
Chapter 6

Three-Dimensional Problems

6.1 Introduction

In this chapter we examine how to solve the Schrödinger equation for spinless particles moving

in three-dimensional potentials. We carry out this study in two different coordinate systems:

the Cartesian system and the spherical system.

First, working within the context of Cartesian coordinates, we study the motion of a particle

in different potentials: the free particle, a particle in a (three-dimensional) rectangular potential,

and a particle in a harmonic oscillator potential. This study is going to be a simple generaliza-

tion of the one-dimensional problems presented in Chapter 4. Unlike the one-dimensional case,

three-dimensional problems often exhibit degeneracy, which occurs whenever the potential dis-

plays symmetry.

Second, using spherical coordinates, we describe the motion of a particle in spherically

symmetric potentials. After presenting a general treatment, we consider several applications

ranging from the free particle and the isotropic harmonic oscillator to the hydrogen atom. We

conclude the chapter by calculating the energy levels of a hydrogen atom when placed in a

constant magnetic field; this gives rise to the Zeeman effect.

6.2 3D Problems in Cartesian Coordinates

We examine here how to extend Schrödinger’s theory of one-dimensional problems (Chapter

4) to three dimensions.

6.2.1 General Treatment: Separation of Variables

The time-dependent Schrödinger equation for a spinless particle of mass m moving under the
influence of a three-dimensional potential is

h2

2m
2 x y z t V x y z t x y z ih

x y z t

t
(6.1)

where 2 is the Laplacian, 2 2 x2 2 y2 2 z2. As seen in Chapter 4, the wave
function of a particle moving in a time-independent potential can be written as a product of
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spatial and time components:

x y z t x y z e i Et h (6.2)

where x y z is the solution to the time-independent Schrödinger equation:

h2

2m
2 x y z V x y z x y z E x y z (6.3)

which is of the form H E .

This partial differential equation is generally difficult to solve. But, for those cases where

the potential V x y z separates into the sum of three independent, one-dimensional terms

(which should not be confused with a vector)

V x y z Vx x Vy y Vz z (6.4)

we can solve (6.3) by means of the technique of separation of variables. This technique consists
of separating the three-dimensional Schrödinger equation (6.3) into three independent one-

dimensional Schrödinger equations. Let us examine how to achieve this. Note that (6.3), in

conjunction with (6.4), can be written as

Hx Hy Hz x y z E x y z (6.5)

where Hx is given by

Hx
h2

2m

2

x2
Vx x (6.6)

the expressions for Hy and Hz are analogous.

As V x y z separates into three independent terms, we can also write x y z as a

product of three functions of a single variable each:

x y z X x Y y Z z (6.7)

Substituting (6.7) into (6.5) and dividing by X x Y y Z z , we obtain

h2

2m

1

X

d2X

dx2
Vx x

h2

2m

1

Y

d2Y

dy2
Vy y

h2

2m

1

Z

d2Z

dz2
Vz z E (6.8)

Since each expression in the square brackets depends on only one of the variables x y z, and
since the sum of these three expressions is equal to a constant, E , each separate expression
must then be equal to a constant such that the sum of these three constants is equal to E . For
instance, the x-dependent expression is given by

h2

2m

d2

dx2
Vx x X x Ex X x (6.9)

Similar equations hold for the y and z coordinates, with

Ex Ey Ez E (6.10)

The separation of variables technique consists in essence of reducing the three-dimensional
Schrödinger equation (6.3) into three separate one-dimensional equations (6.9).
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6.2.2 The Free Particle

In the simple case of a free particle, the Schrödinger equation (6.3) reduces to three equations

similar to (6.9) with Vx 0, Vy 0, and Vz 0. The x-equation can be obtained from (6.9):

d2X x

dx2
k2x X x (6.11)

where k2x 2mEx h2, and hence Ex h2k2x 2m . As shown in Chapter 4, the normalized
solutions to (6.11) are plane waves

X x
1

2
eikx x (6.12)

Thus, the solution to the three-dimensional Schrödinger equation (6.3) is given by

k x y z 2 3 2eikx xeiky yeikz z 2 3 2eik r (6.13)

where k and r are the wave and position vectors of the particle, respectively. As for the total
energy E , it is equal to the sum of the eigenvalues of the three one-dimensional equations
(6.11):

E Ex Ey Ez
h2

2m
k2x k2y k2z

h2

2m
k2 (6.14)

Note that, since the energy (6.14) depends only on the magnitude of k, all different orientations
of k (obtained by varying kx ky kz) subject to the condition

k k2x k2y k2z constant (6.15)

generate different eigenfunctions (6.13) without a change in the energy. As the total number

of orientations of k which preserve its magnitude is infinite, the energy of a free particle is
infinitely degenerate.
Note that the solutions to the time-dependent Schrödinger equation (6.1) are obtained by

substituting (6.13) into (6.2):

k r t r e i t 2 3 2ei k r t (6.16)

where E h; this represents a propagating wave with wave vector k. The orthonormality
condition of this wave function is expressed by

k
r t k r t d

3r
k
r k r d

3r 2 3 ei k k rd3r k k (6.17)

which can be written in Dirac’s notation as

k t k t k k k k (6.18)

The free particle can be represented, as seen in Chapter 3, by a wave packet (a superposition of

wave functions corresponding to the various wave vectors):

r t 2 3 2 A k t k r t d
3k 2 3 2 A k t ei k r t d3k (6.19)
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where A k t is the Fourier transform of r t :

A k t 2 3 2 r t e i k r t d3r (6.20)

As seen in Chapters 1 and 4, the position of the particle can be represented classically by the

center of the wave packet.

6.2.3 The Box Potential

We are going to begin with the rectangular box potential, which has no symmetry, and then

consider the cubic potential, which displays a great deal of symmetry, since the xyz axes are
equivalent.

6.2.3.1 The Rectangular Box Potential

Consider first the case of a spinless particle of mass m confined in a rectangular box of sides
a b c:

V x y z
0 0 x a 0 y b 0 z c

elsewhere
(6.21)

which can be written as V x y z Vx x Vy y Vz z , with

Vx x
0 0 x a

elsewhere
(6.22)

the potentials Vy y and Vz z have similar forms.
The wave function x y z must vanish at the walls of the box. We have seen in Chapter

4 that the solutions for this potential are of the form

X x
2

a
sin

nx
a
x nx 1 2 3 (6.23)

and the corresponding energy eigenvalues are

Enx
h2 2

2ma2
n2x (6.24)

From these expressions we can write the normalized three-dimensional eigenfunctions and their

corresponding energies:

nxnynz x y z
8

abc
sin

nx
a
x sin

ny
b
y sin

nz
c
z (6.25)

Enxnynz
h2 2

2m

n2x
a2

n2y
b2

n2z
c2

(6.26)
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Table 6.1 Energy levels and their degeneracies for the cubic potential, with E1
2h2

2mL2
.

Enxnynz E1 nx ny nz gn

3 (111) 1

6 (211), (121), (112) 3

9 (221), (212), (122) 3

11 (311), (131), (113) 3

12 (222) 1

14 (321), (312), (231), (213), (132), (123) 6

6.2.3.2 The Cubic Potential

For the simpler case of a cubic box of side L, the energy expression can be inferred from (6.26)
by substituting a b c L:

Enxnynz
h2 2

2mL2
n2x n2y n2z nx ny nz 1 2 3 (6.27)

The ground state corresponds to nx ny nz 1; its energy is given by

E111
3 2h2

2mL2
3E1 (6.28)

where, as shown in Chapter 4, E1 2h2 2mL2 is the zero-point energy of a particle in a
one-dimensional box. Thus, the zero-point energy for a particle in a three-dimensional box is

three times that in a one-dimensional box. The factor 3 can be viewed as originating from the

fact that we are confining the particle symmetrically in all three dimensions.

The first excited state has three possible sets of quantum numbers nx ny nz 2 1 1 ,

1 2 1 , 1 1 2 corresponding to three different states 211 x y z , 121 x y z , and 112 x y z ,
where

211 x y z
8

L3
sin

2

L
x sin

L
y sin

L
z (6.29)

the expressions for 121 x y z and 112 x y z can be inferred from 211 x y z . Notice
that all three states have the same energy:

E211 E121 E112 6
2h2

2mL2
6E1 (6.30)

The first excited state is thus threefold degenerate.
Degeneracy occurs only when there is a symmetry in the problem. For the present case of a

particle in a cubic box, there is a great deal of symmetry, since all three dimensions are equiv-

alent. Note that for the rectangular box, there is no degeneracy since the three dimensions are

not equivalent. Moreover, degeneracy did not exist when we treated one-dimensional problems

in Chapter 4, for they give rise to only one quantum number.

The second excited state also has three different states, and hence it is threefold degenerate;

its energy is equal to 9E1: E221 E212 E122 9E1.
The energy spectrum is shown in Table 6.1, where every nth level is characterized by its

energy, its quantum numbers, and its degeneracy gn .
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6.2.4 The Harmonic Oscillator

We are going to begin with the anisotropic oscillator, which displays no symmetry, and then

consider the isotropic oscillator where the xyz axes are all equivalent.

6.2.4.1 The Anisotropic Oscillator

Consider a particle of mass m moving in a three-dimensional anisotropic oscillator potential

V x y z
1

2
m 2

x X
2 1

2
m 2

yY
2 1

2
m 2

z Z
2 (6.31)

Its Schrödinger equation separates into three equations similar to (6.9):

h2

2m

d2X x

dx2
1

2
m x x

2X x Ex X x (6.32)

with similar equations for Y y and Z z . The eigenenergies corresponding to the potential
(6.31) can be expressed as

Enxnynz Enx Eny Enz nx
1

2
h x ny

1

2
h y nz

1

2
h z

(6.33)

with nx ny nz 0 1 2 3 . The corresponding stationary states are

nxnynz x y z Xnx x Yny y Znz z (6.34)

where Xnx x , Yny y and Znz z are one-dimensional harmonic oscillator wave functions.
These states are not degenerate, because the potential (6.31) has no symmetry (it is anisotropic).

6.2.4.2 The Isotropic Harmonic Oscillator

Consider now an isotropic harmonic oscillator potential. Its energy eigenvalues can be inferred
from (6.33) by substituting x y z ,

Enxnynz nx ny nz
3

2
h (6.35)

Since the energy depends on the sum of nx , ny , nz , any set of quantum numbers having the
same sum will represent states of equal energy.

The ground state, whose energy is E000 3h 2, is not degenerate. The first excited state

is threefold degenerate, since there are three different states, 100, 010, 001, that correspond

to the same energy 5h 2. The second excited state is sixfold degenerate; its energy is 7h 2.

In general, we can show that the degeneracy gn of the nth excited state, which is equal to
the number of ways the nonnegative integers nx ny nz may be chosen to total to n, is given by

gn
1

2
n 1 n 2 (6.36)

where n nx ny nz . Table 6.2 displays the first few energy levels along with their
degeneracies.
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Table 6.2 Energy levels and their degeneracies for an isotropic harmonic oscillator.

n 2En h nxnynz gn

0 3 (000) 1

1 5 (100), (010), (001) 3

2 7 (200), (020), (002) 6

(110), (101), (011)

3 9 (300), (030), (003) 10

(210), (201), (021)

(120), (102), (012)

(111)

Example 6.1 (Degeneracy of a harmonic oscillator)

Show how to derive the degeneracy relation (6.36).

Solution

For a fixed value of n, the degeneracy gn is given by the number of ways of choosing nx , ny ,
and nz so that n nx ny nz .
For a fixed value of nx , the number of ways of choosing ny and nz so that ny nz n nx

is given by n nx 1 ; this can be shown as follows. For a given value of nx , the various
permissible values of ny nz are given by ny nz 0 n nx , 1 n nx 1 , 2 n nx 2 ,

3 n nx 3 , , n nx 3 3 , n nx 2 2 , n nx 1 1 , and n nx 0 . In all,
there are n nx 1 sets of ny nz so that ny nz n nx . Now, since the values of nx
can vary from 0 to n, the degeneracy is then given by

gn
n

nx 0

n nx 1 n 1

n

nx 0

1

n

nx 0

nx n 1 2
1

2
n n 1

1

2
n 1 n 2

(6.37)

A more primitive way of calculating this series is to use Gauss’s method: simply write the series
n
nx 0 n nx 1 in the following two equivalent forms:

gn n 1 n n 1 n 2 4 3 2 1 (6.38)

gn 1 2 3 4 n 2 n 1 n n 1 (6.39)

Since both of these two series contain n 1 terms each, a term by term addition of these

relations yields

2gn n 2 n 2 n 2 n 2 n 2 n 2

n 1 n 2 (6.40)

hence gn
1
2
n 1 n 2 .
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6.3 3D Problems in Spherical Coordinates

6.3.1 Central Potential: General Treatment

In this section we study the structure of the Schrödinger equation for a particle of mass1 M
moving in a spherically symmetric potential

V r V r (6.41)

which is also known as the central potential.
The time-independent Schrödinger equation for this particle, of momentum ih and po-

sition vector r , is
h2

2M
2 V r r E r (6.42)

Since the Hamiltonian is spherically symmetric, we are going to use the spherical coordinates

r which are related to their Cartesian counterparts by

x r sin cos y r sin sin z r cos (6.43)

The Laplacian 2 separates into a radial part 2
r and an angular part

2 as follows (see Chapter

5):

2 2
r

1

h2r2
2 1

r2 r
r2
r

1

h2r2
L
2 1

r

2

r2
r

1

h2r2
L
2

(6.44)

where L is the orbital angular momentum with

L2 h2
1

sin
sin

1

sin2

2

2
(6.45)

In spherical coordinates the Schrödinger equation therefore takes the form

h2

2M

1

r

2

r2
r

1

2Mr2
L2 V r r E r (6.46)

The first term of this equation can be viewed as the radial kinetic energy

h2

2M

1

r

2

r2
r

P2r
2M

(6.47)

since the radial momentum operator is given by the Hermitian form2

Pr
1

2

r

r
P P

r

r
ih

r

1

r
ih
1

r r
r (6.48)

1Throughout this section we will designate the mass of the particle by a capital M to avoid any confusion with the

azimuthal quantum number m.
2Note that we can show that the commutator between the position operator, r , and the radial momentum operator,

pr , is given by: [r pr ] ih (the proof is left as an exercise).
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The second term L2 2Mr2 of (6.46) can be identified with the rotational kinetic energy, for
this term is generated from a “pure” rotation of the particle about the origin (i.e., no change in

the radial variable r , where Mr2 is its moment of inertia with respect to the origin).

Now, since L2 as shown in (6.45) does not depend on r , it commutes with both V r and
the radial kinetic energy; hence it also commutes with the Hamiltonian H . In addition, since

Lz commutes with L2, the three operators H , L2, and L z mutually commute:

[H L2] [H L z] 0 (6.49)

Thus H , L2, and L z have common eigenfunctions. We have seen in Chapter 5 that the simulta-

neous eigenfunctions of L2 and L z are given by the spherical harmonics Ylm :

L2Ylm l l 1 h2Ylm (6.50)

L zYlm mhYlm (6.51)

Since the Hamiltonian in (6.46) is a sum of a radial part and an angular part, we can look for

solutions that are products of a radial part and an angular part, where the angular part is simply

the spherical harmonic Ylm :

r r nlm nlm r Rnl r Ylm (6.52)

Note that the orbital angular momentum of a system moving in a central potential is conserved,

since, as shown in (6.49), it commutes with the Hamiltonian.

The radial wave function Rnl r has yet to be found. The quantum number n is introduced
to identify the eigenvalues of H :

H nlm En nlm (6.53)

Substituting (6.52) into (6.46) and using the fact that nlm r is an eigenfunction of L2

with eigenvalue l l 1 h2, then dividing through by Rnl r Ylm and multiplying by 2Mr2,
we end up with an equation where the radial and angular degrees of freedom are separated:

h2
r

Rnl

2

r2
r Rnl 2Mr2 V r E

L2Ylm
Ylm

0 (6.54)

The terms inside the first square bracket are independent of and and those of the second

are independent of r . They must then be separately equal to constants and their sum equal to

zero. The second square bracket is nothing but (6.50), the eigenvalue equation of L2; hence it
is equal to l l 1 h2. As for the first bracket, it must be equal to l l 1 h2; this leads to an
equation known as the radial equation for a central potential:

h2

2M

d2

dr2
r Rnl r V r

l l 1 h2

2Mr2
r Rnl r En r Rnl r (6.55)

Note that (6.55), which gives the energy levels of the system, does not depend on the azimuthal

quantum numberm. Thus, the energy En is 2l 1 -fold degenerate. This is due to the fact that,
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for a given l, there are 2l 1 different eigenfunctions nlm (i.e., nl l , nl l 1, , nl l 1,

nl l) which correspond to the same eigenenergy En . This degeneracy property is peculiar to
central potentials.

Note that (6.55) has the structure of a one-dimensional equation in r ,

h2

2M

d2Unl r

dr2
V r

l l 1 h2

2Mr2
Unl r EnUnl r (6.56)

or

h2

2M

d2Unl r

dr2
Veff r Unl r EnUnl r (6.57)

whose solutions give the energy levels of the system. The wave function Unl r is given by

Unl r r Rnl r (6.58)

and the potential by

Veff r V r
l l 1 h2

2Mr2
(6.59)

which is known as the effective or centrifugal potential, where V r is the central potential

and l l 1 h2 2Mr2 is a repulsive or centrifugal potential, associated with the orbital angular
momentum, which tends to repel the particle away from the center. As will be seen later, in the

case of atoms, V r is the Coulomb potential resulting from the attractive forces between the
electrons and the nucleus. Notice that although (6.57) has the structure of a one-dimensional

eigenvalue equation, it differs from the one-dimensional Schrödinger equation in one major

aspect: the variable r cannot have negative values, for it varies from r 0 to r . We

must therefore require the wave function nlm r to be finite for all values of r between 0
and , notably for r 0. But if Rnl 0 is finite, r Rnl r must vanish at r 0, i.e.,

lim
r 0

[r Rnl r ] Unl 0 0 (6.60)

Thus, to make the radial equation (6.57) equivalent to a one-dimensional eigenvalue problem,

we need to assume that the particle’s potential is given by the effective potential Veff r for

r 0 and by an infinite potential for r 0.

For the eigenvalue equation (6.57) to describe bound states, the potential V r must be

attractive (i.e., negative) because l l 1 h2 2Mr2 is repulsive. Figure 6.1 shows that, as l
increases, the depth of Veff r decreases and its minimum moves farther away from the origin.
The farther the particle from the origin, the less bound it will be. This is due to the fact that as

the particle’s angular momentum increases, the particle becomes less and less bound.

In summary, we want to emphasize the fact that, for spherically symmetric potentials, the

Schrödinger equation (6.46) reduces to a trivial angular equation (6.50) for L2 and to a one-
dimensional radial equation (6.57).

Remark

When a particle has orbital and spin degrees of freedom, its total wave function consists

of a product of two parts: a spatial part, r , and a spin part, s ms ; that is,
s ms . In the case of an electron moving in a central field, besides the quantum numbers
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-

6

0 r

Veff r

l 1

Veff r

l 2

l 3

l l 1 h2

2Mr2

V r

l 0

Figure 6.1 The effective potential Veff r V r h2l l 1 2Mr2 corresponding to several
values of l: l 0 1 2 3; V r is an attractive central potential, while h2l l 1 2Mr2 is a
repulsive (centrifugal) potential.

n, l, ml , a complete description of its state would require a fourth quantum number, the spin
quantum number ms : nlmlms nlml s ms ; hence

n l ml ms r nlml r s ms Rnl r Ylml s ms (6.61)

Since the spin does not depend on the spatial degrees of freedom, the spin operator does not act

on the spatial wave function nlml r but acts only on the spin part s ms ; conversely, L acts
only the spatial part.

6.3.2 The Free Particle in Spherical Coordinates

In what follows we want to apply the general formalism developed above to study the motion of

a free particle of mass M and energy Ek h2k2 2M , where k is the wave number (k k ).

The Hamiltonian H h2 2 2M of a free particle commutes with L2 and L z . Since
V r 0 the Hamiltonian of a free particle is rotationally invariant. The free particle can
then be viewed as a special case of central potentials. We have shown above that the radial

and angular parts of the wave function can be separated, klm r r klm
Rkl r Ylm .

The radial equation for a free particle is obtained by setting V r 0 in (6.55):

h2

2M

1

r

d2

dr2
r Rkl r

l l 1 h2

2Mr2
Rkl r EkRkl r (6.62)

which can be rewritten as

1

r

d2

dr2
r Rkl r

l l 1

r2
Rkl r k2Rkl r (6.63)

where k2 2MEk h
2.
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Table 6.3 First few spherical Bessel and Neumann functions.

Bessel functions jl r Neumann functions nl r

j0 r
sin r
r n0 r

cos r
r

j1 r
sin r
r2

cos r
r n1 r

cos r
r2

sin r
r

j2 r
3
r3

1
r sin r 3 cos r

r2
n2 r

3
r3

1
r cos r 3

r2
sin r

Using the change of variable kr , we can reduce this equation to

d2Rl
d 2

2 dRl
d

1
l l 1

2
Rl 0 (6.64)

where Rl Rl kr Rkl r . This differential equation is known as the spherical Bessel
equation. The general solutions to this equation are given by an independent linear combination
of the spherical Bessel functions jl and the spherical Neumann functions nl :

Rl Al jl Blnl (6.65)

where jl and nl are given by

jl
l 1 d

d

l
sin

nl
l 1 d

d

l
cos

(6.66)

The first few spherical Bessel and Neumann functions are listed in Table 6.3 and their shapes

are displayed in Figure 6.2.

Expanding sin and cos in a power series of , we see that the functions jl and

nl reduce for small values of (i.e., near the origin) to

jl
2ll!

2l 1 !
l nl

2l !

2ll!
l 1 1 (6.67)

and for large values of to

jl
1
sin

l

2
nl

1
cos

l

2
1 (6.68)

Since the Neumann functions nl diverge at the origin, and since the wave functions klm are

required to be finite everywhere in space, the functions nl are unacceptable solutions to the

problem. Hence only the spherical Bessel functions jl kr contribute to the eigenfunctions of
the free particle:

klm r jl kr Ylm (6.69)

where k 2MEk h. As shown in Figure 6.2, the amplitude of the wave functions becomes
smaller and smaller as r increases. At large distances, the wave functions are represented by
spherical waves.
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-

6

0 r

j0 r
1

0 5
j1 r

j2 r
-

6

0 r

0 5 n0 r
n1 r

n2 r

Figure 6.2 Spherical Bessel functions jl r and spherical Neumann functions nl r ; only the
Bessel functions are finite at the origin.

Note that, since the index k in Ek h2k2 2M varies continuously, the energy spectrum of
a free particle is infinitely degenerate. This is because all orientations of k in space correspond
to the same energy.

Remark

We have studied the free particle within the context of Cartesian and spherical coordinate

systems. Whereas the energy is given in both coordinate systems by the same expression,

Ek h2k2 2M , the wave functions are given in Cartesian coordinates by plane waves eik r

(see (6.13)) and in spherical coordinates by spherical waves jl kr Ylm (see (6.69)). We

can, however, show that both sets of wave functions are equivalent, since we can express a

plane wave eik r in terms of spherical wave states jl kr Ylm . In particular, we can gener-

ate plane waves from a linear combination of spherical states that have the same k but different
values of l and m:

eik r

l 0

l

m l

alm jl kr Ylm (6.70)

The problem therefore reduces to finding the expansion coefficients alm . For instance, in the
case where k is along the z-axis, m 0, we can show that

eik r eikr cos

l 0

i l 2l 1 jl kr Pl cos (6.71)

where Pl cos are the Legendre polynomials, with Yl0 Pl cos . The wave functions

klm r jl kr Ylm describe a free particle of energy Ek , with angular momentum

l, but they give no information on the linear momentum p ( klm is an eigenstate of H , L2, and

Lz but not of P). On the other hand, the plane wave eik r which is an eigenfunction of H and

P , but not of L2 nor of Lz , gives no information about the particle’s angular momentum. That
is, plane waves describe states with well-defined linear momenta but poorly defined angular

momenta. Conversely, spherical waves describe states with well-defined angular momenta but

poorly defined linear momenta.
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6.3.3 The Spherical Square Well Potential

Consider now the problem of a particle of mass M in an attractive square well potential

V r
V0 r a

0 r a
(6.72)

Let us consider the cases 0 r a and r a separately.

6.3.3.1 Case where 0 r a

Inside the well, 0 r a, the time-independent Schrödinger equation for this particle can be
obtained from (6.55):

h2

2M

1

r

d2

dr2
r Rl r

l l 1 h2

2Mr2
Rl r E V0 Rl r (6.73)

Using the change of variable k1r , where k1 is now given by k1 2M E V0 h, we
see that (6.73) reduces to the spherical Bessel differential equation (6.64). As in the case of

a free particle, the radial wave function must be finite everywhere, and is given as follows in

terms of the spherical Bessel functions jl k1r :

Rl r A jl k1r A jl
2M E V0

h
r for r a (6.74)

where A is a normalization constant.

6.3.3.2 Case where r a

Outside the well, r a, the particle moves freely; its Schrödinger equation is (6.62):

h2

2M

1

r

d2

dr2
r Rkl r

l l 1 h2

2Mr2
Rkl r EkRkl r r a (6.75)

Two possibilities arise here, depending on whether the energy is negative or positive.

The negative energy case corresponds to bound states (i.e., to a discrete energy spectrum).

The general solutions of (6.75) are similar to those of (6.63), but k is now an imaginary
number; that is, we must replace k by ik2 and, hence, the solutions are given by linear
combinations of jl ik2r and nl ik2r :

Rl ik2r B jl ik2r nl ik2r (6.76)

where B is a normalization constant, with k2 2ME h. Note: Linear combinations
of jl and nl can be expressed in terms of the spherical Hankel functions of the first

kind, h 1l , and the second kind, h 2l , as follows:

h 1l jl inl (6.77)

h 2l jl inl h 1l (6.78)
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The first few spherical Hankel functions of the first kind are

h 10 i
ei

h 11
1 i

2
ei h 12

i 3
2

3i
3
ei

(6.79)

The asymptotic behavior of the Hankel functions when can be inferred from

(6.68):

h 1l
i
ei l 2 h 2l

i
e i l 2 (6.80)

The solutions that need to be retained in (6.76) must be finite everywhere. As can be

inferred from Eq (6.80), only the Hankel functions of the first kind h 1l ik2r are finite at

large values of r (the functions h 2l ik2r diverge for large values of r). Thus, the wave
functions outside the well that are physically meaningful are those expressed in terms of

the Hankel functions of the first kind (see (6.76)):

Rl ik2r Bh 1l i
2ME

h
r B jl i

2ME

h
r i Bnl i

2ME

h
r

(6.81)

The continuity of the radial function and its derivative at r a yields

1

h 1l ik2r

dh 1l ik2r

dr
r a

1

jl k1r

d jl k1r

dr r a
(6.82)

For the l 0 states, this equation reduces to

k2 k1 cot k1a (6.83)

This continuity condition is analogous to the transcendental equation we obtained in

Chapter 4 when we studied the one-dimensional finite square well potential.

The positive energy case corresponds to the continuous spectrum (unbound or scattering

states), where the solution is asymptotically oscillatory. The solution consists of a linear

combination of jl k r and nl k r , where k 2ME h. Since the solution must be
finite everywhere, the continuity condition at r a determines the coefficients of the
linear combination. The particle can move freely to infinity with a finite kinetic energy

E h2k 2 2M .

6.3.4 The Isotropic Harmonic Oscillator

The radial Schrödinger equation for a particle of mass M in an isotropic harmonic oscillator

potential

V r
1

2
M 2r2 (6.84)

is obtained from (6.57):

h2

2M

d2Unl r

dr2
1

2
M 2r2

l l 1 h2

2Mr2
Unl r EUnl r (6.85)
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We are going to solve this equation by examining the behavior of the solutions at the asymptotic

limits (at very small and very large values of r ). On the one hand, when r 0, the E and
M 2r2 2 terms become too small compared to the l l 1 h2 2Mr2 term. Hence, when r 0,

Eq. (6.85) reduces to

h2

2M

d2U r

dr2
l l 1 h2

2Mr2
U r 0 (6.86)

the solutions of this equation are of the form U r r l 1. On the other hand,when r ,

the E and l l 1 h2 2Mr2 terms become too small compared to the M 2r2 2 term; hence,
the asymptotic form of (6.85) when r is

h2

2M

d2U r

dr2
1

2
M 2r2U r 0 (6.87)

which admits solutions of type U r e M r2 2h . Combining (6.86) and (6.87), we can write

the solutions of (6.85) as

U r f r r l 1e M r2 2h (6.88)

where f r is a function of r . Substituting this expression into (6.85), we obtain an equation
for f r :

d2 f r

dr2
2
l 1

r

M

h
r
d f r

dr

2ME

h2
2l 3

M

h
f r 0 (6.89)

Let us try a power series solution

f r
n 0

anr
n a0 a1r a2r

2 anr
n (6.90)

Substituting this function into (6.89), we obtain

n 0

n n 1 anr
n 2 2

l 1

r

M

h
r nanr

n 1

2ME

h2
2l 3

M

h
anr

n 0

(6.91)

which in turn reduces to

n 0

n n 2l 1 anr
n 2 2M

h
n

2ME

h2
2l 3

M

h
anr

n 0 (6.92)

For this equation to hold, the coefficients of the various powers of r must vanish separately. For
instance, when n 0 the coefficient of r 2 is indeed zero:

0 2l 1 a0 0 (6.93)

Note that a0 need not be zero for this equation to hold. The coefficient of r 1 corresponds to

n 1 in (6.92); for this coefficient to vanish, we must have

1 2l 2 a1 0 (6.94)
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Since 2l 2 cannot be zero, because the quantum number l is a positive integer, a1 must
vanish.

The coefficient of rn results from the relation

n 0

n 2 n 2l 3 an 2
2ME

h2
M

h
2n 2l 3 an rn 0 (6.95)

which leads to the recurrence formula

n 2 n 2l 3 an 2
2ME

h2
M

h
2n 2l 3 an (6.96)

This recurrence formula shows that all coefficients an corresponding to odd values of n are
zero, since a1 0 (see (6.94)). The function f r must therefore contain only even powers of
r :

f r
n 0

a2nr
2n

n 0 2 4

an r
n (6.97)

where all coefficients a2n , with n 1, are proportional to a0.
Now note that when n the function f r diverges, for it behaves asymptotically like

er
2
. To obtain a finite solution, we must require the series (6.97) to stop at a maximum power

rn ; hence it must be polynomial. For this, we require an 2 to be zero. Thus, setting an 2

0 into the recurrence formula (6.96) and since an 0, we obtain at once the quantization
condition

2
M

h2
En l

M

h
2n 2l 3 0 (6.98)

or

En l n l
3

2
h (6.99)

where n is even (see (6.97)). Denoting n by 2N , where N 0 1 2 3 , we rewrite this

energy expression as

En n
3

2
h n 0 1 2 3 (6.100)

where n n l 2N l.
The ground state, whose energy is E0

3
2
h , is not degenerate; the first excited state, E1

5
2
h , is threefold degenerate; and the second excited state, E2

7
2
h , is sixfold degenerate

(Table 6.4). As shown in the following example, the degeneracy relation for the nth level is
given by

gn
1

2
n 1 n 2 (6.101)

This expression is in agreement with (6.36) obtained for an isotropic harmonic oscillator in

Cartesian coordinates.

Finally, since the radial wave function is given by Rnl r Unl r r , whereUnl r is listed
in (6.88) with f r being a polynomial in r2l of degree n l 2, the total wave function for

the isotropic harmonic oscillator is

nlm r Rnl r Ylm
Unl r

r
Ylm r l f r Ylm e M r2 2h (6.102)
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Table 6.4 Energy levels En and degeneracies gn for an isotropic harmonic oscillator.

n En Nl m gn

0 3
2
h 0 0 0 1

1 5
2
h 0 1 1, 0 3

2 7
2
h 1 0 0 6

0 2 2, 1, 0

3 9
2
h 1 1 1, 0 10

0 3 3, 2, 1, 0

where l takes only odd or only even values. For instance, the ground state corresponds to
n l m 0 0 0 ; its wave function is

000 r R00 r Y00
2 M

h

3 4

e M r2 2hY00 (6.103)

The n l m configurations of the first, second, and third excited states can be determined as

follows. The first excited state has three degenerate states: 1 1 m with m 1 0 1. The

second excited states has 6 degenerate states: 2 0 0 and 2 2 m with m 2 1 0 1 2.

The third excited state has 10 degenerate states: 3 1 m with m 1 0 1 and 3 3 m
where m 3 2 1 0 1 2 3. Some of these wave functions are given by

11m r R11 r Y1m
8

3

M

h

5 4

re M r2 2hY1m (6.104)

200 r R20 r Y00
8

3

M

h

3 4
3

2

M

h
r2 e M r2 2hY00

(6.105)

31m r R31 r Y1m
4

15

M

h

7 4

r2e M r2 2hY1m (6.106)

Example 6.2 (Degeneracy relation for an isotropic oscillator)

Prove the degeneracy relation (6.101) for an isotropic harmonic oscillator.

Solution

Since n 2N l the quantum numbers n and l must have the same parity. Also, since
the isotropic harmonic oscillator is spherically symmetric, its states have definite parity3. In

addition, since the parity of the states corresponding to a central potential is given by 1 l , the

3Recall from Chapter 4 that if the potential of a system is symmetric, V x V x , the states of the system must
be either odd or even.
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quantum number l ( hence n) can take only even or only odd values. Let us consider separately
the cases when n is even or odd.
First, when n is even the degeneracy gn of the nth excited state is given by

gn
n

l 0 2 4

2l 1

n

l 0 2 4

1 2

n

l 0 2 4

l
1

2
n 2

n n 2

2

1

2
n 1 n 2 (6.107)

Amore explicit way of obtaining this series consists of writing it in the following two equivalent

forms:

gn 1 5 9 13 2n 7 2n 3 2n 1 (6.108)

gn 2n 1 2n 3 2n 7 2n 11 13 9 5 1 (6.109)

We then add them, term by term, to get

2gn 2n 2 2n 2 2n 2 2n 2 2n 2 2n 2
n

2
1 (6.110)

This relation yields gn
1
2
n 1 n 2 , which proves (6.101) when n is even.

Second, when n is odd, a similar treatment leads to

gn
n

l 1 3 5 7

2l 1

n

l 1 3 5 7

1 2

n

l 1 3 5 7

l
1

2
n 1

1

2
n 1 2

1

2
n 1 n 2 (6.111)

which proves (6.101) when n is odd. Note that this degeneracy relation is, as expected, identical
with the degeneracy expression (6.36) obtained for a harmonic oscillator in Cartesian coordi-

nates.

6.3.5 The Hydrogen Atom

The hydrogen atom consists of an electron and a proton. For simplicity, we will ignore their

spins. The wave function then depends on six coordinates re xe ye ze and rp xp yp z p ,
where re and rp are the electron and proton position vectors, respectively. According to the
probabilistic interpretation of the wave function, the quantity re rp t 2d3re d3rp repre-
sents the probability that a simultaneous measurement of the electron and proton positions at

time t will result in the electron being in the volume element d3re and the proton in d3rp.
The time-dependent Schrödinger equation for the hydrogen atom is given by

h2

2m p
2
p

h2

2me
2
e V r re rp t ih

t
re rp t (6.112)

where 2
p and

2
e are the Laplacians with respect to the proton and the electron degrees of

freedom, with 2
p

2 x2p
2 y2p

2 z2p and
2
e

2 x2e
2 y2e

2 z2e , and
where V r is the potential (interaction) between the electron and the proton. This interaction,
which depends only on the distance that separates the electron and the proton r re rp, is
given by the Coulomb potential:

V r
e2

r
(6.113)
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Note: Throughout this text, we will be using the CGS units for the Coulomb potential where it

is given by V r e2 r (in the MKS units, however, it is given by V r e2 4 0r ).
Since V does not depend on time, the solutions of (6.112) are stationary; hence, they can

be written as follows:

re rp t re rp e
i Et h (6.114)

where E is the total energy of the electron–proton system. Substituting this into (6.112), we
obtain the time-independent Schrödinger equation for the hydrogen atom:

h2

2m p
2
p

h2

2me
2
e

e2

re rp
re rp E re rp (6.115)

6.3.5.1 Separation of the Center of Mass Motion

Since V depends only on the relative distance r between the electron and proton, instead of the
coordinates re and rp (position vectors of the electron and proton), it is more appropriate to use

the coordinates of the center of mass, R Xi Y j Zk, and the relative coordinates of the
electron with respect to the proton, r xi y j zk. The transformation from re, rp to R, r
is given by

R
mere m prp
me m p

r re rp (6.116)

We can verify that the Laplacians 2
e and

2
p are related to

2
R

2

X2

2

Y 2

2

Z2
2
r

2

x2

2

y2

2

z2
(6.117)

as follows:
1

me
2
e

1

m p
2
p

1

M
2
R

1 2
r (6.118)

where

M me m p
mem p
me m p

(6.119)

are the total and reduced masses, respectively The time-independent Schrödinger equation

(6.115) then becomes

h2

2M
2
R

h2

2
2
r V r E R r E E R r (6.120)

where E R r re rp . Let us now solve this equation by the separation of variables;
that is, we look for solutions of the form

E R r R r (6.121)

where R and r are the wave functions of the CM and of the relative motions, respec-

tively. Substituting this wave function into (6.120) and dividing by R r , we obtain

h2

2M

1

R
2
R R

h2

2

1

r
2
r r V r E (6.122)
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The first bracket depends only on R whereas the second bracket depends only on r . Since R
and r are independent vectors, the two expressions of the left hand side of (6.122) must be
separately constant. Thus, we can reduce (6.122) to the following two separate equations:

h2

2M
2
R R ER R (6.123)

h2

2
2
r r V r r Er r (6.124)

with the condition

ER Er E (6.125)

We have thus reduced the Schrödinger equation (6.120), which involves two variables R and
r , into two separate equations (6.123) and (6.124) each involving a single variable. Note that
equation (6.123) shows that the center of mass moves like a free particle of mass M . The
solution to this kind of equation was examined earlier in this chapter; it has the form

R 2 3 2eik R (6.126)

where k is the wave vector associated with the center of mass. The constant ER h2k2 2M
gives the kinetic energy of the center of mass in the lab system (the total mass M is located at

the origin of the center of mass coordinate system).

The second equation (6.124) represents the Schrödinger equation of a fictitious particle of

mass moving in the central potential e2 r .
We should note that the total wave function E R r R r is seldom used. When

the hydrogen problem is mentioned, this implicitly refers to r and Er . That is, the hydrogen
wave function and energy are taken to be given by r and Er , not by E and E .

6.3.5.2 Solution of the Radial Equation for the Hydrogen Atom

The Schrödinger equation (6.124) for the relative motion has the form of an equation for a

central potential. The wave function r that is a solution to this equation is a product of an
angular part and a radial part. The angular part is given by the spherical harmonic Ylm .

The radial part R r can be obtained by solving the following radial equation:

h2

2

d2U r

dr2
l l 1 h2

2 r2
e2

r
U r EU r (6.127)

whereU r r R r . To solve this radial equation, we are going to consider first its asymptotic
solutions and then attempt a power series solution.

(a) Asymptotic behavior of the radial wave function

For very small values of r , (6.127) reduces to

d2U r

dr2
l l 1

r2
U r 0 (6.128)

whose solutions are of the form

U r Ar l 1 Br l (6.129)
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where A and B are constants. Since U r vanishes at r 0, the second term r l , which

diverges at r 0, must be discarded. Thus, for small r , the solution is

U r r l 1 (6.130)

Now, in the limit of very large values of r , we can approximate (6.127) by

d2U r

dr2
2 E

h2
U r 0 (6.131)

Note that, for bound state solutions, which correspond to the states where the electron and

the proton are bound together, the energy E must be negative. Hence the solutions to this
equation are of the form U r e r where 2 E h. Only the minus sign solution
is physically acceptable, since e r diverges for large values of r . So, for large values of r , U r
behaves like

U r e r (6.132)

The solutions to (6.127) can be obtained by combining (6.130) and (6.132):

U r r l 1 f r e r (6.133)

where f r is an r -dependent function. Substituting (6.133) into (6.127) we end up with a
differential equation that determines the form of f r :

d2 f

dr2
2
l 1

r

d f

dr
2

l 1 e2 h2

r
f r 0 (6.134)

(b) Power series solutions for the radial equation

As in the case of the three-dimensional harmonic oscillator, let us try a power series solution

for (6.134):

f r
k 0

bkr
k (6.135)

which, when inserted into (6.134), yields

k 0

k k 2l 1 bkr
k 2 2 k l 1

e2

h2
bkr

k 1 0 (6.136)

This equation leads to the following recurrence relation (by changing k to k 1 in the last term):

k k 2l 1 bk 2 k l
e2

h2
bk 1 (6.137)

In the limit of large values of k, the ratio of successive coefficients,

bk
bk 1

2 k l e2 h2

k k 2l 1
(6.138)

is of the order of
bk
bk 1

2

k
(6.139)
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This is the behavior of an exponential series, since the ratio of successive coefficients of the

relation e2x k 0 2x
k k! is given by

2k

k!

k 1 !

2k 1

2

k
(6.140)

That is, the asymptotic behavior of (6.135) is

f r
k 0

bkr
k e2 r (6.141)

hence the radial solution (6.133) becomes

U r r l 1e2 re r r l 1e r (6.142)

But this contradicts (6.133): for large values of r , the asymptotic behavior of the physically
acceptable radial function (6.133) is given by e r while that of (6.142) by e r ; the form (6.142)
is thus physically unacceptable.

(c) Energy quantization

To obtain physically acceptable solutions, the series (6.135) must terminate at a certain power
N ; hence the function f r becomes a polynomial of order N :

f r
N

k 0

bkr
k (6.143)

This requires that all coefficients bN 1, bN 2, bN 3, have to vanish. When bN 1 0 the

recurrence formula (6.137) yields

N l 1
e2

h2
0 (6.144)

Since 2 E h2 and using the notation

n N l 1 (6.145)

where n is known as the principal quantum number and N as the radial quantum number, we
can infer the energy

En
e4

2h2
1

n2
(6.146)

which in turn can be written as

En
e4

2h2
1

n2
e2

2a0

1

n2
(6.147)

because (from Bohr theory of the hydrogen atom) the Bohr radius is given by a0 h2 e2

and hence h2 1 e2a0 . Note that we can write in terms of a0 as follows:

2
h2
En 2

1

e2a0

e2

2a0n2
1

na0
(6.148)



356 CHAPTER 6. THREE-DIMENSIONAL PROBLEMS

Since N 0 1 2 3 , the allowed values of n are nonzero integers, n l 1, l 2, l 3,

. For a given value of n, the orbital quantum number l can have values only between 0 and
n 1 (i.e., l 0 1 2 n 1).

Remarks

Note that (6.147) is similar to the energy expression obtained from the Bohr quantization

condition, discussed in Chapter 1. It can be rewritten in terms of the Rydberg constant

R mee4 2h2 as follows:

En
m p

m p me

R

n2
(6.149)

where R 13 6 eV. Since the ratio me m p is very small (me m p 1), we can

approximate this expression by

En 1
me
m p

1 R

n2
1

me
m p

R

n2
(6.150)

So, if we consider the proton to be infinitely more massive than the electron, we recover

the energy expression as derived by Bohr: En R n2.

Energy of hydrogen-like atoms: How does one obtain the energy of an atom or ion with

a nuclear charge Ze but which has only one electron4? Since the Coulomb potential felt
by the single electron due to the charge Ze is given by V r Ze2 r , the energy of
the electron can be inferred from (6.147) by simply replacing e2 with Ze2:

En
me Ze2 2

2h2
1

n2
Z2E0
n2

(6.151)

where E0 e2 2a0 13 6 eV; in deriving this relation, we have assumed that the

mass of the nucleus is infinitely large compared to the electronic mass.

(d) Radial wave functions of the hydrogen atom

The radial wave function Rnl r can be obtained by inserting (6.143) into (6.133),

Rnl r
1

r
Unl r Anlr

le r
N

k 0

bkr
k Anlr

le r na0
N

k 0

bkr
k (6.152)

since, as shown in (6.148), 1 na0 ; Anl is a normalization constant.
How does one determine the expression of Rnl r ? This issue reduces to obtaining the form

of the polynomial r l N
k 0 bkr

k and the normalization constant Anl . For this, we are going to
explore two methods: the first approach follows a straightforward calculation and the second

makes use of special functions.

4For instance, Z 1 refers to H, Z 2 to He , Z 3 to Li2 , Z 4 to Be3 , Z 5 to B4 , Z 6 to C5 ,

and so on.
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(i) First approach: straightforward calculation of Rnl r
This approach consists of a straightforward construction of Rnl r ; we are going to show how
to construct only the first few expressions. For instance, if n 1 and l 0 then N 0. Since

N n l 1 and 1 na0 we can write (6.152) as

R10 r A10e
r a0

0

k 0

bkr
k A10b0e

r a0 (6.153)

where A10b0 can be obtained from the normalization of R10 r : using 0 xne ax dx n! an 1,

we have

1
0

r2 R10 r
2 dr A210b

2
0
0

r2e 2r a0dr A210b
2
0

a30
4

(6.154)

hence A10 1 and b0 2 a0
3 2. Thus, R10 r is given by

R10 r 2 a0
3 2 e r a0 (6.155)

Next, let us find R20 r . Since n 2, l 0 we have N 2 0 1 1 and

R20 r A20e
r 2a0

1

k 0

bkr
k A20 b0 b1r e

r 2a0 (6.156)

From (6.138) we can express b1 in terms of b0 as

b1
2 k l 2 a0
k k 2l 1

b0
1

2a0
b0

1

a0 a30

(6.157)

because 1 2a0 , k 1, and l 0. So, substituting (6.157) into (6.156) and normalizing,

we get A20 1 2 2 ; hence

R20 r
1

2a30

1
r

2a0
e r 2a0 (6.158)

Continuing in this way, we can obtain the expression of any radial wave function Rnl r ; note
that, knowing b0 2 a0

3 2, we can use the recursion relation (6.138) to obtain all other

coefficients b2, b3, .

(ii) Second approach: determination of Rnl r by means of special functions
The polynomial r l N

k 0 bkr
k present in (6.152) is a polynomial of degree N l or n 1 since

n N l 1. This polynomial, which is denoted by LNk r , is known as the associated
Laguerre polynomial; it is a solution to the Schrödinger equation (6.134). The solutions to
differential equations of the form (6.134) were studied by Laguerre long before the birth of

quantum mechanics. The associated Laguerre polynomial is defined, in terms of the Laguerre
polynomials of order k, Lk r , by

LNk r
dN

drN
Lk r (6.159)

where

Lk r er
dk

drk
r ke r (6.160)
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Table 6.5 First few Laguerre polynomials and associated Laguerre polynomials.

Laguerre polynomials Lk r Associated Laguerre polynomials LNk r

L0 1

L1 1 r L11 1

L2 2 4r r2 L12 4 2r , L22 2

L3 6 18r 9r2 r3 L13 18 18r 3r2, L23 18 6r , L33 6

L4 24 96r 72r2 16r3 r4 L14 96 144r 48r2 4r3

L24 144 96r 12r2, L34 24r 96, L44 24

L5 120 600r 600r2 200r3 L15 600 1200r 600r2 100r3 5r4

25r4 r5 L25 1200 1200r 300r2 20r3

L35 1200 600r 60r2, L45 600 120r

L55 120

The first few Laguerre polynomials are listed in Table 6.5.

We can verify that Lk r and L
N
k r satisfy the following differential equations:

r
d2Lk r

dr2
1 r

dLk r

dr
kLk r 0 (6.161)

r
d2LNk r

dr2
N 1 r

dLNk r

dr
k N LNk r 0 (6.162)

This last equation is identical to the hydrogen atom radial equation (6.134). The proof goes as

follows. Using a change of variable

2 r 2
2 E

h
r (6.163)

along with the fact that a0 h2 e2 (Bohr radius), we can show that (6.134) reduces to

d2g

d 2
[ 2l 1 1 ]

dg

d
[ n l 2l 1 ] g 0 (6.164)

where f r g . In deriving (6.164), we have used the fact that 1 a0 n (see (6.148)).
Note that equations (6.162) and (6.164) are identical; the solutions to (6.134) are thus given by

the associated Laguerre polynomials L2l 1n l 2 r .
The radial wave function of the hydrogen atom is then given by

Rnl r Nnl
2r

na0

l

e r na0L2l 1n l

2r

na0
(6.165)

where Nnl is a constant obtained by normalizing the radial function Rnl r :

0

r2R2nl r dr 1 (6.166)
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Table 6.6 The first few radial wave functions Rnl r of the hydrogen atom.

R10 r 2a 3 2
0 e r a0 R21 r

1

6a30

r
2a0
e r 2a0

R20 r
1

2a30

1 r
2a0

e r 2a0 R31 r
8

9 6a30

1 r
6a0

r
3a0

e r 3a0

R30 r
2

3 3a30

1 2r
3a0

2r2

27a20
e r 3a0 R32 r

4

9 30a30

r
3a0

2
e r 3a0

Using the normalization condition of the associated Laguerre functions

0

e 2l L2l 1n l

2
2d

2n [ n l !]3

n l 1 !
(6.167)

where 2 r 2r na0 , we can show that Nnl is given by

Nnl
2

na0

3 2 n l 1 !

2n[ n l !]3
(6.168)

The wave functions of the hydrogen atom are given by

nlm r Rnl r Ylm (6.169)

where the radial functions Rnl r are

Rnl r
2

na0

3 2 n l 1 !

2n[ n l !]3
2r

na0

l

e r na0L2l 1n l

2r

na0
(6.170)

The first few radial wave functions are listed in Table 6.6; as shown in (6.155) and (6.158),

they are identical with those obtained from a straightforward construction of Rnl r . The shapes
of some of these radial functions are plotted in Figure 6.3.

(e) Properties of the radial wave functions of hydrogen

The radial wave functions of the hydrogen atom behave as follows (see Figure 6.3):

They behave like r l for small r .

They decrease exponentially at large r , since L2l 1n l is dominated by the highest power,

rn l 1.

Each function Rnl r has n l 1 radial nodes, since L2l 1n l is a polynomial of degree

n l 1.
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Figure 6.3 The first few radial wave functions Rnl r for hydrogen; the radial length is in units
of the Bohr radius a0 h2 e2 . Notice that Rnl r has n l 1 nodes.
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Table 6.7 Hydrogen energy levels and their degeneracies when the electron’s spin is ignored.

n l Orbitals m gn En

1 0 s 0 1 e2 2a0
2 0 s 0 4 e2 8a0

1 p 1 0 1

3 0 s 0 9 e2 18a0
1 p 1 0 1

2 d 2 1 0 1 2

4 0 s 0 16 e2 32a0
1 p 1 0 1

2 d 2 1 0 1 2

3 f 3 2 1 0 1 2 3

5 0 s 0 25 e2 50a0
1 p 1 0 1

2 d 2 1 0 1 2

3 f 3 2 1 0 1 2 3

4 g 4 3 2 1 0 1 2 3 4

6.3.5.3 Degeneracy of the Bound States of Hydrogen

Besides being independent of m, which is a property of central potentials (see (6.55)), the
energy levels (6.147) are also independent of l. This additional degeneracy in l is not a property
of central potentials, but a particular feature of the Coulomb potential. In the case of central
potentials, the energy E usually depends on two quantum numbers: one radial, n, and the other
orbital, l, giving Enl .
The total quantum number n takes only nonzero values 1 2 3 . As displayed in Ta-

ble 6.7, for a given n, the quantum l number may vary from 0 to n 1; and for each l, m can
take 2l 1 values: m l l 1 l 1 l. The degeneracy of the state n, which is spec-
ified by the total number of different states associated with n, is then given by (see Example 6.3
on page 364)

gn
n 1

l 0

2l 1 n2 (6.171)

Remarks

The state of every hydrogenic electron is specified by three quantum numbers n l m ,
called the single-particle state or orbital, nlm . According to the spectroscopic notation,
the states corresponding to the respective numerical values l 0 1 2 3 4 5 are

called the s, p, d, f, g, h, states; the letters s, p, d, f refer to sharp, principal, diffuse,

and fundamental labels, respectively (as the letters g, h, have yet to be assigned labels,

the reader is free to guess how to refer to them!). Hence, as shown in Table 6.7, for a
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given n an s-state has 1 orbital n00 , a p-state has 3 orbitals n1m corresponding to

m 1 0 1, a d-state has 5 orbitals n2m corresponding to m 2 1 0 1 2, and

so on.

If we take into account the spin of the electron, the state of every electron will be specified

by four quantum numbers n l ml ms , where ms
1
2
is the z-component of the spin

of the electron. Hence the complete wave function of the hydrogen atom must be equal

to the product of a space part or orbital nlml r Rnl r Ylml , and a spin part
1
2
ms :

nlmlms r nlml r
1

2

1

2
Rnl r Ylml

1

2

1

2
(6.172)

Using the spinors from Chapter 5 we can write the spin-up wave function as

nlml
1
2
r nlml r

1

2

1

2
nlml

1

0
nlml
0

(6.173)

and the spin-down wave function as

nlml
1
2
r nlml r

1

2

1

2
nlml

0

1

0

nlml
(6.174)

For instance, the spin-up and spin-down ground state wave functions of hydrogen are
given by

100 12
r 100

0
1 a 3 2

0 e r a0

0
(6.175)

100 1
2
r

0

100

0

1 a 3 2
0 e r a0

(6.176)

When spin is included the degeneracy of the hydrogen’s energy levels is given by

2

n 1

l 0

2l 1 2n2 (6.177)

since, in addition to the degeneracy (6.171), each level is doubly degenerate with respect

to the spin degree of freedom. For instance, the ground state of hydrogen is doubly

degenerate since
100 1

2
r and

100 1
2
r correspond to the same energy 13 6 eV.

Similarly, the first excited state is eightfold degenerate (2 2 2 8) because the eight

states
200 1

2
r ,

211 1
2
r ,

210 1
2
r , and

21 1 1
2
r correspond to the same

energy 13 6 4 eV 3 4 eV.

6.3.5.4 Probabilities and Averages

When a hydrogen atom is in the stationary state nlm r , the quantity nlm r 2 d3r
represents the probability of finding the electron in the volume element d3r , where
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d3r r2 sin dr d d . The probability of finding the electron in a spherical shell located

between r and r dr (i.e., a shell of thickness dr) is given by

Pnl r dr
0

sin d
2

0

d nlm r
2 r2dr

Rnl r
2r2dr

0

sin d
2

0

Ylm Ylm d

Rnl r
2r2dr (6.178)

If we integrate this quantity between r 0 and r a, we obtain the probability of finding the
electron in a sphere of radius a centered about the origin. Hence integrating between r 0

and r , we would obtain 1, which is the probability of finding the electron somewhere in

space.

Let us now specify the average values of the various powers of r . Since nlm r
Rnl r Ylm , we can see that the average of rk is independent of the azimuthal quantum
number m:

nlm rk nlm rk nlm r
2r2 sin dr d d

0

rk 2 Rnl r
2dr

0

sin d
2

0

Ylm Ylm d

0

rk 2 Rnl r
2dr

nl rk nl (6.179)

Using the properties of Laguerre polynomials, we can show that (Problem 6.2, page 370)

nl r nl
1

2
3n2 l l 1 a0 (6.180)

nl r2 nl
1

2
n2 5n2 1 3l l 1 a20 (6.181)

nl r 1 nl
1

n2 a0
(6.182)

nl r 2 nl
2

n3 2l 1 a20
(6.183)

where a0 is the Bohr radius, a0 h2 e2 . The averages (6.180) to (6.183) can be easily
derived from Kramers’ recursion relation (Problem 6.3, page 371):

k 1

n2
nl r k nl 2k 1 a0 nl r

k 1 nl
ka20
4

2l 1 2 k2 nl rk 2 nl 0 (6.184)

Equations (6.180) and (6.182) reveal that 1 r and 1 r are not equal, but are of the same
order of magnitude:

r n2a0 (6.185)

This relation is in agreement with the expression obtained from the Bohr theory of hydrogen:

the quantized radii of circular orbits for the hydrogen atom are given by rn n2a0. We will
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show in Problem 6.6 page 375 that the Bohr radii for circular orbits give the locations where

the probability density of finding the electron reaches its maximum.

Next, using the expression (6.182) for r 1 , we can obtain the average value of the Coulomb

potential

V r e2
1

r

e2

a0

1

n2
(6.186)

which, as specified by (6.147), is equal to twice the total energy:

En
1

2
V r

e2

2a0

1

n2
(6.187)

This is known as the Virial theorem, which states that if V r nV r , the average expres-
sions of the kinetic and potential energies are related by

T
n

2
V r (6.188)

For instance, in the case of a Coulomb potential V r 1V r , we have T 1
2
V ;

hence E 1
2
V V 1

2
V .

Example 6.3 (Degeneracy relation for the hydrogen atom)

Prove the degeneracy relation (6.171) for the hydrogen atom.

Solution

The energy En e2 2a0n2 of the hydrogen atom (6.147) does not depend on the orbital
quantum number l or on the azimuthal number m; it depends only on the principal quantum
number n. For a given n, the orbital number l can take n 1 values: l 0 1 2 3 n 1;

while for each l, the azimuthal number m takes 2l 1 values: m l l 1 l 1 l.
Thus, for each n, there exist gn different wave functions nlm r , which correspond to the same
energy En , with

gn
n 1

l 0

2l 1 2

n 1

l 0

l
n 1

l 0

1 n n 1 n n2 (6.189)

Another way of finding this result consists of writing
n 1
l 0 2l 1 in the following two equiv-

alent forms:

gn 1 3 5 7 2n 7 2n 5 2n 3 2n 1 (6.190)

gn 2n 1 2n 3 2n 5 2n 7 7 5 3 1 (6.191)

and then add them, term by term:

2gn 2n 2n 2n 2n 2n 2n 2n 2n (6.192)

Since there are n terms (because l can take n values: l 0 1 2 3 n 1), we have

2gn n 2n ; hence gn n2.
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6.3.6 Effect of Magnetic Fields on Central Potentials

As discussed earlier (6.55), the energy levels of a particle in a central potential do not depend

on the azimuthal quantum number m. This degeneracy can be lifted if we place the particle in
a uniform magnetic field B (if B is uniform, its spatial derivatives vanish).

6.3.6.1 Effect of a Magnetic Field on a Charged Particle

Consider a particle of mass and charge q which, besides moving in a central potential V r ,
is subject to a uniform magnetic field B.
From the theory of classical electromagnetism, the vector potential corresponding to a uni-

form magnetic field may be written as A 1
2
B r since, using the relation C D

C D D C D C C D, we have

A
1

2
B r

1

2
B r B r

1

2
3B B B (6.193)

where we have used B 0, r B 0, r 3, and B r B. When the charge
is placed in a magnetic field B, its linear momentum becomes p p q c A, where c is the
speed of light. The Hamiltonian of the particle is thus given by (see (6.124))

H
1

2
p

q

c
A
2

V r H0
q

2 c
p A A p

q2

2 c2
A2 (6.194)

where H0 p 2 2 V r is the Hamiltonian of the particle when the magnetic field B is
not present. The term p A can be calculated by analogy with the commutator [p F x ]
ihdF x dx :

p A ih A ihA ih A A p (6.195)

We see that, whenever A 0 is valid (the Coulomb gauge), A p is equal to p A:

p A A p ih A 0 A p p A (6.196)

On the other hand, since A 1
2
B r , we have

A p
1

2
B r p

1

2
B r p

1

2
B L (6.197)

where L is the orbital angular momentum operator of the particle. Now, a combination of

(6.196) and (6.197) leads to p A A p 1
2
B L which, when inserted in the Hamiltonian

(6.194), yields

H H0
q

c
A p

q2

2 c2
A2 H0

q

2 c
B L

q2

2 c2
A 2 H0 L B

q2

2 c2
A 2 (6.198)

where

L
q

2 c
L

B

h
L (6.199)

is called the orbital magnetic dipole moment of the charge q and B qh 2 c is known as
the Bohr magneton; as mentioned in Chapter 5, L is due to the orbiting motion of the charge
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about the center of the potential. The term L B in (6.198) represents the energy resulting
from the interaction between the particle’s orbital magnetic dipole moment L qL 2 c
and the magnetic field B. We should note that if the charge q had an intrinsic spin S, its spinning
motion would give rise to a magnetic dipole moment S qS 2 c which, when interacting
with an external magnetic field B, would in turn generate an energy term S B that must be
added to the Hamiltonian. This issue will be discussed further in Chapter 7.

Finally, using the relation C D E F C E D F C F D E , and since
A 1

2
B r , we have

A 2
1

4
B r B r

1

4
B2r2 B r 2 (6.200)

We can thus write (6.198) as

H
1

2
p 2 V r

q

2 c
B L

q2

8 c2
B2r2 B r 2 (6.201)

This is the Hamiltonian of a particle of mass and charge q moving in a central potential V r
under the influence of a uniform magnetic field B.

6.3.6.2 The Normal Zeeman Effect (S 0)

When a hydrogen atom is placed in an external uniform magnetic field, its energy levels get

shifted. This energy shift is known as the Zeeman effect.
In this study we ignore the spin of the hydrogen’s electron. The Zeeman effect without

the spin of the electron is called the normal Zeeman effect. When the spin of the electron is
considered, we get what is called the anomalous Zeeman effect, to be examined in Chapter
9 since its study requires familiarity with the formalisms of addition of angular momenta and

perturbation theory, which will be studied in Chapters 7 and 9, respectively.

For simplicity, we take B along the z-direction: B Bz. The Hamiltonian of the hydrogen
atom when subject to such a magnetic field can be obtained from (6.201) by replacing q with
the electron’s charge q e,

H
1

2
p 2

e2

r

e

2 c
BL z

e2B2

8 c2
x2 y2 H0

e

2 c
BLz

e2B2

8 c2
x2 y2

(6.202)

where H0 p2 2 e2 r is the atom’s Hamiltonian in the absence of a magnetic field. We
can ignore the quadratic term e2B2 x2 y2 8 c2 ; it is too small for a one-electron atom
even when the field B is strong; then (6.202) reduces to

H H0
B B

h
Lz (6.203)

where B eh 2 c 9 2740 10 24 J T 1 5 7884 10 5 eVT 1 is the Bohr magneton;

the electron’s orbital magnetic dipole moment, which results from the orbiting motion of the

electron about the proton, would be given by L eB 2 c . Since H0 commutes with
L z , the operators H , L z , and H0 mutually commute; hence they possess a set of common
eigenfunctions: nlm r Rnl r Ylm . The eigenvalues of (6.203) are

Enlm nlm H nlm nlm H0 nlm
B B

h
nlm L z nlm (6.204)
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Figure 6.4 Normal Zeeman effect in hydrogen. (Left) When B 0 the energy levels are

degenerate with respect to l and m. (Right) When B 0 the degeneracy with respect to m is
removed, but the degeneracy with respect to l persists; B eh 2 c .

or

Enlm E0n m BB E0n mh L (6.205)

where E0n are the hydrogen’s energy levels E
0
n e4 2h2n2 (6.147) and L is called the

Larmor frequency:

L
eB

2 c
(6.206)

So when a hydrogen atom is placed in a uniform magnetic field, and if we ignore the spin of

the electron, the atom’s spherical symmetry will be broken: each level with angular momentum

l will split into 2l 1 equally spaced levels (Figure 6.4), where the spacing is given by

E h L B B ; the spacing is independent of l. This equidistant splitting of the levels is
known as the normal Zeeman effect. The splitting leads to transitions which are restricted by
the selection rule: m 1 0 1. Transitions m 0 m 0 are not allowed.

The normal Zeeman effect has removed the degeneracy of the levels only partially; the

degeneracy with respect to l remains. For instance, as shown in Figure 6.4, the following levels
are still degenerate: Enlm E200 E210, E32 1 E31 1, E300 E310 E320, and
E321 E311. That is, the degeneracies of the levels corresponding to the same n and m but
different values of l are not removed by the normal Zeeman effect: Enl m Enlm with l l.
The results of the normal Zeeman effect, which show that each energy level splits into an

odd number of 2l 1 equally spaced levels, disagree with the experimental observations. For

instance, every level in the hydrogen atom actually splits into an even number of levels. This
suggests that the angular momentum is not integer but half-integer. This disagreement is due

to the simplifying assumption where the spin of the electron was ignored. A proper treatment,

which includes the electron spin, confirms that the angular momentum is not purely orbital but



368 CHAPTER 6. THREE-DIMENSIONAL PROBLEMS

includes a spin component as well. This leads to the splitting of each level into an even5 number
of 2 j 1 unequally spaced energy levels. This effect, known as the anomalous Zeeman effect,
is in full agreement with experimental findings.

6.4 Concluding Remarks

An important result that needs to be highlighted in this chapter is the solution of the Schrödinger

equation for the hydrogen atom. Unlike Bohr’s semiclassical model, which is founded on

piecemeal assumptions, we have seen how the Schrödinger equation yields the energy levels

systematically and without ad hoc arguments, the quantization of the energy levels comes out

naturally as a by-product of the formalism, not as an unjustified assumption: it is a conse-

quence of the boundary conditions which require the wave function to be finite as r ;

see (6.144) and (6.147). So we have seen that by solving a single differential equation—the

Schrödinger equation—we obtain all that we need to know about the hydrogen atom. As such,

the Schrödinger equation has delivered on the promise made in Chapter 1: namely, a theory

that avoids the undesired aspects of Bohr’s model—its hand-waving, ad hoc assumptions—

while preserving its good points (i.e., the expressions for the energy levels, the radii, and the

transition relations).

6.5 Solved Problems

Problem 6.1

Consider a spinless particle of mass m which is moving in a three-dimensional potential

V x y z
1
2
m 2z2 0 x a 0 y a

elsewhere

(a) Write down the total energy and the total wave function of this particle.

(b) Assuming that h 3 2h2 2ma2 , find the energies and the corresponding degenera-
cies for the ground state and first excited state.

(c) Assume now that, in addition to the potential V x y z , this particle also has a negative
electric charge q and that it is subjected to a constant electric field directed along the z-axis.
The Hamiltonian along the z-axis is thus given by

Hz
h2

2m

2

z2
1

2
m 2z2 q z

Derive the energy expression Enz for this particle and also its total energy Enxnynz . Then find
the energies and the corresponding degeneracies for the ground state and first excited state.

Solution

(a) This three-dimensional potential consists of three independent one-dimensional poten-

tials: (i) a potential well along the x-axis, (ii) a potential well along the y-axis, and (iii) a

5When spin is included, the electron’s total angular momentum j would be half-integer; 2 j 1 is then an even

number.
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harmonic oscillator along the z-axis. The energy must then be given by

Enxnynz

2h2

2ma2
n2x n2y h nz

1

2
(6.207)

and the wave function by

nxnynz x y z Xnx x Yny y Znz z
2

a
sin

nx
a
x sin

ny
a
y Znz (6.208)

where Znz z is the wave function of a harmonic oscillator which, as shown in Chapter 4, is

given in terms of the Hermite polynomial Hnz
z
z0

by

Znz z
1

2nznz!z0
e z2 2z20Hnz

z

z0
(6.209)

with z0 h m .

(b) The energy of the ground state is given by

E110
2h2

ma2
h

2
(6.210)

and the energy of the first excited state is given by

E120 E210
5 2h2

2ma2
h

2
(6.211)

Note that, while the ground state is not degenerate, the first excited state is twofold degenerate.

We should also mention that, since h 3 2h2 2ma2 , we have E120 E111, or

E111
2h2

ma2
3h

2
E120 h

3 2h2

2ma2
(6.212)

and hence the first excited state is given by E120 and not by E111.
(c) To obtain the energies for

Hz
h2

2m

2

z2
1

2
m 2z2 q z (6.213)

we need simply to make the change of variable z q m 2 ; hence dz d . The
Hamiltonian Hz then reduces to

Hz
h2

2m

2

2

1

2
m 2 2 q2 2

2m 2
(6.214)

This suggestive form implies that the energy eigenvalues of Hz are those of a harmonic oscilla-
tor that are shifted downwards by an amount equal to q2 2 2m 2 :

Enz nz Hz nz h nz
1

2

q2 2

2m 2
(6.215)
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As a result, the total energy is now given by

Enxnynz

2h2

2ma2
n2x n2y h nz

1

2

q2 2

2m 2
(6.216)

The energies of the ground and first excited states are

E110
2h2

ma2
h

2

q2 2

2m 2
E120 E210

5 2h2

2ma2
h

2

q2 2

2m 2
(6.217)

Problem 6.2

Show how to obtain the expressions of: (a) nl r 2 nl and (b) nl r 1 nl ; that is, prove
(6.183) and (6.182).

Solution

The starting point is the radial equation (6.127),

h2

2

d2Unl r

dr2
l l 1 h2

2 r2
e2

r
Unl r EnUnl r (6.218)

which can be rewritten as

Unl r

Unl r

l l 1

r2
2 e2

h2
1

r

2e4

h4n2
(6.219)

where Unl r r Rnl r , Unl r d2Unl r dr2, and En e4 2h2n2 .
(a) To find r 2

nl , let us treat the orbital quantum number l as a continuous variable and
take the first l derivative of (6.219):

l

Unl r

Unl r

2l 1

r2
2 2e4

h4n3
(6.220)

where we have the fact that n depends on l since, as shown in (6.145), n N l 1; thus

n l 1. Now since 0 U2nl r dr 0 r2R2nl r dr 1, multiplying both sides of (6.220)

by U2nl r and integrating over r we get

0

U2nl r l

Unl r

Unl r
dr 2l 1

0

U2nl r
1

r2
dr

2 2e4

h4n3 0

U2nl r dr (6.221)

or

0

U2nl r l

Unl r

Unl r
dr 2l 1 nl

1

r2
nl

2 2e4

h4n3
(6.222)

The left-hand side of this relation is equal to zero, since

0

U2nl r l

Unl r

Unl r
dr

0

Unl r
Unl r

l
dr

0

Unl r
Unl r

l
dr 0 (6.223)

We may therefore rewrite (6.222) as

2l 1 nl
1

r2
nl

2 2e4

h4n3
(6.224)
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hence

nl
1

r2
nl

2

n3 2l 1 a20
(6.225)

since a0 h2 e2 .
(b) To find r 1

nl we need now to treat the electron’s charge e as a continuous variable in
(6.219). The first e-derivative of (6.219) yields

e

Unl r

Unl r

4 e

h2
1

r

4 2e3

h4n2
(6.226)

Again, since 0 U2nl r dr 1, multiplying both sides of (6.226) by U2nl r and integrating

over r we obtain

0

U2nl r e

Unl r

Unl r
dr

4 e

h2 0

U2nl r
1

r
dr

4 2e3

h4n2 0

U2nl r dr (6.227)

or

0

U2nl r e

Unl r

Unl r
dr

4 e

h2
nl
1

r
nl

4 2e3

h4n2
(6.228)

As shown in (6.223), the left-hand side of this is equal to zero. Thus, we have

4 e

h2
nl
1

r
nl

4 2e3

h4n2
nl
1

r
nl

1

n2a0
(6.229)

since a0 h2 e2 .

Problem 6.3

(a) Use Kramers’ recursion rule (6.184) to obtain expressions (6.180) to (6.182) for nl r 1 nl ,
nl r nl , and nl r2 nl .
(b) Using (6.225) for nl r 2 nl and combining it with Kramers’ rule, obtain the expression

for nl r 3 nl .
(c) Repeat (b) to obtain the expression for nl r 4 nl .

Solution

(a) First, to obtain nl r 1 nl , we need simply to insert k 0 into Kramers’ recursion rule

(6.184):
1

n2
nl r0 nl a0 nl r

1 nl 0 (6.230)

hence

nl
1

r
nl

1

n2a0
(6.231)

Second, an insertion of k 1 into (6.184) leads to the relation for nl r nl :

2

n2
nl r nl 3a0 nl r

0 nl
a20
4

2l 1 2 1 nl r 1 nl 0 (6.232)

and since nl r 1 nl 1 n2a0 , we have

nl r nl
1

2
3n2 l l 1 a0 (6.233)
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Third, substituting k 2 into (6.184) we get

3

n2
nl r2 nl 5a0 nl r nl

a20
2

2l 1 2 4 nl r0 nl 0 (6.234)

which when combined with nl r nl 1
2
3n2 l l 1 a0 yields

nl r2 nl
1

2
n2 5n2 1 3l l 1 a20 (6.235)

We can continue in this way to obtain any positive power of r : nl rk nl .
(b) Inserting k 1 into Kramers’ rule,

0 a0 nl r
2 nl

1

4
2l 1 2 1 a20 nl r

3 nl (6.236)

we obtain

nl
1

r3
nl

1

l l 1 a0
nl

1

r2
nl (6.237)

where the expression for nl r 2 nl is given by (6.225); thus, we have

nl
1

r3
nl

2

n3l l 1 2l 1 a30
(6.238)

(c) To obtain the expression for nl r 4 nl we need to substitute k 2 into Kramers’

rule:

1

n2
nl r 2 nl 3a0 nl r

3 nl
a20
2

2l 1 2 4 nl r 4 nl 0 (6.239)

Inserting (6.225) and (6.238) for nl r 2 nl and nl r 3 nl , we obtain

nl
1

r4
nl

4 3n2 l l 1

n5l l 1 2l 1 2l 1 2 4 a40
(6.240)

We can continue in this way to obtain any negative power of r : nl r k nl .

Problem 6.4

An electron is trapped inside an infinite spherical well V r
0 r a

r a
(a) Using the radial Schrödinger equation, determine the bound eigenenergies and the cor-

responding normalized radial wave functions for the case where the orbital angular momentum

of the electron is zero (i.e., l 0).

(b) Show that the lowest energy state for l 7 lies above the second lowest energy state for

l 0.

(c) Calculate the probability of finding the electron in a sphere of radius a 2, and then in a
spherical shell of thickness a 2 situated between r a and r 3a 2.
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Solution

(a) Since V r 0 in the region r a, the radial Schrödinger equation (6.57) becomes

h2

2m

d2Unl r

dr2
l l 1

r2
Unl r EUnl r (6.241)

where Unl r r Rnl r . For the case where l 0, this equation reduces to

d2Un0 r

dr2
k2nUn0 r (6.242)

where k2n 2mEn h
2. The general solution to this differential equation is given by

Un0 r A cos knr B sin knr (6.243)

or

Rn0 r
1

r
A cos knr B sin knr (6.244)

Since Rn0 r is finite at the origin or Un0 0 0, the coefficient A must be zero. In addition,
since the potential is infinite at r a (rigid wall), the radial function Rn0 a must vanish:

Rn0 a B
sin kna

a
0 (6.245)

hence ka n , n 1 2 3 . This relation leads to

En
h2 2

2ma2
n2 (6.246)

The normalization of the radial wave function R r , a
0 Rn0 r 2r2dr 1, leads to

1 B 2
a

0

1

r2
sin2 knr r

2dr
B 2

kn

kna

0

sin2 d
B 2

kn 2

sin 2

4

kna

0

1

2
B 2a (6.247)

hence B 2 a. The normalized radial wave function is thus given by

Rn0 r
2

a

1

r
sin

2mEn

h2
r (6.248)

(b) For l 7 we have

E1 l 7 Veff l 7
56h2

2ma2
28h2

ma2
(6.249)

The second lowest state for l 0 is given by the 3s state; its energy is

E2 l 0
2 2h2

ma2
(6.250)
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since n 2. We see that

E1 l 7 E2 l 0 (6.251)

(c) Since the probability of finding the electron in the sphere of radius a is equal to 1, the
probability of finding it in a sphere of radius a 2 is equal to 1 2.
As for the probability of finding the electron in the spherical shell between r a and

r 3a 2, it is equal to zero, since the electron cannot tunnel through the infinite potential from
r a to r a.

Problem 6.5

Find the l 0 energy and wave function of a particle of mass m that is subject to the following

central potential V r
0 a r b

elsewhere

Solution

This particle moves between two concentric, hard spheres of radii r a and r b. The l 0

radial equation between a r b can be obtained from (6.57):

d2Un0 r

dr2
k2Un0 r 0 (6.252)

where Un0 r r Rn0 r and k2 2mE h2. Since the solutions of this equation must satisfy
the condition Un0 a 0, we may write

Un0 r A sin[k r a ] (6.253)

the radial wave function is zero elsewhere, i.e., Un0 r 0 for 0 r a and r b.
Moreover, since the radial function must vanish at r b, Un0 b 0, we have

A sin[k b a ] 0 k b a n n 1 2 3 (6.254)

Coupled with the fact that k2 2mE h2 , this condition leads to the energy

En
h2k2

2m

2h2

2m a b 2
n 1 2 3 (6.255)

We can normalize the radial function (6.253) to obtain the constant A:

1
b

a
r2R2n0 r dr

b

a
U2n0 r dr A2

b

a
sin2[k r a ] dr

A2

2

b

a
1 cos[2k r a ] dr

b a

2
A2 (6.256)

hence A 2 b a . Since kn n b a the normalized radial function is given by

Rn0 r
1

r
Un0 r

2
b a

1
r sin[

n r a
b a ] a r b

0 elsewhere
(6.257)
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To obtain the total wave function nlm r , we need simply to divide the radial function by a
1 4 factor, because in this case of l 0 the wave function n00 r depends on no angular
degrees of freedom, it depends only on the radius:

n00 r
1

4
Rn0 r

2
4 b a

1
r sin[

n r a
b a ] a r b

0 elsewhere
(6.258)

Problem 6.6

(a) For the following cases, calculate the value of r at which the radial probability density
of the hydrogen atom reaches its maximum: (i) n 1, l 0, m 0; (ii) n 2, l 1, m 0;

(iii) l n 1, m 0.

(b) Compare the values obtained with the Bohr radius for circular orbits.

Solution

(a) Since the radial wave function for n 1 and l 0 is R10 r 2a 3 2
0 e r a0 , the

probability density is given by

P10 r r2 R10 r
2 4

a30
r2e 2r a0 (6.259)

(i) The maximum of P10 r occurs at r1:

dP10 r

dr r r1

0 2r1
2r21
a0

0 r1 a0 (6.260)

(ii) Similarly, since R21 r 1 2 6a5 20 re r 2a0 , we have

P21 r r2 R21 r
2 1

24a50
r4e r a0 (6.261)

The maximum of the probability density is given by

dP21 r

dr r r2

0 4r32
r42
a0

0 r2 4a0 (6.262)

(iii) The radial function for l n 1 can be obtained from (6.170):

Rn n 1 r
2

na0

3 2
1

2n[ 2n 1 !]3

2r

na0

n 1

e r na0L2n 1
2n 1

2r

na0
(6.263)

From (6.159) and (6.160) we can verify that the associated Laguerre polynomial L2n 1
2n 1 is a con-

stant, L2n 1
2n 1 y 2n 1 !. We can thus write Rn n 1 r as Rn n 1 r Anrn 1e r na0 ,

where An is a constant. Hence the probability density is given by

Pn n 1 r r2 Rn n 1 r
2 A2nr

2ne 2r na0 (6.264)

The maximum of the probability density is given by

dPn n 1 r

dr r rn

0 2nr2n 1
n

2r2nn
na0

0 rn n2a0 (6.265)
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6

r

P21 r

r2 r21

Figure 6.5 The probability density P21 r r4e r a0 24a50 is asymmetric about its max-

imum r2 4a0; the average of r is r21 5a0 and the width of the probability density is
r21 5a0.

(b) The values of rn displayed in (6.260), (6.262), and (6.265) are nothing but the Bohr
radii for circular orbits, rn n2a0. The Bohr radius rn n2a0 gives the position of maximum
probability density for an electron in a hydrogen atom.

Problem 6.7

(a) Calculate the expectation value r 21 for the hydrogen atom and compare it with the
value r at which the radial probability density reaches its maximum for the state n 2, l 1.

(b) Calculate the width of the probability density distribution for r .

Solution

(a) Since R21 r re r 2a0 24a50 the average value of r in the state R21 r is

r 21
1

24a50 0

r5e r a0dr
a0
24 0

u5e udu
120a0
24

5a0 (6.266)

in deriving this relation we have made use of 0 xne xdx n!.
The value r at which the radial probability density reaches its maximum for the state n 2,

l 1 is given by r2 4a0, as shown in (6.262).
What makes the results r2 4a0 and r 21 5a0 different? The reason that r 21 is

different from r2 can be attributed to the fact that the probability density P21 r is asymmetric
about its maximum, as shown in Figure 6.5. Although the most likely location of the electron

is at r0 4a0, the average value of the measurement of its location is r 21 5a0.

(b) The width of the probability distribution is given by r r2 21 r 221, where the

expectation value of r2 is

r2 21
0

r4R221 r dr
1

24a50 0

r6 exp
1

a0
r dr

6!a70
24a50

30a20 (6.267)

Thus, the width of the probability distribution shown in Figure 6.5 is given by

r21 r2 0 r 20 30a20 5a0
2 5a0 (6.268)
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Problem 6.8

The operators associated with the radial component of the momentum pr and the radial coordi-
nate r are denoted by Pr and R, respectively. Their actions on a radial wave function r are

given by Pr r ih 1 r r r r and R r r r .

(a) Find the commutator [Pr R] and Pr r , where r R2 R 2 and

Pr P2r Pr 2.

(b) Show that P2r h2 r 2 r2 r .

Solution

(a) Since R r r r and

Pr r ih
1

r r
r r ih

1

r
r ih

r

r
(6.269)

and since

Pr R r ih
1

r r
r2 r 2ih r ihr

r

r
(6.270)

the action of the commutator [Pr R] on a function r is given by

[Pr R] r ih
1

r r
r R r ih

1

r r
r2 r ih

r
r r

2ih r ihr
r

r
ih r ihr

r

r
ih r (6.271)

Thus, we have

[Pr R] ih (6.272)

Using the uncertainty relation for a pair of operators A and B, A B 1
2
[A B] , we can

write

Pr r
1

2
[Pr R] (6.273)

or

Pr r
h

2
(6.274)

(b) The action of P2r on r gives

P2r r h2
1

r r
r
1

r r
r h2

1

r

2

r2
r r (6.275)

hence

P2r h2
1

r

2

r2
r (6.276)

Problem 6.9

Find the number of s bound states for a particle of mass m moving in a delta potential V r
V0 r a where V0 0. Discuss the existence of bound states in terms of the size of a.

Find the normalized wave function of the bound state(s).
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Solution

The l 0 radial equation can be obtained from (6.57):

d2Un0 r

dr2
2mV0

h2
r a k2 Un0 r 0 (6.277)

where Unl r Un0 r r Rn0 r and k2 2mE h2, since we are looking here at the
bound states only, E 0. The solutions of this equation are

Un0 r
Un01 r Aekr Be kr 0 r a
Un02 r Ce kr r a

(6.278)

The energy eigenvalues can be obtained from the boundary conditions. As the wave function

vanishes at r 0, Un0 0 0, we have A B 0 or B A; hence Un01 r D sinh kr :

Un0 r D sinh kr 0 r a (6.279)

with D 2A. The continuity condition at r a of Un0 r , Un01 a Un02 a , leads to

D sinh ka Ce ka (6.280)

To obtain the discontinuity condition for the first derivative of Un0 r at r a, we need to
integrate (6.277):

lim
a
Un02 a Un01 a

2mV0

h2
Un02 a 0 (6.281)

or

kCe ka kD cosh ka
2mV0

h2
Ce ka 0 (6.282)

Taking Ce ka D sinh ka, as given by (6.280), and substituting it into (6.282), we get

k sinh ka k cosh ka
2mV0

h2
sinh ka 0 (6.283)

hence

coth
2mV0

h2
a (6.284)

where ka.
The energy eigenvalues are given by the intersection of the curves f coth and

g 2mV0a h
2 . As shown in Figure 6.6, if a h2 2mV0 then no bound state

solution can exist, since the curves of f and g do not intersect. But if a h2 2mV0
the curves intersect only once; hence there is one bound state. We can summarize these results

as follows:

a
h2

2mV0
no bound states (6.285)

a
h2

2mV0
only one bound state. (6.286)
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coth
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h2
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coth
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2mV0

Figure 6.6 Graphical solutions of f g , with ka, f coth , and g
2mV0a h2 . If a h2 2mV0 there is no bound state. If a h2 2mV0 there is one

bound state.

The radial wave function is given by

Rn0 r
1

r
Un0 r

D r sinh kr 0 r a
C r e kr r a

(6.287)

The normalization of this function yields

1
0

r2R2n0 r dr
0

U2n0 r dr

D2
a

0

sinh2 kr dr C2
a
e 2krdr

D2

2

a

0

[cosh 2kr 1] dr
C2

2k
e 2ka

D2
1

4k
sinh 2ka

a

2

C2

2k
e 2ka (6.288)

From (6.280) we have Ce ka D sinh ka, so we can rewrite this relation as

1 D2
1

4k
sinh 2ka

a

2

D2

2k
sinh2 ka D2

sinh 2ka 2 sinh2 ka

4k

a

2
(6.289)

hence

D
2 k

sinh 2ka 2 sinh2 ka 2ak
(6.290)

The normalized wave function is thus given by nlm r n00 r 1 4 Rn0 r or

n00 r
k

sinh 2ka 2 sinh2 ka 2 ak

1 r sinh kr 0 r a
1 r sinh ka e k r a r a

(6.291)
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Problem 6.10

Consider the l 0 states of a bound system of two quarks having the same mass m and

interacting via V r kr .
(a) Using the Bohr model, find the speed, the radius, and the energy of the system in the

case of circular orbits. Determine also the angular frequency of the radiation generated by a

transition of the system from an energy state n to m.
(b) Solve the Schrödinger equation for the central potential V r kr for the two-quark

system and find the expressions for the energy and the radial function Rnl r . Compare the
energy with the value obtained in (a).

(c) Use the expressions derived in (a) and (b) to calculate the four lowest energy levels of a

bottom–antibottom (bottomonium) quark system with k 15GeV fm 1; the mass–energy of a

bottom quark is mc2 4 4GeV.

Solution

(a) Consider the two quarks to move circularly, much like the electron and proton in a

hydrogen atom; we can write the force between them as

2

r

dV r

dr
k (6.292)

where m 2 is the reduced mass. From the Bohr quantization condition of the orbital

angular momentum, we have

L r nh (6.293)

Multiplying (6.292) by (6.293), we end up with 2 3 nhk which yields the speed of the
relative motion of the two-quark system:

n
nhk
2

1 3

(6.294)

The radius can be obtained from (6.293), rn nh n ; using (6.294) this leads to

rn
n2h2

k

1 3

(6.295)

We can obtain the total energy of the relative motion by adding the kinetic and potential ener-

gies:

En
1

2
2
n krn

3

2

n2h2k2
1 3

(6.296)

In deriving this we have used the relations for n and rn as given by (6.294) and (6.295),
respectively. The angular frequency of the radiation generated by a transition from n to m is
given by

nm
En Em
h

3

2h

k2

h

1 3

n2 3 m2 3 (6.297)

(b) The radial equation is given by (6.57):

h2

2

d2Unl r

dr2
kr

l l 1 h2

2Mr2
Unl r EnUnl r (6.298)
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where Unl r r Rnl r . Since we are dealing with l 0, we have

h2

2

d2Un0 r

dr2
krUn0 r EnUn0 r (6.299)

which can be reduced to

d2Un0 r

dr2
2 k

h2
r

E

k
Un0 r 0 (6.300)

Making the change of variable x 2 k h2 1 3 r E k , we can rewrite (6.300) as

d2 n x

dx2
x n x 0 (6.301)

We have already studied the solutions of this equation in Chapter 4; they are given by the Airy

functions Ai x : x BAi x . The bound state energies result from the zeros of Ai x .
The boundary conditions on Unl of (6.301) are Unl r 0 0 and Unl r 0. The

second condition is satisfied by the Airy functions, since Ai x 0. The first condition

corresponds to [ 2 k h2 1 3E k] 0 or to Ai[ 2 k h2 1 3E k] Ai Rn 0, where

Rn are the zeros of the Airy function.
The boundary condition Unl r 0 0 then yields a discrete set of energy levels which

can be expressed in terms of the Airy roots as follows:

Ai
2 k

h2

1 3 E

k
0

2 k

h2

1 3 En
k

Rn (6.302)

hence

En
h2k2

2

1 3

Rn (6.303)

The radial function of the system is given by Rn0 r 1 r Un0 r Bn r Ai x or

Rn0 r
Bn
r
Ai x

Bn
r
Ai

2 k

h2

1 3

r Rn (6.304)

The energy expression (6.303) has the same structure as the energy (6.296) derived from the

Bohr model E Bn
3
2
n2h2k2 1 3; the ratio of the two expressions is

En
E Bn

2

3

Rn
2n2 1 3

(6.305)

(c) In the following calculations we will be using k 15GeV fm 1, c2 mc2 2
2 2GeV, and hc 197 3MeV fm. The values of the four lowest energy levels corresponding

to the expression E Bn
3
2
n2h2k2 1 3, derived from the Bohr model, are

E B1
3

2

h2k2
1 3

2 38GeV E B2 22 3E B1 3 77GeV (6.306)

E B3 32 3E B1 4 95GeV E B4 42 3E B1 5 99GeV (6.307)
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Let us now calculate the exact energy levels. As mentioned in Chapter 4, the first few roots of

the Airy function are given by R1 2 338, R2 4 088, R3 5 521, R4 6 787, so

we can immediately obtain the first few energy levels:

E1
h2k2

2

1 3

R1 2 94GeV E2
h2k2

2

1 3

R2 5 14GeV (6.308)

E3
h2k2

2

1 3

R3 6 95GeV E4
h2k2

2

1 3

R4 8 54GeV (6.309)

Problem 6.11

Consider a system of two spinless particles of reduced mass that is subject to a finite, central

potential well

V r
V0 0 r a

0 r a

where V0 is positive. The purpose of this problem is to show how to find the minimum value of
V0 so that the potential well has one l 0 bound state.

(a) Find the solution of the radial Schrödinger equation in both regions, 0 r a and
r a, in the case where the particle has zero angular momentum and its energy is located in
the range V0 E 0.

(b) Show that the continuity condition of the radial function at r a can be reduced to a
transcendental equation in E .
(c) Use this continuity condition to find the minimum values of V0 so that the system has

one, two, and three bound states.

(d) Obtain the results of (c) from a graphical solution of the transcendental equation derived

in (b).

(e) Use the expression obtained in (c) to estimate a numerical value of V0 for a deuteron
nucleus with a 2 10 15m; a deuteron nucleus consists of a neutron and a proton.

Solution

(a) When l 0 and V0 E 0 the radial equation (6.56),

h2

2

d2Unl r

dr2
l l 1 h2

2 r2
V r Unl r EnUnl r (6.310)

can be written inside the well, call it region (1), as

Un r 1 k21Un r 1 0 0 r a (6.311)

and outside the well, call it region (2), as

Un r 2 k22Un r 2 0 r a (6.312)

where Un r d2Un r dr2, Un r 1 r Rn r 1, Un r 2 r Rn r 2, k1 2 V0 E h2

and k2 2 E h2. Since Un r 1 must vanish at r 0, while Un r 2 has to be finite at
r , the respective solutions of (6.311) and (6.312) are given by

Un r 1 A sin k1r 0 r a (6.313)

Un r 2 Be k2r r a (6.314)
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The corresponding radial functions are

Rn r 1 A
sin k1r

r
Rn r 2 B

e k2r

r
(6.315)

(b) Since the logarithmic derivative of the radial function is continuous at r a, we can
write

Rn a 1
Rn a 1

Rn a 2
Rn a 2

(6.316)

From (6.315) we have

Rn a 1
Rn a 1

k1 cot k1a
1

a

Rn a 2
Rn a 2

k2
1

a
(6.317)

Substituting (6.317) into (6.316) we obtain

k1 cot k1a k2 (6.318)

or

2

h2
V0 E cot

2

h2
V0 E a

2 E

h2
(6.319)

since k1 2 V0 E h2 and k2 2 E h2.
(c) In the limit E 0, the system has very few bound states; in this limit, equation (6.319)

becomes

2 V0

h2
cot

2 V0

h2
a 0 (6.320)

which leads to a 2 V0n h
2 2n 1 2; hence

V0n
2h2

8 a2
2n 1 2 n 0 1 2 3 (6.321)

Thus, the minimum values of V0 corresponding to one, two, and three bound states are respec-
tively

V00
2h2

8 a2
V01

9 2h2

8 a2
V02

25 2h2

8 a2
(6.322)

(d) Using the notation ak1 and ak2 we can, on the one hand, write

2 2 2 a2V0

h2
(6.323)

and, on the other hand, reduce the transcendental equation (6.318) to

cot (6.324)

since k1 2 V0 E h2 and k2 2 E h2.
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0
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2
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2

¾ 2 a2V0 h2 2

¾ cot

Figure 6.7 Graphical solutions for the finite, spherical square well potential: they are given

by the intersection of the circle 2 2 2 a2V0 h
2 with the curve of cot , where

2 2 a2 V0 E h2 and 2 2 a2E h2, with V0 E 0.

As shown in Figure 6.7, when 2 3 2, which in the limit of E 0 leads to

2h2

8 a2
V0

9 2h2

8 a2
(6.325)

there exists only one bound state, since the circle intersects only once with the curve cot .

Similarly, there are two bound states if 3 2 5 2 or

9 2h2

8 a2
V0

25 2h2

8 a2
(6.326)

and three bound states if 5 2 7 2:

25 2h2

8 a2
V0

49 2h2

8 a2
(6.327)

(e) Since m pc2 938MeV and mnc2 940MeV, the reduced mass of the deuteron is

given by c2 m pc2 mnc2 m pc2 mnc2 469 5MeV. Since a 2 10 15m the

minimum value of V0 corresponding to one bound state is

V0
2h2

8 a2

2 hc 2

8 c2 a2

2 197MeV fm 2

8 469 5MeV 2 10 15m 2
25 5MeV (6.328)

Problem 6.12

Calculate nl P4 nl in a stationary state nl of the hydrogen atom.

Solution
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To calculate nl P4 nl we may consider expressing P4 in terms of the hydrogen’s Hamil-
tonian. Since H P2 2me e2 r we have P2 2me H e2 r ; hence

nl P4 nl 2me
2 nl H

e2

r

2

nl

2me
2 nl H2 H

e2

r

e2

r
H

e4

r2
nl

2me
2 E2n En nl

e2

r
nl nl

e2

r
nl En nl

e4

r2
nl

(6.329)

where we have used the fact that nl is an eigenstate of H : H nl En nl with
En e2 2a0n2 13 6 eV n2. The expectation values of 1 r and 1 r2 are given by
(6.182) and (6.183), nl r 1 nl 1 n2a0 and nl r 2 nl 2 [n3 2l 1 a20]; we can thus
rewrite (6.329) as

nl P4 nl 2me
2 E2n 2En nl

e2

r
nl nl

e4

r2
nl

2meEn
2 1

2e2

En

1

n2 a0

e4

E2n

2

n3 2l 1 a20

2meEn
2 1 4

8n

2l 1
(6.330)

in deriving the last relation we have used En e2 2a0n2 . Now, since a0 h2 mee2 , the
energy En becomes En e2 2a0n2 mee4 2h2n2 which, when inserted into (6.330),
leads to

nl P4 nl
m4ee

8

h4n4
8n

2l 1
3 (6.331)

6.6 Exercises

Exercise 6.1

A spinless particle of mass m is confined to move in the xy plane under the influence of a
harmonic oscillator potential V x y 1

2
m 2 x2 y2 for all values of x and y.

(a) Show that the Hamiltonian H of this particle can be written as a sum of two familiar one-
dimensional Hamiltonians, Hx and Hy . Then show that H commutes with Lz X Py Y Px .
(b) Find the expression for the energy levels Enxny .
(c) Find the energies of the four lowest states and their corresponding degeneracies.

(d) Find the degeneracy gn of the nth excited state as a function of the quantum number n
(n nx ny).
(e) If the state vector of the nth excited state is n nx ny or

xy n x nx y ny nx x ny y
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calculate the expectation value of the operator A x4 y2 in the state n as a function of the
quantum numbers nx and ny .

Exercise 6.2

A particle of mass m moves in the xy plane in the potential

V x y
1
2
m 2y2 for all y and 0 x a

elsewhere

(a) Write down the time-independent Schrödinger equation for this particle and reduce it to

a set of familiar one-dimensional equations.

(b) Find the normalized eigenfunctions and the eigenenergies.

Exercise 6.3

A particle of mass m moves in the xy plane in a two-dimensional rectangular well

V x y
0 0 x a 0 y b

elsewhere

By reducing the time-independent Schrödinger equation to a set of more familiar one-dimensional

equations, find the normalized wave functions and the energy levels of this particle.

Exercise 6.4

Consider an anisotropic three-dimensional harmonic oscillator potential

V x y z
1

2
m 2

x x
2 2

y y
2 2

z z
2

(a) Evaluate the energy levels in terms of x , y , and z .

(b) Calculate [H L z]. Do you expect the wave functions to be eigenfunctions of L2?
(c) Find the three lowest levels for the case x y 2 z 3, and determine the degener-

acy of each level.

Exercise 6.5

Consider a spinless particle of mass m which is confined to move under the influence of a
three-dimensional potential

V x y z
0 for 0 x a 0 y a 0 z b

elsewhere

(a) Find the expression for the energy levels Enxnynz and their corresponding wave func-
tions.

(b) If a 2b find the energies of the five lowest states and their degeneracies.

Exercise 6.6

A particle of mass m moves in the three-dimensional potential

V x y z
1
2
m 2z2 for 0 x a 0 y a and z 0

elsewhere
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(a) Write down the time-independent Schrödinger equation for this particle and reduce

it to a set of familiar one-dimensional equations; then find the normalized wave function

nxnynz x y z .
(b) Find the allowed eigenenergies of this particle and show that they can be written as:

Enxnynz Enxny Enz .
(c) Find the four lowest energy levels in the xy plane (i.e., Enxny ) and their corresponding

degeneracies.

Exercise 6.7

A particle of mass m moves in the potential V x y z V1 x y V2 z where

V1 x y
1

2
m 2 x2 y2 V2 z

0 0 z a
elsewhere

(a) Calculate the energy levels and the wave function of this particle.

(b) Let us now turn off V2 z (i.e., m is subject only to V1 x y ). Calculate the degeneracy
gn of the nth energy level (note that n nx ny).

Exercise 6.8

Consider a muonic atom which consists of a nucleus that has Z protons (no neutrons) and a
negative muon moving around it; the muon’s charge is e and its mass is 207 times the mass
of the electron, m 207me. For a muonic atom with Z 6, calculate

(a) the radius of the first Bohr orbit,

(b) the energy of the ground, first, and second excited states, and

(c) the frequency associated with the transitions ni 2 n f 1, ni 3 n f 1, and

ni 3 n f 2.

Exercise 6.9

A hydrogen atom has the wave function nlm r , where n 4 l 3 m 3.

(a) What is the magnitude of the orbital angular momentum of the electron around the

proton?

(b) What is the angle between the orbital angular momentum vector and the z-axis? Can
this angle be reduced by changing n or m if l is held constant? What is the physical significance
of this result?

(c) Sketch the shapes of the radial function and of the probability of finding the electron a

distance r from the proton.

Exercise 6.10

An electron in a hydrogen atom is in the energy eigenstate

2 1 1 r Nre r 2a0Y1 1

(a) Find the normalization constant, N .
(b) What is the probability per unit volume of finding the electron at r a0, 45 ,

60 ?

(c) What is the probability per unit radial interval (dr ) of finding the electron at r 2a0?
(One must take an integral over and at r 2a0.)
(d) If the measurements of L2 and L z were carried out, what will be the results?
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Exercise 6.11

Consider a hydrogen atom which is in its ground state; the ground state wave function is given

by

r
1

a30

e r a0

where a0 is the Bohr radius.
(a) Find the most probable distance between the electron and the proton when the hydrogen

atom is in its ground state.

(b) Find the average distance between the electron and the proton.

Exercise 6.12

Consider a hydrogen atom whose state at time t 0 is given by

r 0
1

2
300 r

1

3
311 r

1

6
322 r

(a) What is the time-dependent wave function?

(b) If a measurement of the energy were carried out, what values could be found and with

what probabilities?

(c) Repeat part (b) for L2 and Lz . That is, if a measurement of L2 and Lz were carried out,
what values could be found and with what probabilities?

Exercise 6.13

The wave function of an electron in a hydrogen atom is given by

21mlms r R21 r
1

3
Y10

1

2

1

2

2

3
Y11

1

2

1

2

where 1
2

1
2
are the spin state vectors.

(a) Is this wave function an eigenfunction of Jz , the z-component of the electron’s total an-
gular momentum? If yes, find the eigenvalue. (Hint: For this, you need to calculate Jz 21mlms .)

(b) If you measure the z-component of the electron’s spin angular momentum, what values
will you obtain? What are the corresponding probabilities?

(c) If you measure J 2, what values will you obtain? What are the corresponding probabili-
ties?

Exercise 6.14

Consider a hydrogen atom whose state at time t 0 is given by

r 0 A 200 r
1

5
311 r

1

3
422 r

where A is a normalization constant.
(a) Find A so that the state is normalized.
(b) Find the state of this atom at any later time t .
(c) If a measurement of the energy were carried out, what values would be found and with

what probabilities?

(d) Find the mean energy of the atom.



6.6. EXERCISES 389

Exercise 6.15

Calculate the width of the probability density distribution for r for the hydrogen atom in its

ground state: r r2 10 r 210.

Exercise 6.16

Consider a hydrogen atom whose wave function is given at time t 0 by

r 0
A 1

a0

3 2

e r a0
1

2

z 2x

r
R21 r

where A is a real constant, a0 is the Bohr radius, and R21 r is the radial wave function:

R21 r 1 6 1 a0 3 2 r 2a0 e r 2a0 .

(a) Write down r 0 in terms of nlm nlm r where nlm r is the hydrogen wave

function nlm r Rnl r Ylm .

(b) Find A so that r 0 is normalized. (Recall that n l m r nlm r d3r n n l l m m .)

(c) Write down the wave function r t at any later time t .

(d) Is r 0 an eigenfunction of L2 and L2? If yes, what are the eigenvalues?
(e) If a measurement of the energy is made, what value could be found and with what

probability?

(f) What is the probability that a measurement of Lz yields 1h?
(g) Find the mean value of r in the state r 0 .

Exercise 6.17

Consider a pendulum undergoing small harmonic oscillations (with angular frequency

g l, where g is the acceleration due to gravity and l is the length of the pendulum). Show
that the quantum energy levels and the corresponding degeneracies of the pendulum are given

by En n 1 h and gn n 1, respectively.

Exercise 6.18

Consider a proton that is trapped inside an infinite central potential well

V r
V0 0 r a

r a

where V0 5104 34 MeV and a 10 fm.

(a) Find the energy and the (normalized) radial wave function of this particle for the s states

(i.e., l 0).

(b) Find the number of bound states that have energies lower than zero; you may use the

values mc2 938 MeV and hc 197MeV fm.

(c) Calculate the energies of the levels that lie just below and just above the zero-energy

level; express your answer in MeV.

Exercise 6.19

Consider the function r A x iy e r 2a0 , where a0 is the Bohr radius and A is a real
constant.

(a) Is r an eigenfunction to L2 and L z? If yes, write r in terms of Rnl r Ylm
and find the values of the quantum numbers n m l; Rnl r are the radial wave functions of the
hydrogen atom.

(b) Find the constant A so that r is normalized.
(c) Find the mean value of r and the most probable value of r in this state.
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Exercise 6.20

The wave function of a hydrogen-like atom at time t 0 is

r 0
1

11
3 2 1 1 r 2 1 0 r 5 2 1 1 r 2 3 1 1 r

where nlm r is a normalized eigenfunction (i.e., nlm r Rnl r Ylm ).

(a) What is the time-dependent wave function?

(b) If a measurement of energy is made, what values could be found and with what proba-

bilities?

(c) What is the probability for a measurement of L z which yields 1h?

Exercise 6.21

Using the fact that the radial momentum operator is given by pr ih 1r r r , calculate the
commutator [r pr ] between the position operator, r , and the radial momentum operator.

Exercise 6.22

Calculate r pr with respect to the state

2 1 0 r
1

6

1

a0

3 2 r

2a0
e r 2a0 Y1 0

and verify that r pr satisfies the Heisenberg uncertainty principle.


