SAMPLE OUESTION CAPER

BLUE PRINT

Time Allowed : 3 hours

Maximum Marks: 80

S. No.	Chapter	VSA/Case based (1 mark)	SA-I (2 marks)	SA-II (3 marks)	LA (5 marks)	Total
1.	Relations and Functions	2(2)	_	1(3)	-	3(5)
2.	Inverse Trigonometric Functions	1(1)*	1(2)	_	_	2(3)
3.	Matrices	2(2)	_	_	1(5)*	3(7)
4.	Determinants	1(1)	1(2)	_	—	2(3)
5.	Continuity and Differentiability	1(1)*	1(2)	2(6)	_	4(9)
6.	Application of Derivatives	1(1)	2(4)	1(3)	_	4(8)
7.	Integrals	2(2)#	1(2)*	1(3)*	_	4(7)
8.	Application of Integrals	_	1(2)	1(3)	_	2(5)
9.	Differential Equations	1(1)	1(2)	1(3)*	-	3(6)
10.	Vector Algebra	1(4)	1(2)*	_	_	2(6)
11.	Three Dimensional Geometry	3(3)#	_	_	1(5)*	4(8)
12.	Linear Programming	_	_	_	1(5)*	1(5)
13.	Probability	$2(2)^{\#} + 1(4)$	1(2)*	_	-	4(8)
	Total	18(24)	10(20)	7(21)	3(15)	38(80)

*It is a choice based question.

[#]Out of the two or more questions, one/two question(s) is/are choice based.

Subject Code : 041

MATHEMATICS

Time allowed : 3 hours

General Instructions :

- 1. This question paper contains two parts A and B. Each part is compulsory. Part-A carries 24 marks and Part-B carries 56 marks.
- 2. Part-A has Objective Type Questions and Part-B has Descriptive Type Questions.
- 3. Both Part-A and Part-B have internal choices.

Part -A :

- 1. It consists of two Sections-I and II.
- 2. Section-I comprises of 16 very short answer type questions.
- 3. Section-II contains 2 case study-based questions.

Part - B :

- 1. It consists of three Sections-III, IV and V.
- 2. Section-III comprises of 10 questions of 2 marks each.
- 3. Section-IV comprises of 7 questions of 3 marks each.
- 4. Section-V comprises of 3 questions of 5 marks each.
- 5. Internal choice is provided in 3 questions of Section-III, 2 questions of Section-IV and 3 questions of Section-V. You have to attempt only one of the alternatives in all such questions.

PART - A

Section - I

1. Evaluate : $\int \frac{dx}{\sqrt{x+1} + \sqrt{x+2}}$

OR

- Evaluate : $\int \frac{dx}{\sqrt{2+4x-x^2}}$
- 2. If $A = \begin{bmatrix} 0 & 0 \\ x & 0 \end{bmatrix}$, then find A^{16} .
- 3. If an equation of the plane passing through the points (3, 2, -1), (3, 4, 2) and (7, 0, 6) is $5x + 3y 2z = \lambda$, then find λ .

OR

Find the distance of the plane 2x - 3y + 4z - 6 = 0 from the origin.

4. If $A = \{1, 2, 3\}$, $B = \{1, 4, 6, 9\}$ and R is a relation from A to B defined by 'x is greater than y'. Then find the

Mathematics

Maximum marks : 80

231

range of R.

5. A box contains 3 orange balls, 3 green balls and 2 blue balls. Three balls are drawn at random from the box without replacement. Find the probability of drawing 2 green balls and one blue ball.

OR

If *A* and *B* are two events such that
$$P(A) = \frac{4}{5}$$
 and $P(A \cap B) = \frac{7}{10}$, then find $P(B|A)$.

6. Find the order and degree of
$$\frac{d^5 y}{dx^5} + e^{dy/dx} + y^2 = 0$$
.

7. If
$$y = \tan^{-1}\left(\sqrt{3}\right) + \tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$$
, then find $\frac{dy}{dx}$.

OR

Show that $f(x) = x^3$ is continuous at x = 2.

- 8. If a line makes angle α , β and γ with the coordinate axes, then find the value of $\cos 2\alpha + \cos 2\beta + \cos 2\gamma$.
- **9.** Evaluate : $\csc^{-1}(2/\sqrt{3})$

OR

Evaluate : $\sec^2(\tan^{-1} 2)$

- **10.** Evaluate : $\int_{0}^{1} \frac{\tan^{-1} x}{1 + x^{2}} dx$ **11.** If matrix $A = [a_{ij}]_{2 \times 2}$, where $a_{ij} = \begin{cases} 1 & \text{if } i \neq j \\ 0 & \text{if } i = j \end{cases}$ then find A^{3} .
- **12.** If *A* and *B* are events such that P(A) = 0.4, P(B) = 0.3 and $P(A \cup B) = 0.5$, then find $P(B' \cap A)$.
- **13.** How many one-one functions from set $A = \{1, 2, 3\}$ to itself are possible?
- 14. Write the direction cosines of the line segment joining the points A(7, -5, 9) and B(5, -3, 8).
- **15.** If the area of a triangle with vertices (-3, 0), (3, 0) and (0, k) is 9 sq. units, then find the value of *k*.

16. Find the interval on which $f(x) = 2x^3 - 6x + 5$ is a strictly increasing function.

Section - II

Case study-based questions are compulsory. Attempt any 4 sub parts from each question. Each sub-part carries 1 mark.

17. A graduate student is preparing for competitive examinations. The probabilities that the student is selected in competitive examination of B.S.F., C.D.S. and Bank P.O. are *a*, *b* and *c* respectively. Of these examinations, students has 70% chance of selection in at least one, 50% chance of selection in at least two and 30% chance of selection in exactly two examinations. Based on the above answer the following :

(i) The value of
$$a + b + c - ab - bc - ca + abc$$
 is
(a) 0.3 (b) 0.5 (c) 0.7
(ii) The set of the data of the da

(ii) The value of
$$ab + bc + ac - 2abc$$
 is
(a) 0.5 (b) 0.3 (c) 0.4

(d) 0.6

(d) 0.6

(iii) The value of <i>abc</i> is									
	(a) 0.2	(b) 0.5	(c) 0.7	(d) 0.3					
(iv)	(iv) The value of $ab + bc + ac$ is								
	(a) 0.1	(b) 0.9	(c) 0.5	(d) 0.3					
(v)	The value of $a + b + c$ is								
	(a) 1.9	(b) 1.5	(c) 1.6	(d) 1.4					

18. Consider the following diagram, where the forces in the cable are given.

(a) $\frac{x}{5} = \frac{y}{8} = \frac{z-24}{24}$ (b) $\frac{x}{8} = \frac{y}{5} = \frac{z-24}{24}$ (c) $\frac{x}{5} = \frac{y}{8} = \frac{24-z}{24}$ (d) $\frac{x}{8} = \frac{y}{5} = \frac{24-z}{24}$ (ii) The length of cable *DC* is (a) 43 m (b) 34 m (c) 54 m (d) 45 m (iii) The vector *DB* is (a) $-\hat{6i} + \hat{4j} - 24\hat{k}$ (b) $\hat{6i} - \hat{4j} + 24\hat{k}$ (c) $\hat{6i} + \hat{4j} + 24\hat{k}$ (d) none of these (iv) Find the sum of vectors along the cables. (a) $15\hat{i} + \hat{6j} + 72\hat{k}$ (b) $15\hat{i} - \hat{6j} - 72\hat{k}$ (c) $15\hat{i} + \hat{6j} - 72\hat{k}$ (d) none of these (v) The sum of lengths, *i.e.*, *OA* + *OB* + *OC*, is (a) $\sqrt{89} + \sqrt{52} + \sqrt{580}$ (b) $\sqrt{52} + \sqrt{580} + \sqrt{48}$ (c) $\sqrt{89} + \sqrt{560} + \sqrt{49}$ (d) none of these

PART – B

Section - III

- **19.** Solve for $x : \cos(2\sin^{-1} x) = \frac{1}{9}, x > 0$.
- **20.** A man speaks truth in 75% cases. He throws a die and reports that it is a six. Find the probability that it is actually a six.

OR

Amit and Nisha appear for an interview in a company. The probability of Amit's selection is $\frac{1}{5}$ and that of Nisha's selection is $\frac{1}{6}$. What is the probability that only one of them is selected?

21. If
$$\tan^{-1}\left(\frac{y}{x}\right) = \frac{1}{2}\log(x^2 + y^2)$$
, then prove that $\frac{dy}{dx} = \frac{x+y}{x-y}$.

Mathematics

- **22.** Find the point on the curve $y = x^3 11x + 5$ at which the equation of tangent is y = x 11.
- 23. Let *ABCD* be the parallelogram whose sides *AB* and *AD* are represented by the vector $2\hat{i} + 4\hat{j} 5\hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$ respectively. If \vec{a} is a unit vector parallel to \overrightarrow{AC} , then find \vec{a} .

OR

The vector $\hat{i} + x\hat{j} + 3\hat{k}$ is rotated through an angle θ and doubled in magnitude, then it becomes $4\hat{i} + (4x-2)\hat{j} + 2\hat{k}$. Find the value of *x*.

24. If
$$\left(\frac{2+\sin x}{1+y}\right)\frac{dy}{dx} = -\cos x$$
, $y(0) = 1$, then find $y\left(\frac{\pi}{2}\right)$.
25. If $A = \begin{bmatrix} a & 0 & 0\\ 0 & a & 0\\ 0 & 0 & a \end{bmatrix}$, then find $|A|$ |adj A |.

26. Find the area bounded by the curve $y = x^4$, *x*-axis and lines x = -2, x = 2.

27. Show that the function $f(x) = 3 - 4x + 2x^2 - \frac{1}{3}x^3$ is decreasing on *R*.

28. Evaluate : $\int \frac{1+\sin x}{1+\cos x} dx$

OR

If
$$I_1 = \int_e^{e^2} \frac{dx}{\log x}$$
 and $I_2 = \int_1^2 \frac{e^x}{x} dx$, then show that $I_1 = I_2$

Section - IV

29. Prove that the derivative of
$$\tan^{-1}\left(\frac{\sqrt{1+(ax)^2}-1}{ax}\right)$$
 with respect to $\tan^{-1}\left(\frac{2x\sqrt{1-x^2}}{1-2x^2}\right)$ at $x = 0$ is $\frac{a}{4}$.

30. Find the intervals in which the function $f(x) = (x - 1)^3 (x + 2)^2$ is strictly increasing or strictly decreasing. Also, find the points of local maximum and local minimum if any.

OR

OR

31. Evaluate :
$$\int \frac{5x+3}{\sqrt{x^2+4x+10}} dx$$

Evaluate :
$$\int_{0}^{\pi} x \cos^2 x \, dx$$

32. Using integration, find the area bounded by the ellipse $\frac{x^2}{4} + \frac{y^2}{25} = 1$.

- **33.** Show that $f: \mathbb{R} \to \mathbb{R}$, given by f(x) = x [x], is neither one-one nor onto.
- **34.** Find the particular solution of (x + y)dy + (x y)dx = 0, given that y = 1 when x = 1.

Solve the differential equation : $xdy - ydx = \sqrt{x^2 + y^2} dx$

35. If
$$f(x) = \begin{cases} 4 & \text{, if } x \le -1 \\ ax^2 + b, & \text{if } -1 < x < 0 \text{ is continuous. Find the value of } a \text{ and } b \\ \cos x & \text{, if } x \ge 0 \end{cases}$$

Section - V

36. If
$$A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$ and $(A + B)^2 = A^2 + B^2$, then find the values of *a* and *b*.

If $A = \begin{bmatrix} 1 & 2 & 5 \\ 1 & -1 & -1 \\ 2 & 3 & -1 \end{bmatrix}$, then find A^{-1} . Hence solve the following system of equations : x + 2y + 5z = 10, x - y - z = -2, 2x + 3y - z = -11

37. Solve the following Linear Programming Problem (LPP) graphically. Maximize Z = 20x + 10y

Subject to constraints : $x + 2y \le 28$; $3x + y \le 24$; $x, y \ge 0$

OR

Solve the following Linear Programming Problem (LPP) graphically.

Maximize Z = 4500x + 5000y

Subject to constraints : $x + y \le 250$; $25000x + 40000y \le 7000000$; $x, y \ge 0$

38. Find the image of the point having position vector $\hat{i} + 3\hat{j} + 4\hat{k}$ in the plane $\vec{r} \cdot (2\hat{i} - \hat{j} + \hat{k}) + 3 = 0$.

OR

Find the coordinates of the points on the line $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$, which are at a distance of 1 unit from the point (1, 2, 3).