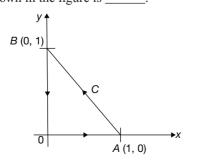
TEST


Engineering Mathematics

- If λ is an eigen value of an orthogonal matrix A then which of the following is always TRUE?
 - P: $\frac{1}{\lambda}$ is also an eigen value of A
 - Q: λ is a non-zero eigen value.
 - (A) P only (B) Q only
 - (C) Both P and Q (D) Neither P nor Q
- 2. A fair die is rolled independently four times. The probability that a non-composite number turns up for atleast 3 times is _____.
 - (A) $\frac{16}{27}$ (B) $\frac{11}{27}$ (C) $\frac{1}{27}$ (D) $\frac{5}{27}$
- 3. The value of $I = \int_{1}^{2} x^3 \ln x dx$ is _____.
 - (A) $4\ln 16 15$ (B) $4\ln 16 + 15$ (C) $\ln 16 + \frac{15}{16}$ (D) $\ln 16 - \frac{15}{16}$
- 4. If $x = \ln \frac{y}{x}$, then y has
 - (A) a local maximum at x = -1
 - (B) a local minimum at x = -1
 - (C) a local maximum at x = 1
 - (D) a local minimum at x = 1
- 5. The complete solution of the initial value problem $d^2 v$

$$\frac{1}{dx^2} + 4y = 0; \ y(0) = 4 \text{ and } y'(0) = 8 \text{ is } ___.$$
(A) $y = 4 (\cos 2x + 2 \sin 2x)$
(B) $y = 4 \cos 2x$
(C) $y = 4 \sin 2x$
(D) None of these

6. The value of $\lim_{n \to 0} \left(\frac{1+2n}{1+3n}\right)^{n}$ is _____ (A) e (B) e^{-1} (C) e^{-2} (D) 1

7. The value of $\oint_{c} \overline{F} \cdot \overline{dr}$, where $\overline{F} = xy^{2}\overline{i} - x^{2}y\overline{j}$ over the path shown in the figure is _____.

Time:	60	Minutes
-------	----	---------

(A)
$$\frac{1}{3}$$
 (B) $\frac{-1}{3}$
(C) $\frac{1}{6}$ (D) $\frac{-1}{6}$

- 8. If the eigen values of a matrix $A = \begin{bmatrix} 7 & a \\ 5 & b \end{bmatrix}$ are 10 and 2, then the values of 'a' and 'b' respectively are _____. (A) a = 3, b = -5 (B) a = -3, b = -5
 - (C) a = 3, b = 5 (D) a = 3, b = -5
- 9. The Taylor's series expansion of $\frac{\cos x}{\frac{3\pi}{2} x}$ at $x = \frac{3\pi}{2}$ is given by

(A)
$$1 - \frac{\left(x - \frac{3\pi}{2}\right)^2}{2!} + \frac{\left(x - \frac{3\pi}{2}\right)^4}{4!} \dots \infty$$

(B) $\left(x - \frac{3\pi}{2}\right) - \frac{\left(x - \frac{3\pi}{2}\right)^3}{3!} + \frac{\left(x - \frac{3\pi}{2}\right)^5}{5!} \dots \infty$
(C) $1 - \frac{\left(x - \frac{3\pi}{2}\right)^2}{3!} + \frac{\left(x - \frac{3\pi}{2}\right)^4}{5!} \dots \infty$
(D) $-1 + \frac{\left(x - \frac{3\pi}{2}\right)^2}{3!} - \frac{\left(x - \frac{3\pi}{2}\right)^4}{5!} + \dots \infty$

- 10. If a scalar field f and a vector field \overline{V} are related by $f = \text{Div } \overline{V}$, which of the following is TRUE? Here S is a closed surface, enclosing a volume V_{S} .
 - (A) $\iint_{S} \operatorname{curl} \overline{V} \cdot d\overline{s} = \iiint_{V_{S}} f \, dv$ (B) $\iint_{S} \overline{V} \cdot d\overline{s} = \iiint_{S} f \, dv$

(C)
$$\iiint_{S} f \, dv = \iiint_{V_{S}} \text{Div} \, \overline{V} \, d\overline{s}$$

(D)
$$\iint_{S} \operatorname{curl} \overline{V} \times d\overline{s} = \iiint_{V_{s}} f \, dv$$

11. The curl of the vector field $2xyi + xy^2zj - 6xz^3k$ at the point (0, 2, 3) is _____

(A)
$$2\overline{i} + 5\overline{j} - 6\overline{k}$$
 (B) $5\overline{i} + 2\overline{j}$

- (C) $162\overline{j} + 12\overline{k}$ (D) None of these
- **12.** Let *S* denote the set of all possible arrangements of letters of the word 'AUTHORISED' without repetitions. If an element in *S* is selected at random, then what is

3.144 Part II Engineering Mathematics

the probability that, the letter 'I' appears at a later position, than all other vowels?

(A)
$$\frac{1}{5}$$
 (B) $\frac{1}{5!}$
(C) $\frac{4!}{5!} \times 2$ (D) $\frac{4! \times 5!}{10!}$

13. In the process of finding a solution to the equation $f(x) = 4x^2 = 4x - 15 = 0$ by Newton–Raphson method, with initial solution as $x_0 = 1.6$, the method converges to actual solution after ______ interaction, when the calculator is fixed to four decimal places.

(A) 2nd (B)	4th
-----------	----	-----

- (C) 6th (D) 8th
- 14. In the process of finding a root for $x^3 3x^2 5x + 6 = 0$ in between a = 3 and b = 4, by Regula Falsi method, the value of the root in the first iteration is _____.
 - (A) 3.8182 (B) 3.5 (C) 3.6235 (D) 3.3218
- 15. For the system of linear equations

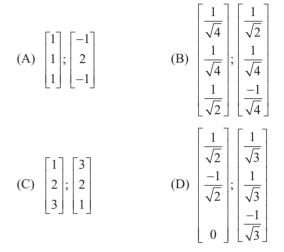
x + 2y + 3z = 4

2x + 3y + (a - 4)z = b

4x + 7y - z = 5

has infinite number of solutions, then the values of 'a' and 'b' are _____

- (A) a = b = 3(B) a = -b = 3(C) a = b = -3(D) a = -b = -3
- 16. Evaluate $\int_{0}^{\pi/3} f(x) dx$ by Simpson's $\frac{3}{8}$ Rule using the


following table

x	0	$\frac{\pi}{18}$	$\frac{\pi}{9}$	$\frac{\pi}{6}$	$\frac{2\pi}{9}$	$\frac{5\pi}{18}$	$\frac{\pi}{3}$
y = f(x)) 0	0.1762	0.3638	0.5770	0.8385	1.1907	1.7299
(A) 0 (C) 0				· · ·	0.6929 0.7234		

- 17. If 'r' is the standard deviation of $a_1, a_2, a_3 \dots a_n$, then the standard deviation of $ka_1 + 1$, $ka_2 + 1$, $ka_3 + 1$, ..., $ka_n + 1$ is
 - (A) kr (B) kr + 1
 - (C) $\frac{r}{k} 1$ (D) $\frac{r}{k}$

18. If $\overline{a} = \overline{i} + \overline{j} - 2\overline{k}$ and $\overline{b} = \overline{i} - 2\overline{j} + \overline{k}$, then determinant of the matrix $\begin{bmatrix} \overline{a} \cdot \overline{a} & \overline{a} \cdot \overline{b} \\ \overline{b} \cdot \overline{a} & \overline{b} \cdot \overline{b} \end{bmatrix}$, where $\overline{a} \cdot \overline{b}$ denotes the dot product of the vector \overline{a} and \overline{b} is _____. (A) 9 (B) 27 (C) 18 (D) 54

- 19. If x and y are two random variables, a and b are any two constants and E(x) and var(x) denote the expectation and the variance of the random variable x, then which of the following is INCORRECT?
 - (A) $\operatorname{var}(ax+b) = a^2 \operatorname{var}(x)$
 - (B) E(ax + b) = aE(x) + b
 - (C) E(x + y) = E(x) + E(y)
 - (D) $E(x^2) = \operatorname{var}(x)$
- **20.** Which of the following pairs of vectors are orthonormal?

- **21.** An integrating factor of the non-exact differential equation $(x^2 + 2xy 2y^2)dx + (y^2 + 2xy 2x^2)dy = 0$ is
 - (A) $x^{3} + y^{3}$ (B) $\frac{1}{x^{3} + y^{3}}$ (C) $x^{3} - y^{3}$ (D) $\frac{1}{x^{3} - y^{3}}$
- 22. The solution of the differential equation $x \frac{dy}{dx} + y = 3x^2$, y(1) = 2 is

(A)
$$y = x + \frac{1}{x}$$

(B) $y = x + \frac{1}{x^2}$
(C) $y = x^3$
(D) $y = x^2 + \frac{1}{x}$
23. If $x = \sqrt{y + \sqrt{y + \sqrt{y + \dots \infty}}}$, then the value of $\frac{dy}{dx}$ at $x = 1$ is _____.
(A) 0 (B) 1
(C) 4 (D) Undefined

24. Let
$$f(x) = \begin{cases} 2x - 3$$
; for $x \ge \frac{3}{2} \\ 3 - 2x$; for $x < \frac{3}{2} \end{cases}$
Then which of the following is true?
(A) $f(x)$ is continuous and differentiable for all real values of x.
(B) $f(x)$ is not continuous at $x = \frac{3}{2}$.
(C) $f(x)$ is continuous for real values of x, except $x = \frac{3}{2}$.
(D) $f(x)$ is continuous for every x and differentiable for all values of x, except $x = \frac{3}{2}$.
25. If $L[f(t)] = \frac{2s + 3}{s^2 + 5s + 6}$, then the initial value of $f(t)$ is $\overline{(A) \ 1}$.
(B) 2
(C) $f(x)$ is continuous for every x and differentiable for all values of x, except $x = \frac{3}{2}$.

Answer Keys									
1. C	2. A	3. D	4. B	5. D	6. B	7. D	8. C	9. D	10. B
11. C	12. A	13. B	14. A	15. C	16. B	17. A	18. B	19. D	20. D
21. B	22. D	23. B	24. D	25. B					