<u>EXERCISE 3.1</u>

1) For a distribution, mean = 100, mode = 127 and SD = 60. Find the Pearson coefficient of skewness Skp.

Sol: Given: $\overline{x} = 100$ z = 127

 $\sigma = 60$

Pearsonian coefficient of skewness,

 $Skp = \frac{\overline{x} - z}{\sigma}$ $= \frac{100 - 127}{60}$ $= \frac{-27}{60}$

 \therefore Skp = - 0.45

2) The mean and variance of the distribution is 60 and 100 respectively. Find the mode and the median of the distribution if Skp = -0.3

Sol: Given: $\overline{x} = 60$ Variance = 100 $\therefore \sigma = \sqrt{Variance} = \sqrt{100} = 10$ Skp = - 0.3 Pearsonian coefficient of skewness, Skp $= \frac{\overline{x}-z}{\sigma}$ $\therefore -0.3 = \frac{60-z}{10}$ $\therefore -0.3 \times 10 = 60 - z$ $\therefore -0.3 - 60 = -z$ $\therefore -63 = -z$ $\therefore z = 63$ Skp = $\frac{3(x-M)}{\sigma}$ $\therefore -0.3 = \frac{3(60-M)}{10}$ $\therefore -0.3 \times 10 = 3(60 - M)$ $\therefore \frac{-3}{3} = 60 - M$ $\therefore -1 - 60 = -M$ $\therefore -61 = -M$ $\therefore M = 61$ Hence, Model, z = 63 and Median, M = 61

3) For a data set, sum of upper and lower quartiles is 100, difference between upper and lower quartiles is 40 and median is 30. Find the coefficient of skewness.

Sol: Given: $Q_3 + Q_1 = 100$ $Q_3 + Q_1 = 40$ M = 30Bowley's co-efficient of skewness,

 $Skb = \frac{\frac{Q_{s} + Q_{1} - 2M}{Q_{s} - Q_{1}}}{\frac{100 - 2(30)}{40}}$ $= \frac{\frac{100 - 60}{40}}{40}$

 $=\frac{\frac{40}{40}}{...Skb} = 1$

4) For a data set with upper quartile equal to 55 and median equal to 42. If the distribution is symmetric, find the value of lower quartile.

Sol: Given: $Q_3 = 55$ M = 42 Distribution is symmetric

 \therefore Skb = 0

 $\therefore \text{Skb} = \frac{\frac{Q_{B} + Q_{1} - 2M}{Q_{B} - Q_{1}}}{Q_{B} - Q_{1}}$

Bowley's co-efficient of skewness,

- $\therefore 0 = \frac{\frac{55+Q_1-2(42)}{55-Q_1}}{55-Q_1}$
- $\therefore 0 = 55 + Q_1 84$
- $\therefore 0 = -29 + Q_1$

5) Obtain the coefficient of skewness by formula and comment on mature of the distribution.

	No. of females
Height in inches	
Less than 60	10
60-64	20
64-68	40
68-72	10
72-76	2

Sol:

Height in inches	No. of females(<i>f</i>)	C.F. (Less than)
Less than 60	10	10
60-64	20	30

64-68	40	70
68-72	10	80
72-76	2	82
	N = 2	

Here, N = 82

Q 1 Calculation:

For $Q_{1}, \frac{N}{4} = \frac{82}{4} = 20.5$ $\therefore Q_{1}$ lies in the class 60 - 64 L = 60, f = 20; c.f. = 10; h = 4 $\therefore Q_{1} = L + \frac{h}{f} \left(\frac{N}{4} - c.f \right)$ $= 60 + \frac{4}{20} (20.5 - 10)$ $= 60 + \frac{1}{5} \times 10.5$ = 60 + 2.1 $\therefore Q_{1} = 62.1$

Q 3 Calculation:

For $Q_{3}, \frac{3N}{4} = 3 \times 20.5 = 61.5$

∴
$$Q_3$$
 lies in the class 64 - 68
L = 64, f = 40; c.f. = 30; h = 4
∴ $Q_3 = L + \frac{h}{f} \left(\frac{3N}{4} - c.f \right)$
= 64 + $\frac{4}{40}$ (61.5-30)
= 64 + $\frac{1}{10} \times 31.5$

= 64 + 3.15

 $\therefore Q_3 = 67.15$

Median calculation:

For M, $\frac{N}{2} = \frac{82}{2} = 41$

 \therefore Median lies in the class 64 - 68

L = 64, f = 40; c.f. = 30; h = 4

$$\therefore M = L + \frac{h}{f} \left(\frac{N}{2} - c.f \right)$$

= 64 + $\frac{4}{40} (41-30)$
= 64 + $\frac{1}{10} \times 11$
= 64 + 1.1
 $\therefore M = 67.15$

Bowley's co-efficient of skewness,

$$\therefore \text{Skb} = \frac{Q_8 + Q_1 - 2M}{Q_8 - Q_1}$$

= $\frac{67.15 + 62.1 - 2(65.1)}{67.15 + 62.1}$
= $\frac{129.25 - 130.2}{5.05}$
= $\frac{-0.95}{5.05}$
 $\therefore \text{Skb} = -0.1881$
 $\therefore \text{Skb} < 0$, the distribution is negatively skewed.
6) Find Skb for the following set of observations.

17,17,21,14,15,20,19,16,13,17,18 Sol:

x_i^2		
x _i		
17	289	
17	289	
21	441	
14	196	
15	225	
20	400	
19	361	
16	256	
13	169	
17	289	
18	324	
$\sum x_i = 187$	$\sum x_i^2 = 3239$	

Here,
$$n = 11$$

Mean, $\overline{x} = \frac{\Sigma x_i}{n}$
 $= \frac{187}{11}$
 $\therefore \quad \overline{x} = 17$

Standard deviation,

$$\sigma = \sqrt{\frac{\sum x_i^2}{n}} - (\bar{x}) 2$$

= $\sqrt{\frac{3239}{11}} - (17)2$
= $\sqrt{294.45 - 289}$
= $\sqrt{5.45}$
 $\therefore \sigma = 2.33$

Mode,

* 17 is repeated maximum times i.e. 3 times

 \therefore Mode, ^{*z*} = 17

 $\therefore \quad \text{Skp} = \frac{\overline{x} - z}{\sigma}$ $= \frac{17 - 17}{2.33}$ $\therefore \quad \text{Skp} = 0$

7) Calculate Skb for the following set of observations of yield of heat in kg from 13 plots.

4.6,3.5,4.8,5.1,4.7,5.5,4.7,3.6,4.2,3.5,3.6,5.2 Sol: Arranging the data in ascending order, 3.5,3.5,3.5,3.6,3.6,4.2,4.6,4.7,4.7,4.8,5.1.5.2.5.5 Here, n = 13

First Quartile:

 $Q_{1} = \left(\frac{n+1}{4}\right)^{th} \text{ observation}$ $= \left(\frac{13+1}{4}\right)^{th} \text{ observation}$ $= \left(\frac{14}{4}\right)^{th} \text{ observation}$ = 3.5 th observation = 3 rd observation + 0.5 (4 th observation-3 rd observation) = 3.5 + 0.5 (3.6-3.5) $= 3.5 + 0.5 \times 0.1$ = 3.5 + 0.05 $\therefore Q_{1} = 3.55$ Third quartile: $Q_{3} = \left(\frac{n+1}{4}\right)^{th} \text{ observation}$ = 3(3.5) th observation

= 10.5th observation

= 10th observation + 0.5 (11th observation-10th observation)

$$= 4.8 + 0.5 (5.1-4.8)$$
$$= 4.8 + 0.5 \times 0.3$$
$$= 4.8 + 0.15$$
$$\therefore Q_3 = 4.95$$

Median:

 $M = \left(\frac{n+1}{2}\right)^{th} \text{ observation}$ $= \left(\frac{13+1}{2}\right)^{th} \text{ observation}$ $= \left(\frac{14}{2}\right)^{th} \text{ observation}$ = 7th observation

 \therefore M = 4.6

Bowley's co-efficient of skewness, $\therefore Skb = \frac{Q_{8} + Q_{1} - 2M}{Q_{8} - Q_{1}}$ $= \frac{4.95 + 3.55 - 2(4.6)}{4.5 + 3.55}$ $= \frac{8.5 - 9.2}{1.4}$ $= \frac{-0.7}{1.4}$

 $\therefore \text{Skb} = -0.5$

8) For a frequency distribution $Q_3 - Q_2 = 90$ and $Q_2 - Q_1 = 120$, find Skb.

Sol: Given: $Q_2 - Q_1 = 120$

 $Q_3 - Q_2 = 90$

Bowley's co-efficient of skewness,

$$\therefore \text{Skb} = \frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{(Q_3 - Q_2) + (Q_2 - Q_1)}$$
$$= \frac{90 - 120}{90 + 120}$$
$$= \frac{-30}{210}$$
$$\therefore \text{Skb} = -0.143$$