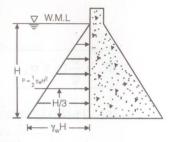
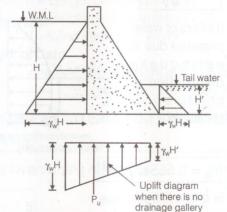
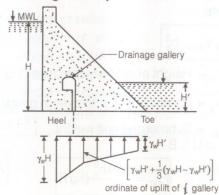
FORCES ACTING ON GRAVITY DAM


(i) Water Pressure

$$P = \frac{1}{2} \gamma_w H^2$$


Acting at $\frac{H}{3}$ from base

where


$$\gamma_{\rm w}$$
 = Unit weight of water.

- (ii) Uplift Pressure
 - (a) When Drainage Gallery is not Provided

(b) When Drainage Gallery is Provided

Earthquake Force

 $\alpha_{\rm V} = 0.75\alpha_{\rm H}$

 $\alpha = \beta | \alpha_0$

$$\alpha_{H} = 0.1g \text{ to } 0.2g$$

where, α_{H} = Horizontal acceleration

 α_{v} = Vertical acceleration

 α = Seismic coefficient

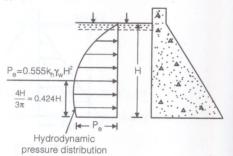
 β = Soil foundation system factor

I = Importance factor

 α_n = Basic seismic coefficient which depends upon seismic zone of country.

$$F_{g} = \frac{w}{g}(g \pm \alpha_{v})$$

where, $F_a = Body$ force


g=Acceleration due to gravity, +ve for upward & -ve for downward.

Hydrodynamic force

(i)
$$F_H = \left(\frac{w}{g}\right) \alpha_H$$

 F_{H} = Horizontal Inertia force.

It effect of water pressure due to earthquake distribution of pressure is parabolic.

 $P_e = 0.555 \alpha \gamma_w H^2$

at 0.424 H from base

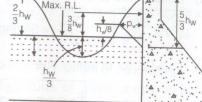
 $\alpha = 0.1g \text{ to } 0.2g$

(iv) Silt Pressure

$$F_{silt} = \frac{1}{2} k_a \gamma_{sub} \cdot h_s^2$$

where, h_s = Height of silt from the base.

k_a = Coefficient of active earth pressure =


 $\gamma_{\text{sub}} = \text{Submerged unit weight.}$ According to U.S.B.R

$$F_{silt} = \frac{360 \, h_s^2}{2} (kg \, f)$$

(v) Wave Pressure

$$P_w = 2 \cdot 4 \gamma_w h_w$$

Acts at hw from still water

level.

where, $P_w = Resultant wave pressure$

$$F_w = 2\gamma_w h_w^2$$
 acts at $\frac{3h}{8}$ from still water surface.

where $F_w = Total wave force$.

$$h_w = 0.032\sqrt{VF} + 0.763 - 0.271(F)^{3/4}$$
 if F < 32 km.

$$h_w = 0.032\sqrt{VF}$$
 when F > 32 km.

where, F = Length of reservoir in km

h_w = Height of wave in meter

V = Wind velocity in km/hr.

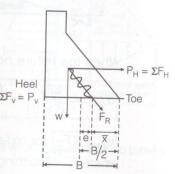
(vi) Self Weight of Dam

$$W = \gamma_c V$$

where, γ_c = Unit weight of concrete

V = Volume of dam body per unit length

MODES OF FAILURE & CRITERIA FOR STRUCTURAL STABILITY OF GRAVITY DAMS


(i) Failure by Overturning About Toe

$$F_s = \frac{M_R}{M_o} > 1.5$$

where, $F_s = Factor of safety$

M_R = Restoring moment about toe (due to ΣF_{v})

Mo = Overturning moment about toe (due to ΣF,)

$$F_{R} = \sqrt{F_{H}^2 + F_{V}^2}$$

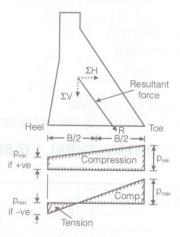
where, $F_R = Resultant force$ e=Eccentricity

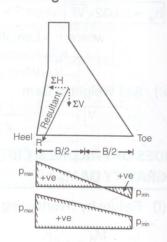
$$e = \frac{B}{2} - \overline{x}$$

 \overline{X} = Distance of \overrightarrow{F}_{p} from toe.

(ii) Failure due to Sliding

$$F_S = \frac{\mu \Sigma F_V}{\Sigma F_H}$$
 $\frac{\Sigma F_H}{\Sigma F_V}$ = Sliding factor


 F_{s} = Factor of safety due to sliding.


$$F_S = \frac{\mu}{\text{sliding factor}} > 1$$

$$S \cdot F \cdot F = \frac{\mu \Sigma F_v + q (B \times 1)}{\Sigma F_H}$$

$$\boxed{S \cdot F \cdot F > 3} \text{ where, B = Width in meter.}$$

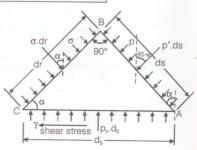
(iii) Failure due to Compression or Crushing

External forces

 $\mu\Sigma V$ = Developed friction

When toe failure occurs.

When heel failure occurs.


$$\sigma_{\text{max}} = \frac{\Sigma F_{\text{V}}}{(B \times 1)} \left[1 + \frac{6e}{B} \right] \quad \sigma_{\text{min}} = \frac{\Sigma F_{\text{V}}}{(B \times 1)}$$

$$\sigma_{\min} = \frac{\Sigma F_{V}}{(B \times 1)} \left[1 - \frac{6e}{B} \right]$$

 $\sigma_{\text{max}} \leq F_{\text{C}}$ for no failure where $F_c = Crushing strength$.

Case: (I) When shear stress also acts on horizontal plane.

$$\sigma_1 = \sigma_v \sec^2 \alpha - \sigma_2 \tan^2 \alpha$$

$$\sigma_{V} = \sigma_{\text{max}} = \frac{\Sigma F_{V}}{(B \times 1)} \left[1 + \frac{6e}{B} \right]$$

where, α = Angle of d/s surface with vertical

For no Failure.

$$\sigma_1 \le F_C$$
 where,

where, F_c = Crushing strength of concrete.

 τ = Magnitude of shear stress on horizontal plane near the toe.

$$\tau = (\sigma_{v} - \sigma_{2}) \tan \alpha$$

Case (2): When earthquake force considered then

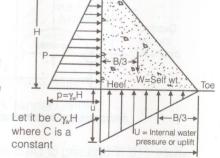
$$\sigma_1 = \sigma_v \sec^2 \alpha - (\sigma_2 - p_e) \tan^2 \alpha$$

$$\tau = [\sigma_{v} - (\sigma_{2} - p_{e})] \tan \alpha$$

where, P_e = Earthquake Pressure.

(iv) Failure due to Tension

$$\sigma_{\min} \ge 0 \rightarrow e \le \frac{B}{\sigma}$$


ELEMENTARY PROFILE OF GRAVITY DAM

$$\Sigma F_{H} = P_{H} = \frac{1}{2} \gamma_{w} H^{2}$$

$$P_u = \frac{1}{2}C\gamma_w H \cdot B$$

where $P_u = Uplift$ pressure i.e., Force of buoyancy.

C = Uplift pressure coefficient.

$$w = \frac{1}{2}G\gamma_w \cdot BH$$

where w = Weight of dam body for unit length

$$B = \frac{H}{\sqrt{G - C}}$$

where, B = Minimum base width required for no tension criteria.

$$B' = \frac{H}{\mu(G - C)}$$

B' = Minimum base width for no sliding criteria.

G = Sp. gravity of concrete, i.e., that of the material of the dam