity	modulus	1s called
8.	Consider an iron rod of length 1m and cross section 1 cm^2 . We wish to calculate the force by which the		compres	sibility.	a fanada ana at	miatly, and	acomiotivo
	two ends must be pulled to produce an elongation		D) Elast	en Hooke's	g lorces are si	d	iservative
	of 1mm. it is equal to		1) Roth	A & B are	true $(2) \land (3)$	u. false but	R is true
	$(Y=10^{11} N/m^2)$ (NCERT-76)		3) A is t	rue but B i	is false 4) Bo	th A & E	B are false
0	1) 10^4 N 2) 10^{11} N 3) 10^3 N 4) 10^{12} N	4.	Conside	r the follow	ving two state	ments A	and B and
9.	unit volume is (MPPMT-88)		identify	the correct	t answer.	0.1	
	1) Ed $\lambda/2A \lambda_{2}$) Ea/2 λ_{3} E $\lambda/2A A$ E $\lambda/2$		A) The	product of	bulk modulu	is of elas	sticity and
10.	A wire of 1m length and 4mm radius is clampted at		B) Tange	ential stress	applied on the	e body on	ly produes
	upper end. The lower end is twisted by an angle of		change i	in shape bu	it not in size.	5	• 1
	30° . What is the angle of shear ? (NCERT-90)		1) Both	A & B are	true 2) A is	true but I	B is false
	A steel wire of mass 3.16 K σ is stretched to a tensile	5	3) A 18 f Conside	alse but B	is true 4) Bo	un A & E ments A	are talse
	strain of 1 x 10^{-3} . What is the elastic deformation	5.	identify	the correct	t answer.		and D and
	energy if density ρ =7.9 g/cc and y=2x10 ¹¹ N/m ² ?		A) When	n the length	of a wire is d	oubled, th	ne Young's
	(ROORKE98)		modulus	s of the wir	e is also doub	led	Vo and f
12	1) 4 KJ 2) 0.4 KJ 3) 0.04KJ 4) 4J What percent of length of a wire will increase by		ы) гоге	bodies Po	es roisson's r	atio 15 + ' -Ve	ve and Ior
12.	applying a stress of 1 kg. wt/mm ² on it.		1) Both	A & B are	true 2) A is	true but I	B is false
	$[Y=1x10^{11}Nm^{-2} \text{ and } 1 \text{ kg wt} = 9.8N] (MNR-99)$		3) A is t	rue but B i	is true 4) Bot	h A & B	are false
	1) 0.0078% 2) 0.0088% 3) 0.0098% 4) 0.0067%	6.	Conside	er the follow	wing two state	ments A	and B and
13.	A wire of density 9 x 10 ³ kg/m ³ is stretched between 2 clamps 1m apart and is subjected to an extension of		A) We c	une correct annot defin	t answer. ne Young's m	odulus ar	nd rigidity
	4.9 x 10^{4} m. The lowest frequency of transverse		modulus	s for liquids	s and gases.	ouurus di	ia ingiúlity
	vibration in the wire is $(Y = 9 \times 10^{10} \text{ N/m}^2)$		B) The t	heoritical l	limits of Poiss	sons ratio	are
	(UPSET 2000)		-1 to 0.5		f-1 2) + '	4	Dict
	1) 20 Hz 2) 30 Hz 3) 35 Hz 4) 40 Hz		1) Both 3) Both	A & B are	Talse 2) A is false 4) A is	true but	ы is false
			5, 1000		10100 177115	and out	- 10 Iulov

AS	SERTION AND REASON TYPE OUESTIONS	12	A · Stress is the internal force per unit area of the body
	Directions :	12.	R : Rubber is more elastic than steel
	A : Assertion		1) A 2) B 3) C 4) D
	R · Reason	13	Λ : Stress is restoring force per unit area
	A) If both Assartion and Reason are true and	15.	A : Success is restoring force per unit area.
	the Deesen is correct explanation of the		K: Interatorine forces in solids are responsible for the momentum of electicity
	A sastion		the property of elasticity
	Assetton.		1) A = 2) B = 3) C = 4) D
	B) If both Assertion and Reason are true, but	14.	A: Young's modulus for a perfectly plastic body is zero.
	Reason is not correct explanation of the		R : For a perfectly plastic body, restoring force is zero.
	Assetion.		1) A 2) B 3) C 4) D
	C) If Assertion is true, but the Reason is false.	15.	A : Bulk modulus of elasticity (K) represents
	D) If Assetion is false, but the reason is true.		incompressibility of the material.
7.	A : Steel is more elastic than rubber.		A D
	R : Under a given deforming force, steel is deformed		$\mathbf{R} \cdot \mathbf{K} = \frac{\Delta \mathbf{r}}{\mathbf{r}}$ where symbols have their standard
	less than rubber.		$\Delta V/V$, where symbols have then standard
	1) A 2) B 3) C 4) D		meaning.
8.	A : Lead is more elastic than rubber.		1) A 2) B 3) C 4) D
	R : If the same load is attached to lead and rubber	16.	A : Rigidity modulus of a liquid is infinity.
	wires of the same cross-sectional area, the strain of		R : For a ductile material vield point and breaking
	lead is very much less than that of rubber.		noint are senarated by larger distance than for brittle
	1) A 2) B 3) C 4) D		materials on the stress-starin curve
9.	A : Two identical solid balls, one of ivory and the		1) \triangle 2) B 3) C 4) D
 	other of wet-clay are dropped from the same height	17	$A \cdot Silver is a ductile material$
	on the floor Both the balls will rise to same height	17.	A. Shiver is a ductile material,
	after bouncing		R : For a ductile material yield point and breaking
	B. Ivervia more electic then wet elev		point are separated by larger distance than for brittle
	\mathbf{K} : Ivory is more elastic than wet-clay.		materials on the stress-strain curve.
10	$\begin{array}{ccc} 1 & A & 2 & B & 3 & C & 4 & D \\ A & W' 4 & b & b & c & c & f & f & c & c & f & c & c & c$		1) A 2) B 3) C 4) D
10.	A : with increase of temperature, elastic property	18.	A : The elastic potential energy of a spring increases
	of a substance decreases.		when it is elongated and decreases when it is
	R : Elasticity is due to intermolecular forces which		compressed.
	decreases with the increase of intermolecular distance.		R : Work done on spring is stored in it as elastic
	1) A 2) B 3) C 4) D		potential energy.
11.	A : Addition of carbon to iron increases the elastic		1) A 2) B 3) C 4) D
	property.		KEY
	R : Carbon and iron belong the same group of		1.1 2.2 3.4 4.1
	elements.		5.4 6.3 7.1 8.1
	1) A 2) B 3) C 4) D		9.4 10.1 11.3 12.2
			13.1 14.1 15.2 16.4
			17 1 184
	* * :	* * *	*
	DUV0100	000	
JR	PHYSICS	309	ELASTICITY