Mathematical Operations

Type-I

Solving by Substitution

In this type of problems, you are required to simplify the given statement by substituting various signs and numerals as per given terms. To simplify a statement, the BODMAS rule is very useful.

Type-II

Interchanging of Signs and Numbers

In this type of problems, you would require to interchange the pair(s) of symbols/numbers. Simplify if asked the given statement(s) using BODMAS rule.

Type-III

Analysing the Conclusions

In this type of problems, relations between different statements are given in terms of mathematical operations (less than, more than etc.) A student is required to analyse amongst them to get correct conclusions.

EXAMPLE

Consider the following statements.

'A @ B' means 'A is not greater than B'.
'A © B' means 'A is not smaller than B'.
'A # B' means 'A is neither greater than nor equal to B'.
'A \$ B' means "A is neither smaller than nor equal to B'.
Assuming the given below statements to be true, analyse which of the two conclusions I and II is/are definitely true and choose your option accordingly.
Statements: P @ Q, Q © R, R # S.
Conclusions: 1. P \$ R II. R \$ P
(a) Only I is true
(b) Only II is true
(c) None is true
(d) Both are true

Explanation (c):

We have $A@B \Rightarrow A \neq B \Rightarrow A \leq B$ $A@B \Rightarrow A \neq B \Rightarrow A \geq B$ $A \# B \Rightarrow A \neq B$ and $A \neq B \Rightarrow A < B$ $A \# B \Rightarrow A \neq B$ and $A \neq B \Rightarrow A < B$ **Given statements:** $P \leq Q, Q \geq R, R < S$. **Relationship between P and R:** $P \leq Q, Q \geq R$ \Rightarrow No definite relationship between P and R. Hence none of I and II is true.