Differential Equations

Multiple Choice Questions

Choose and write the correct option in the following questions.

(a) 4

1. The degree of the differential equation
$$x^2 \frac{d^2y}{dx^2} = \left(x \frac{dy}{dx} - y\right)^3$$
 is [CBSE 2020 (65/3/1)]

(a) 1 (b) 2 (c) 3 (d) 6

2. The degree of the differential equation $\frac{d^2y}{dx^2} + 3\left(\frac{dy}{dx}\right)^2 = x^2\log\left(\frac{d^2y}{dx^2}\right)$ is [NCERT Exemplar]

(a) 1 (b) 2 (c) 3 (d) Not defined

3. The order and degree of differential equation $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^2 = \frac{d^2y}{dx^2}$ respectively, are

(a) 1, 2 (b) 2, 2 (c) 2, 1 (d) 4, 2

4. The solution of the differential equation $2x \cdot \frac{dy}{dx} - y = 3$ represents a family of

(a) straight lines (b) circles (c) parabolas (d) ellipses

5. The integrating factor of the differential equation $\frac{dy}{dx}(x\log x) + y = 2\log x$ is [NCERT Exemplar]

(a) e^x (b) $\log x$ (c) $\log(\log x)$ (d) x

6. A solution of the differential equation $\left(\frac{dy}{dx}\right)^2 - x\frac{dy}{dx} + y = 0$ is [NCERT Exemplar]

(a) $y = 2$ (b) $y = 2x$ (c) $y = 2x - 4$ (d) $y = 2x^2 - 4$

7. Which of the following is not a homogeneous function of x and y ?

(a) $x^2 + 2xy$ (b) $2x - y$ (c) $\cos^2\left(\frac{y}{x}\right) + \frac{y}{x}$ (d) $\sin x - \cos y$

8. The solution of the differential equation $\frac{dx}{x} + \frac{dy}{y} = 0$ is [CBSE 2023 (65/3/2]

(a) $\frac{1}{x} + \frac{1}{y} = C$ (b) $\log x - \log y = C$ (c) $xy = C$ (d) $x + y = C$

9. The solution of the differential equation $x + \cos^2\left(\frac{dy}{dx}\right) + \frac{dy}{dx} +$

(c) Not defined

(d) 2

12. The order and degree of a differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{\frac{1}{4}} + x^{\frac{1}{5}} = 0$, respectively, are

(c) 2 and 3 (d) 3 and 3 13. The solution of the differential equation $\frac{dy}{dx} + \frac{2y}{x} = 0$ with y(1) = 1 is given by

(a)
$$y = \frac{1}{x^2}$$
 (b) $x = \frac{1}{y^2}$ (c) $x = \frac{1}{y}$ (d) $y = \frac{1}{x}$

14. The general solution of $\frac{dy}{dx} = e^{x-y} + x^2 e^{-y}$ is

(a)
$$y = e^{x-y} - x^2 e^{-y} + C$$
 (b) $e^y - e^x = \frac{x^3}{3} + C$
(c) $e^x + e^y = \frac{x^3}{2} + C$ (d) $e^x - e^y = \frac{x^3}{2} + C$

15. The integrating factor of the differential equation $(1-y^2)\frac{dx}{dy} + yx = ay$, (-1 < y < 1) is

[CBSE 2023 (65/2/1]
(a)
$$\frac{1}{v^2-1}$$
 (b) $\frac{1}{\sqrt{v^2-1}}$ (c) $\frac{1}{1-v^2}$ (d) $\frac{1}{\sqrt{1-v^2}}$

16. Solution of $\frac{dy}{dx} - y = 1$, y(0) = 1 is given by

(a)
$$xy = -e^x$$
 (b) $xy = -e^{-x}$ (c) $xy = -1$ (d) $y = 2e^x - 1$

17. The number of solution of
$$\frac{dy}{dx} = \frac{y+1}{x-1}$$
 when $y(1) = 2$ is

18. Integrating factor of the differential equation
$$(1-x^2)\frac{dy}{dx} - xy = 1$$
 is

(a) $-x$ (b) $\frac{x}{-x^2}$ (c) $\sqrt{1-x^2}$ (d) $\frac{1}{2}\log(1-x^2)$

19. What is the product of the order and degree of the differential equation

$$\frac{d^2y}{dx^2}\sin y + \left(\frac{dy}{dx}\right)^3\cos y = \sqrt{y}?$$
[CBSE 2023 (65/3/2)]
(a) 3 (b) 2 (c) 6 (d) not defined

20. The sum of the order and the degree of the differential equation $\frac{d^2y}{dx^2} + \left[\frac{dy}{dx}\right]^3 = \sin y$ is:

(a) 5 (b) 2 (c) 3 (d) 4
21. The general solution of the differential equation
$$x dy = (1 + x^2) dy = dy$$
 is: [CRSF 2023 (65/1/1)]

21. The general solution of the differential equation
$$x dy - (1 + x^2) dx = dx$$
 is: [CBSE 2023 (65/1/1)]

(a)
$$y = 2x + \frac{x^3}{3} + C$$

(b) $y = 2\log x + \frac{x^3}{3} + C$
(c) $y = \frac{x^2}{3} + C$
(d) $y = 2\log x + \frac{x^2}{2} + C$

Answers

19. (b)

Solutions of Selected Multiple Choice Questions

3. (c)

21. (d)

2. The given differential equation is not a polynomial equation in terms of its derivatives, so its degree is not defined.

4. (c)

5. (b)

6. (c)

:. Option (d) is correct.

2. (d)

20. (c)

$$\frac{dx}{x} + \frac{dy}{y} = 0 \implies \frac{dx}{x} = -\frac{dy}{y}$$

$$\implies \int \frac{dx}{x} = -\int \frac{dy}{y} \qquad \text{(on integrating both sides)}$$

$$\Rightarrow \log x = -\log y + \log C$$

$$\Rightarrow \qquad \log x + \log y = \log C \qquad \Rightarrow \qquad \log xy = \log C$$

$$\Rightarrow xy = C$$

$$x\frac{dy}{dx} + 2y = x^2 \implies \frac{dy}{dx} + \frac{2}{x}y = x$$

It is of the form
$$\frac{dy}{dx} + Py = Q$$
, where $P = \frac{2}{x}$, $Q = x$.

: IF =
$$e^{\int Pdx} = e^{\int \frac{2}{x}dx} = e^{2\log x} = e^{\log x^2} = x^2$$

$$\therefore \text{ Solution is } y \times x^2 = \int x \times x^2 \, dx + C_1 = \int x^3 \, dx + C_1$$

$$\Rightarrow yx^2 = \frac{x^4}{4} + C_1$$

$$\Rightarrow yx^2 = \frac{x^4 + 4C_1}{4} = \frac{x^4 + C}{4} \text{ where } C = 4C_1$$

$$\Rightarrow yx^2 = \frac{1}{4} = \frac{x^4 + C}{4} \text{ where } C = 4C_1$$

$$\Rightarrow y = \frac{x^4 + C}{4x^2}$$

10. Given differential equation be
$$\sin x + \cos\left(\frac{dy}{dx}\right) = y^2$$
, which is not a polynomial in $\frac{dy}{dx}$.

Thus, degree is not defined.

14. Given,
$$\frac{dy}{dx} = e^{x-y} + x^2 e^{-y}$$

$$\Rightarrow \frac{dy}{dx} = e^{-y} (e^x + x^2) \qquad \Rightarrow \qquad \frac{dy}{e^{-y}} = (e^x + x^2) dx$$

$$\Rightarrow e^{y}dy = (e^{x} + x^{2})dx = e^{x}dx + x^{2}dx$$

Integrating, we get

$$\int e^y dy = \int e^x dx + \int x^2 dx$$

$$\Rightarrow e^y = e^x + \frac{x^3}{3} + C \qquad \Rightarrow e^y - e^x = \frac{x^3}{3} + C$$

$$\therefore \text{ Option (b) is correct.}$$

15. Given differential equation be

$$(1 - y^2) \frac{dx}{dy} + yx = ay, \quad -1 < y < 1$$

$$\Rightarrow \frac{dx}{dy} + \frac{y}{1 - y^2} . x = \frac{ay}{1 - y^2}$$

It is a linear differential equation of the form

$$\frac{dx}{dy}$$
 + P.x = Q, where P, Q be the function of y or constant.

$$P = \frac{y}{1 - y^2} \text{ and } Q = \frac{ay}{1 - y^2}$$

$$IF = e^{\int P \, dy} = e^{\int \frac{y}{1 - y^2} \, dy} = e^{\int \frac{1}{2} \int \frac{2y}{1 - y^2} \, dy}$$

$$F = e^{JP \, dy} = e^{-1-y^2} = e^{-2 \cdot 1-y^2}$$

$$= e^{-\frac{1}{2}\log|1-y^2|} = e^{\log|1-y^2|^{-\frac{1}{2}}}$$

$$= (1-y^2)^{-\frac{1}{2}} = \frac{1}{\sqrt{1-y^2}}$$

.. Option (d) is correct.

16. Given that,
$$\frac{dy}{dx} - y = 1$$

$$\Rightarrow \frac{dy}{dx} = 1 + y \qquad \Rightarrow \frac{dy}{1 + y} = dx$$

On integrating both sides, we get log (1 + y) = x + C

When
$$x = 0$$
 and $y = 1$, then $\log 2 = 0 + C \Rightarrow C = \log 2$

The required solution is $\log (1 + y) = x + \log 2$

$$\Rightarrow \qquad \log\left(\frac{1+y}{2}\right) = x \qquad \Rightarrow \qquad \frac{1+y}{2} = e^x$$

⇒
$$1 + y = 2e^x$$
 ⇒ $y = 2e^x - 1$
∴ Option (d) is correct.

18. Given that, $(1 - x^2) \frac{dy}{dx} - xy = 1$

$$\Rightarrow \frac{dy}{dx} - \frac{x}{1 - x^2} y = \frac{1}{1 - x^2}, \text{ which is a linear differential equation.}$$

$$\therefore \qquad \text{IF} = e^{\int \frac{-x}{1-x^2} dx}, \text{ Let } 1 - x^2 = t \implies -2x dx = dt \implies -x dx = \frac{dt}{2}$$

$$\Rightarrow e^{\frac{1}{2}\int \frac{dt}{t}} = e^{\frac{1}{2}\log t} = e^{\frac{1}{2}\log(1-x^2)} = \sqrt{1-x^2}$$

\(\therefore\) Option (c) is correct.

19. Given differential equation be

$$\frac{d^2y}{dx^2}\sin y + \left(\frac{dy}{dx}\right)^3\cos y = \sqrt{y}$$

Order = 2, degree = 1

⇒ Product of order and degree = 2 × 1 = 2

:. Option (b) is correct.

20. Given differential equation be

$$\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3 = \sin y$$

Its order = 2 and degree = 1

 \Rightarrow Sum of the order and the degree = 2 + 1 = 3

.. Option (c) is correct.

21. Given differential equation,

$$x dy - (1 + x^2)dx = dx$$
 $\Rightarrow x dy = (1 + x^2 + 1)dx = (2 + x^2)dx$

$$\Rightarrow \qquad dy = \frac{2 + x^2}{x} \, dx$$

On integrating both sides, we have

$$\Rightarrow \qquad \int dy = \int \frac{2+x^2}{x} \, dx = 2 \int \frac{1}{x} \, dx + \int x \, dx \qquad \Rightarrow \qquad y = 2 \log x + \frac{x^2}{2} + C$$

.. Option (d) is correct.

Assertion-Reason Questions

The following questions consist of two statements—Assertion(A) and Reason(R). Answer these questions selecting the appropriate option given below:

- (a) Both A and R are true and R is the correct explanation for A.
- (b) Both A and R are true but R is not the correct explanation for A.
- (c) A is true but R is false.
- (d) A is false but R is true.
 - 1. Assertion (A): The degree of the differential equation $\frac{d^2y}{dx^2} = 1 + \sqrt{\frac{dy}{dx}}$ is 2.

Reason (R): The degree of a differential equation is the degree of the highest order derivative occurring in the equation, when differential co-efficients are made free from radicals, fractions and it is written as a polynomial in differential coefficient.

2. Assertion (A): Solution of the differential equation $(1+x^2)\frac{dy}{dx} + y = \tan^{-1}x$ is $ve^{\tan^{-1}x} = (\tan^{-1}x - 1)e^{\tan^{-1}x} + C$

Reason (R): The differential equation of the form
$$\frac{dy}{dx} + Py = Q$$
, where P , Q be the functions of x or constant, is a linear type differential equation.

3. Assertion (A): The integrating factor of differential equation $\frac{dx}{dy}$ + $(\tan y).x = \sec^2 y$ is $\sec y$.

Reason (R): Linear differential equation of the form $\frac{dx}{dy} + Px = Q$, where P, Q = f(y) or constant has integrating factor, IF = $e^{\int P \ dy}$

4. Assertion (A): General solution of differential equation $\frac{dy}{dx} = \frac{y}{x}$ is y = Cx.

Reason (R): The differential equation $\frac{d^2y}{dx^2} + y = 0$ has order 2.

5. Assertion (A): Solution of the differential equation $e^{dy/dx} = x^2$ is $y = 2(x \log x - x) + C$.

Reason (R): The integrating factor of the differential equation $(1 + x^2) \frac{dy}{dx} + y = \tan^{-1} x$ is $e^{\tan^{-1} x}$.

Answers

1. (a) 2. (b) 3. (a) 4. (b) 5. (b)

Solutions of Assertion-Reason Questions

1. We have, $\frac{d^2y}{dx^2} = 1 + \sqrt{\frac{dy}{dx}}$

$$\Rightarrow \qquad \left(\frac{d^2y}{dx^2} - 1\right)^2 = \left(\sqrt{\frac{dy}{dx}}\right)^2 \qquad [Squaring both sides]$$

$$\Rightarrow \qquad \left(\frac{d^2y}{dx^2}\right)^2 - 2\frac{d^2y}{dx^2} + 1 = \frac{dy}{dx} \qquad \Rightarrow \qquad \left(\frac{d^2y}{dx^2}\right)^2 - 2\frac{d^2y}{dx^2} - \frac{dy}{dx} + 1 = 0$$

. Doomoo - 2

Clearly, both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).

.. Option (a) is correct.

2.
$$(1+x^2)\frac{dy}{dx} + y = \tan^{-1}x \implies \frac{dy}{dx} + \frac{1}{1+x^2}, y = \frac{\tan^{-1}x}{1+x^2}$$

$$. IF = e^{\int \frac{1}{1+x^2} dx} = e^{\tan^{-1} x}$$

Solution will be $y \times e^{\tan^{-1}x} = \int \frac{\tan^{-1}x}{1+x^2} \times e^{\tan^{-1}x} dx$...(i)

Let $e^{\tan^{-1}x} = t \Rightarrow \frac{e^{\tan^{-1}x}}{1+x^2}dx = dt$ and $\log(e^{\tan^{-1}x}) = \log t \Rightarrow \tan^{-1}x = \log t$

From equation (i), $yx e^{\tan^{-1}x} = \int \log t \, dt = t \log t - t + C = t (\log t - 1) + C$

$$y e^{\tan^{-1}x} = e^{\tan^{-1}x} (\log(\tan^{-1}x) - 1) + C$$

Clearly, both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).

:. Option (b) is correct.

3. $\frac{dx}{dy} + (\tan y) \cdot x = \sec^2 y$

Here, IF =
$$e^{\int \tan y \, dy} = e^{\log \sec y} = \sec y$$

Clearly, both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).

.. Option (a) is correct.

4. We have

$$\frac{dy}{dx} = \frac{y}{x} \quad \Rightarrow \frac{dy}{y} = \frac{dx}{x}$$

Integrating, we get

$$\log y = \log x + \log C$$

 $\log y = \log (Cx)$ \Rightarrow y = CxSo statement A is true.

:. Option (b) is correct.

5. We have, $e^{dy/dx} = x^2$

$$\log(e^{dy/dx}) = \log x^2 \implies \frac{dy}{dx} = \log x^2$$

$$\Rightarrow \frac{dy}{dx} = 2\log x \qquad \Rightarrow dy = 2\log x \, dx$$

Integrating, we get
$$y = 2[\int \log x \times 1 \, dx]$$

$$= 2 \left[\log x \right] dx - \int \left\{ \frac{d}{dx} (\log x) \right\} dx = 2 \left[\log x \times x - \int \frac{1}{x} \times x \, dx \right]$$

$$y = 2[x \log x - x] + C$$

$$\Rightarrow y = 2[x \log x - x] + C$$

$$\Rightarrow \qquad y = 2x(\log x - 1) + C$$

So statement A is correct.

For statement R,

$$(1+x^2)\frac{dy}{dx} + y = \tan^{-1}x$$

$$\Rightarrow \frac{dy}{dx} + \frac{1}{1+x^2}y = \frac{1}{1+x^2}\tan^{-1}x$$

It is of the form

$$\frac{dy}{dx} + Py = Q$$
Where $R = \frac{1}{1 + \cos^{-1}x}$

Where,
$$P = \frac{1}{1+x^2}$$
, $Q = \frac{1}{1+x^2} \tan^{-1} x$

$$\therefore \quad \text{IF} = e^{\int Pdy} = e^{\int \frac{1}{1+x^2} dx} = e^{\tan^{-1} x}$$

So statement
$$R$$
 is also correct, but R is not correct explanation of statement A .

.: Option (b) is correct.

$$\Rightarrow x \frac{dv}{dx} = \frac{v^2 - 1}{2v} - v = \frac{v^2 - 1 - 2v^2}{2v} = -\frac{(1 + v^2)}{2v}$$

$$\Rightarrow \frac{2v}{1 + v^2} dv = -\frac{dx}{x}$$

Integrating, we get
$$\int \frac{2v}{1+v^2} dv = -\int \frac{dx}{x}$$

$$\Rightarrow \qquad \log|1+v^2| = -\log|x| + \log C$$

$$\Rightarrow \qquad \log|1+v^2| + \log|x| = \log C$$

$$\Rightarrow \qquad \log|(1+v^2)x| = \log C$$

$$\Rightarrow \qquad (1+v^2)x = C$$

$$\Rightarrow \qquad \left\{1+\left(\frac{y}{x}\right)^2\right\}x = C \qquad \Rightarrow \qquad \left(\frac{x^2+y^2}{x^2}\right)x = C$$

$$\Rightarrow \qquad x^2+y^2 = Cx$$

2. Read the following passage and answer the following questions.

If an equation is of the form

$$\frac{dy}{dx} + Py = Q$$

Where P, Q are functions of x then such equation is known as linear differential equation. Its solution is given by

$$y \times IF = \int O \times IF dx + C$$

Where IF = $e^{\int Pdx}$

Now suppose we have equation. $\frac{dy}{dx} + \frac{y}{x} = x^2$

- (i) Write the value of P.
- (ii) Write the value of Q.
- (iii) (a) Find the general solution of given differential equation.

OR

- (iii) (b) If the value of Q replace by $\sin x$ find the solution.
- **Sol.** Given differential equation is $\frac{dy}{dx} + \frac{y}{x} = x^2$

dv ...

It is of the form
$$\frac{dy}{dx} + Py = Q$$

(i) Here $P = \frac{1}{x}$

- (ii) Here $Q = x^2$
- (iii) (a) IF = $e^{\int Pdx} = e^{\int \frac{1}{x}dx} = e^{\log x} = x$

Solution is given by

$$y \times x = \int x^2 \times x \, dx + C \implies yx = \int x^3 dx + C$$

$$\Rightarrow yx = \frac{x^4}{4} + C \qquad \Rightarrow y = \frac{x^3}{4} + \frac{C}{x}$$

(iii) (b) If
$$Q = \sin x$$

From (iii) above
$$IF = x$$

Solution is given by

$$y \times x = \int x \sin x \, dx + C$$

$$yx = x \int \sin x \, dx - \int \left\{ \frac{d}{dx}(x) \int \sin x \, dx \right\} dx + C$$

$$yx = -x \cos x - \int (-\cos x) dx + C$$

$$yx = -x \cos x + \int \cos x \, dx + C$$

$$\Rightarrow yx = -x \cos x + \sin x + C$$

$$\Rightarrow y = -\cos x + \frac{\sin x}{x} + \frac{C}{x}$$

3. Read the following passage and answer the following questions.

Polio drops are delivered to 50K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2^{nd} week half the children have been given the polio drops. How many will have been given the drops by the end of 3^{rd} week can be estimated using the solution to the differential equation $\frac{dy}{dx} = k(50 - y)$ where x denotes the number of weeks and y the number of children who have been given the drops.

- (i) (a) Find the solution of the differential equation $\frac{dy}{dx} = k(50 y)$.
 - (b) Find the value of C in the particular solution given that y(0) = 0 and k = 0.049.
- (ii) Find the solution that may be used to find the number of children who have been given the polio drops.

Sol. (i) (a) We have,

$$\frac{dy}{dx} = k (50 - y)$$

$$\Rightarrow \int \frac{dy}{50 - y} = \int k dx \quad \Rightarrow \quad -\log|50 - y| = kx + C$$

(b) Given
$$y(0) = 0$$
 and $k = 0.049$

$$\begin{array}{ll} \therefore & -\log|50 - y| = kx + C \\ \Rightarrow & -\log|50 - 0| = 0.049 \times 0 + C \\ \Rightarrow & -\log 50 = C \Rightarrow & C = \log \frac{1}{50} \end{array}$$

(ii) We have,

$$-\log|50 - y| = kx + \log\frac{1}{50} \qquad \text{[from (i) (a), (b)]}$$

$$\Rightarrow -kx = \log|50 - y| + \log\frac{1}{50} \qquad \Rightarrow -kx = \log\frac{50 - y}{50}$$

$$\Rightarrow e^{-kx} = \frac{50 - y}{50} = 1 - \frac{y}{50} \qquad \Rightarrow \frac{y}{50} = 1 - e^{-kx} \Rightarrow y = 50(1 - e^{-kx})$$

This is the required solution to find the number of children who have been given the polio drops.

CONCEPTUAL OUESTIONS

1. How many arbitrary constants are there in the particular solution of the differential equation

$$\frac{dy}{dx} = -4xy^2$$
; $y(0) = 1$?

[CBSE Sample Paper 2021]

Sol. 0

2. For what value of n is the following a homogeneous differential equation?

$$\frac{dy}{dx} = \frac{x^3 - y^n}{x^2 y + x y^2}$$

[CBSE Sample Paper 2021]

Sol. 3

3. Find the general solution of the differential equation $e^{y-x}\frac{dy}{dx}=1$. [CBSE 2020 (65/2/1)]

Given differential equation is $e^y dy = e^x dx$

1/2 1/2

1/2

Integrating to get $e^y = e^x + C$

[CBSE Marking Scheme 2020 (65/2/1)]

4. Find the integrating factor of the differential equation

$$x\frac{dy}{dx} = 2x^2 + y$$

[CBSE 2020 (65/2/2)]

Sol. Integrating factor is $e^{\int \frac{-1}{x} dx}$ or $\begin{cases} \text{writing given equation as} \\ \frac{dy}{dx} - \frac{y}{x} = 2x \end{cases}$

[CBSE Marking Scheme 2020 (65/2/2)]

5. Find the order and degree of differential equation:

$$\frac{d^4y}{dx^4} + \sin\left(\frac{d^3y}{dx^3}\right) = 0$$

[NCERT Exemplar]

- Sol. Order is 4 but degree is not defined because given differential equation cannot be written in the form of polynomial in differential co-efficient.
 - 6. Find the general solution of the differential equation $e^{y-x}\frac{dy}{dx}=1$.

Sol.
$$e^{y-x} \frac{dy}{dx} = 1 \implies \frac{e^y}{e^x} \frac{dy}{dx} = 1$$

$$\Rightarrow e^y dy = e^x dx$$

On integrating we have

$$\int e^y dx = \int e^x dx$$

$$\Rightarrow e^y = e^x + C \Rightarrow y = \log(e^x + C)$$

7. Write the sum of the order and degree of the following differential equation:

$$\frac{d}{dx} \left\{ \left(\frac{dy}{dx} \right)^3 \right\} = 0$$

[CBSE Allahabad 2015]

Sol. Given differential equation is

$$\frac{d}{dx} \left[\left(\frac{dy}{dx} \right)^3 \right] = 0$$

$$\Rightarrow 3\left(\frac{dy}{dx}\right)^2 \cdot \frac{d^2y}{dx^2} = 0$$

$$\therefore$$
 Required sum = 2 + 1 = 3.

8. Solve the differential equation
$$(y + 3x^2) \frac{dx}{dy} = x$$
.

Sol.
$$(y + 3x^2)dx = xdy$$

$$\Rightarrow ydx + 3x^2dx = xdy$$

$$\Rightarrow 3x^2dx = xdy - ydx$$

$$\Rightarrow 3dx = \frac{xdy - ydx}{x^2} = d\left(\frac{y}{x}\right)$$

Integrating, we get

$$\Rightarrow 3x = \frac{y}{x} + C \Rightarrow 3x^2 = y + Cx$$

$$\Rightarrow y - 3x^2 + Cx = 0.$$
9. Solve the following differential equation:

$$\frac{dy}{dx} + y = \cos x - \sin x$$

$$\frac{dy}{dx} + y = \cos x - \sin x$$

It is a linear differential equation of the type

the inear differential equation of the type
$$\frac{dy}{dx} + Py = Q$$
, where P , Q be the function of x or constants.

$$P = 1$$
, $Q = \cos x - \sin x$

Now, integrating factor, IF = $e^{\int Pdx} = e^{\int 1dx} = e^x$

$$\therefore \text{ Solution be } y \times IF = \int Q \times IF \, dx$$

$$\Rightarrow y \, e^x = \int e^x (\cos x - \sin x) \, dx$$

$$\Rightarrow y e^x = \int e^x (\cos x - \sin x) dx$$

$$\Rightarrow y e^x = e^x \cos x + C$$

$$\Rightarrow \qquad y = \cos x + C e^{-x}$$

Very Short Answer Questions

[NCERT Exemplar]

1. Find the general solution of
$$y^2 dx + (x^2 - xy + y^2) dy = 0$$
.

Sol. Given, differential equation is $y^2 dx + (x^2 - xy + y^2) dy = 0$.

$$\Rightarrow y^2 dx = -(x^2 - xy + y^2) dy$$

$$\Rightarrow y^2 \frac{dx}{dy} = -(x^2 - xy + y^2)$$

$$\Rightarrow \frac{dx}{dy} = -\left(\frac{x^2}{y^2} - \frac{x}{y} + 1\right) \qquad ...(i)$$

Which is a homogeneous differential equation.

Put
$$\frac{x}{y} = v \text{ or } x = vy$$

$$\Rightarrow \frac{dx}{dy} = v + y \frac{dv}{dy}$$

On substituting these values in equation (i), we get

$$v + y \frac{dv}{dy} = -[v^2 - v + 1]$$

$$\Rightarrow \qquad y \frac{dv}{dy} = -v^2 + v - 1 - v$$

$$\Rightarrow \qquad y \frac{dv}{dy} = -v^2 - 1 \Rightarrow \frac{dv}{v^2 + 1} = -\frac{dy}{v}$$

On integrating both sides, we get

$$\tan^{-1}(v) = -\log y + C$$

$$\Rightarrow \qquad \tan^{-1}\left(\frac{x}{y}\right) + \log y = C \qquad \left[\because v = \frac{x}{y}\right]$$

2. Solve the differential equation $(y + 3x^2) \frac{dx}{dy} = x$. [CBSE 2019 (65/5/2)]

Sol.
$$(y + 3x^2)dx = xdy \Rightarrow ydx + 3x^2dx = xdy$$

$$\Rightarrow 3x^2 dx = x dy - y dx$$

$$\Rightarrow 3dx = \frac{x dy - y dx}{2} = d\left(\frac{y}{x}\right)$$

Integrating, we get

$$\Rightarrow 3x = \frac{y}{x} + C \Rightarrow 3x^2 = y + Cx$$
$$\Rightarrow y - 3x^2 + Cx = 0.$$

$$(1+y^2) + (2xy - \cot y)\frac{dy}{dx} = 0$$
 [CBSE Allahabad 2015]

Sol.
$$(1+y^2) + (2xy - \cot y)\frac{dy}{dx} = 0$$

$$\Rightarrow (2xy - \cot y)\frac{dy}{dx} = -(1+y^2)$$

$$\Rightarrow \frac{dy}{dx} = -\frac{1+y^2}{2xy - \cot y}$$

$$\Rightarrow \frac{dx}{dy} = -\frac{(2xy - \cot y)}{1 + y^2}$$

$$\Rightarrow \frac{dx}{dy} + \frac{2y}{1+y^2} . x = \frac{\cot y}{1+y^2}$$

It is in the form $\frac{dx}{dy} + Px = Q$, where P and Q are function of y.

$$\Rightarrow \qquad \text{IF} = e^{\int P \, dy} = e^{\int \frac{2y}{1+y^2} dy} = e^{\log|1+y^2|} = 1 + y^2$$

Solve the following differential equations Q(4-6).

4.
$$\frac{dy}{dx} = y \tan x; y = 1 \text{ when } x = 0.$$

Sol. The given equation is $\frac{dy}{dx} = y \tan x$

$$\Rightarrow \frac{1}{y}dy = \tan x \, dx$$

$$\Rightarrow \int \frac{1}{y}dy = \int \tan x \, dx$$

$$\Rightarrow \qquad \log|y| = -\log|\cos x| + \log C$$

$$\Rightarrow \log |y| + \log |\cos x| = \log C$$

$$\Rightarrow \log |y \cos x| = \log C \Rightarrow y \cos x = C$$

$$\Rightarrow \log |y \cos x| = \log C$$
Putting $y = 1$ and $x = 0$

Putting
$$y = 1$$
 and $x = 0$
We have, $1 \cdot \cos(0) = C$

$$y \cos x = 1 \qquad \Rightarrow \qquad y = \frac{1}{\cos x} \qquad \Rightarrow \qquad y = \sec x$$

5.
$$\cos\left(\frac{dy}{dx}\right) = a(-1 \le a \le 1); y = 1 \text{ when } x = 0.$$

Sol. The given equation is
$$\cos\left(\frac{dy}{dx}\right) = a$$
.

$$\Rightarrow \frac{dy}{dx} = \cos^{-1} a \qquad \Rightarrow \qquad dy = \cos^{-1} a \, dx$$

$$\Rightarrow \qquad \int dy = \int \cos^{-1} a \, dx$$

$$\Rightarrow \qquad \int dy = \cos^{-1} a \int dx \qquad \Rightarrow \qquad y = (\cos^{-1} a) \ x + C$$

Putting
$$y = 1$$
 and $x = 0$

$$1 = \cos^{-1}(a) \times 0 + C \qquad \Rightarrow \qquad C = 1$$

$$\therefore y = (\cos^{-1} a) x + 1 \qquad \Rightarrow \qquad \cos^{-1} a = \frac{y - 1}{x}$$

$$\Rightarrow \quad a = \cos\left(\frac{y-1}{x}\right).$$

6.
$$\frac{dy}{dx} + \frac{1+y^2}{2y} = 0$$
.

We have.

$$\frac{dy}{dx} + \frac{1+y^2}{2y} = 0 \implies \frac{dy}{dx} = -\frac{1+y^2}{2y} \implies \frac{2y}{1+y^2} dy = -dx$$

 $\Rightarrow \int \frac{2y}{1+v^2} dy = -\int dx \text{ putting } 1 + y^2 = t \Rightarrow 2y \, dy = dt$

$$\Rightarrow \int \frac{1}{1+y^2} dy = -\int dx \text{ putting } 1+y^2 = t \Rightarrow 2y dy = dt$$

$$\Rightarrow \int \frac{1}{4} dt = -\int dx + C$$

$$\Rightarrow \log t = -x + C$$

$$\Rightarrow \log |1 + y^2| + x = C.$$

7. Solve the differential equation $\cos x \frac{dy}{dx} = \cos 3x - \cos 2x$.

Sol.
$$\cos x \frac{dy}{dx} = \cos 3x - \cos 2x$$

$$\Rightarrow \qquad \cos x \frac{dy}{dx} = (4\cos^3 x - 3\cos x) - (2\cos^2 x - 1)$$

$$\Rightarrow \frac{dy}{dx} = 4\cos^2 x - 3 - 2\cos x + \frac{1}{\cos x}$$

$$\Rightarrow dy = \left(\frac{4(1+\cos 2x)}{2} - 3 - 2\cos x + \sec x\right) dx$$

$$\Rightarrow \int dy = \int (2 + 2\cos 2x - 3 - 2\cos x + \sec x) dx = \int (2\cos 2x - 1 - 2\cos x - \sec x) dx$$

$$\Rightarrow \qquad y = \frac{2\sin 2x}{2} - x - 2\sin x - \log|\sec x + \tan x| + C$$

$$\Rightarrow y = \sin 2x - x - 2\sin x - \log|\sec x + \tan x| + C$$

8. Find the general solution of the differential equation

$$\log\left(\frac{dy}{dx}\right) = ax + by \qquad [CBSE 2021-22 (Term-2)]$$

Sol. reato = en areb dy zeada e-by dy = eazdz : wregrating both sidés. e- by dy eardx [c'=-c] where cac are constants ANSWEY " [Topper's Answer 2022] 9. Find the sum of the order the degree of the differential equation:

$$\left(x + \frac{dy}{dx}\right)^2 = \left(\frac{dy}{dx}\right)^2 + 1$$
 [CBSE 2021-22 (Term-2) (65/1/1)]

Sol. Given differential equation can be written as

$$x^{2} + \left(\frac{dy}{dx}\right)^{2} + 2x\frac{dy}{dx} = \left(\frac{dy}{dx}\right)^{2} + 1$$

i.e.,
$$x^2 + 2x \frac{dy}{dx} = 1$$
; Order = 1, degree = 1

Sum of order and degree = 1 + 1 = 2

1/2+1/2

[CBSE Marking Scheme 2022 (65/1/1)]

Short Answer Questions

1. Find the general solution of the differential equation $x \frac{dy}{dx} = y(\log y - \log x + 1)$.

[CBSE 2021-22 (Term-2) (65/3/2)]

Sol.

	7 dy = y (1094 - 1092 + 1)
	dix
	⇒ dy y [log (4)+1) [log a - log (9)].
	$\Rightarrow \frac{dy}{dx}, \frac{y}{x} \left(\log \left(\frac{y}{x} \right) + 1 \right) \left[\log a \cdot \log b \cdot \log \left(\frac{9}{b} \right) \right]$
	W 2
	the buttered and was a said
	on putting x=1x, y=1y.
	De la
	As (log (Ay)+1)
10.100	
	$\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \right)$
	<u> </u>
	= +(0,0
	= flx,y. Thus, this equation is himogenous equation.
	Let yet or a yeth.
	χ.
	de on differentiating with verpour to x
,	des on differentiating with verpeur to 2
	$d\theta = t + \chi dt$
	$\frac{dy}{dx} = t + x \frac{dt}{dx}$
-	
	$\frac{dy}{dz} = \frac{y}{x} \left(\log \left(\frac{y}{x} \right) + \frac{1}{x} \right)$
	072 ~ -

	t + xd+ - + (too + +1) [2 + 1]
	2
	++ xd+ = + (tog + +1) [2 =+]
	t+ xdt = thogt +t
	da
	da thogt
	da
	ANE _ Ju
	dt a da twgt x
	twogt a
	¥
	on integrating, both sides
	dt da thogt x
	J thogt J &
	dt e was the logx tc
	at a was use with the
	1 that
	let byt = u
	100 miles (100 miles (
	on ailterentulating,
	1 at au.
	t au.
20 SPA, 61 S SPA, 6300	
	1
	J du = lnx +c (logx=lnx)
	J Q
	The state of the s
	Low = mx +c [(is integration constant)
	MUM = MUM 45 I (is must later out countries)
	mbmt) = ma to [u=loget=lmt].
	1, 30
	h. / ho / 9/ \\
	m (m (9/2)) = mx + c
	m (m(4x1)) - mx = c
	$m\left(\frac{m(\frac{1}{2}x)}{x}\right) = c$
	m (m (1/2)) - c /
	$\left(\frac{1}{x} \right)$
	/ [log a - log b = log (9/6))
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Answer: m/m(3/x)) = ie
	[where inx = logex]
	[Topper's Answer 2022]

2. Find the particular solution of the differential equation $x \frac{dy}{dx} + x \cos^2\left(\frac{y}{x}\right) = y$; given that when $x = 1, \ y = \frac{\pi}{4}$. [CBSE 2021-22 (65/1/1) (Term-2)]

$$\frac{dy}{dx} = \frac{y}{x} - \cos^2 \frac{y}{x} \qquad ...(1)$$
Let $y = vx$ $\therefore \frac{dy}{dx} = v + x \frac{dv}{dx}$ $\frac{dv}{dx}$

Equation (1), Becomes
$$v + x \frac{dv}{dx} = v - \cos^2 v$$

$$\sec^2 v \, dv = -\frac{dx}{x}$$

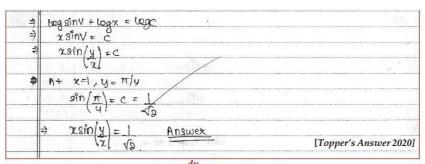
$$\tan v = -\log |x| + c$$

$$\tan \frac{y}{x} = -\log |x| + c$$

$$x = 1, \ y = \frac{\pi}{4} \implies c = 1$$

$$\therefore$$
 Particular solution is $\tan \frac{y}{x} = -\log |x| + 1$

1/2


1

3. Find the particular solution of the differential equation

$$x\frac{dy}{dx} = y - x \tan\left(\frac{y}{x}\right)$$
, given that $y = \frac{x}{4} at x = 1$. [CBSE 2020 (65/1/1)]

Sol.

		51-17-17-17
	$x_{ay} = y_{-}x_{ay}$	100
		19
	= dy = y-tan/y) = f(4/x) - (6)	
	$dx = \frac{1}{2} \sqrt{2}$	2.
	:11 is a homogeneous function.	le le
	1et y=V ≠ y=vx	
	₹	
	Differentiating with neaped to k	
	\$ dy = V + 2dV .	
	da da	1.0
	in equation () can be written as	
	V + x dV = V - tanV	
	ďχ	
	⇒ 2dV = -tany	
	dx	
	$\Rightarrow \int -\cot V dV = \int dz$	
	2	
•	+ - leg sinv = log 2 + log c , - log c to integration constant	t .
	0 0 7 0	

4. Solve the differential equation $(1+x^2)\frac{dy}{dx} + 2xy - 4x^2 = 0$, subject to the initial condition y(0) = 0. [CBSE 2019 (65/1/1)]

Sol.

 $(1+x^{2}) \frac{dy}{dx} + 2x y = 4x^{2}$ $\frac{dy}{dx} + \left(\frac{2x}{1+x^{2}}\right) y = \frac{4x^{2}}{1+x^{2}}$ $The linear DF of form <math>\frac{dy}{dx} + \frac{2y}{1+x^{2}}$ $I.F = e^{\int \frac{2x}{1+x^{2}}} = \frac{4x^{2}}{1+x^{2}}$ $Sol^{M} of DE:$ $y(1+x^{2}) = \int \frac{4x^{2}(1+x^{2})}{1+x^{2}} = 1+x^{2}$ $= \int 4x^{2} dx + C$ $y(1+x^{2}) = \frac{4x^{2}}{3} + C$ $y(1+x^{2}) = \frac{4x^{3}}{3} + C$ $y(1+x^{3}) = \frac{4x^{3}}{3} +$

5. Find the general solution of the differential equation :
$$\frac{d}{dx}(xy^2) = 2y(1+x^2)$$

[CBSE 2023 (65/3/2)]

Sol. Given differential equation be $\frac{d(xy^2)}{dx} = 2y(1+x^2)$

$$\Rightarrow x\frac{dy^2}{dx} + y^2\frac{dx}{dx} = 2y(1+x^2)$$

$$\Rightarrow$$
 $2xy\frac{dy}{dx} + y^2 = 2y(1+x^2)$

$$\Rightarrow 2x \frac{dy}{dx} + y = 2(1+x^2)$$

$$\Rightarrow \frac{dy}{dx} + \frac{1}{2x} \cdot y = \frac{2(1+x^2)}{2x}$$

$$\Rightarrow \frac{dy}{dx} + \frac{1}{2x}y = \frac{1+x^2}{x}$$

$$\frac{dx}{dx} = \frac{2x^3}{x}$$
It is a linear differential equation of the type

$$\frac{dy}{dx}$$
 + Py = Q, where P, Q be the function of a constant

6. Solve the following differential equation: $xe^{\frac{y}{x}} - y + x\frac{dy}{dx} = 0$

[CBSE 2023 (65/3/2)]

[CBSE 2023 (65/1/1)]

$$F = \rho \int P dx = \rho \int \frac{1}{2x} dx = \rho \frac{1}{2} \log x = \rho \log \sqrt{x} = \sqrt{x}$$

Its solution be

 $\therefore P = \frac{1}{2x}, Q = \frac{1+x^2}{x}$

$$y \times IF = \int Q \times IF \, dx$$

$$y \times 11 = y \otimes x = 1$$

$$\Rightarrow y \times \sqrt{x} = \int \frac{1+x^2}{x} \times \sqrt{x} dx = \int \frac{1+x^2}{\sqrt{x}} dx = \int \left(x^{-\frac{1}{2}} + x^{\frac{3}{2}}\right) dx$$

$$\Rightarrow y\sqrt{x} = 2x^{1/2} + \frac{2}{5}x^{5/2} + C$$

$$\Rightarrow y = 2 + \frac{2}{5}x^2 + C$$

$$\Rightarrow \qquad y = 2 + \frac{2}{5}x^2 + C$$

Sol. Given differential equation be
$$x e^{\frac{y}{x}} - y + x \frac{dy}{dx} = 0$$

$$\Rightarrow x \frac{dy}{dx} = y - x e^{\frac{y}{x}} \Rightarrow \frac{dy}{dx} = \frac{y}{x} - e^{\frac{y}{x}}$$
It is a homogeneous differential equation.

Put
$$y = vx$$
 and $\frac{dy}{dx} = v + x \frac{dv}{dx}$, we have

$$v + x \frac{dv}{dx} = v - e^v \implies x \frac{dv}{dx} = -e^v$$

$$\Rightarrow \int \frac{dv}{v} = -\int \frac{dx}{v} \text{ (on integrating)}$$

$$\Rightarrow \int \frac{e^{v}}{e^{v}} = -\int \frac{dx}{x} \text{ (on integrating)}$$

$$\Rightarrow \int e^{-v} dv = -\int \frac{dx}{x}$$

$$\Rightarrow -e^{-v} = -\log x + C$$

$$\Rightarrow \log x - e^{-\frac{y}{x}} = C$$

7. Solve the differential equation given by
$$x dy - y dx - \sqrt{x^2 + y^2} dx = 0$$
.

Sol. Given differential equation be
$$x \, dy - y \, dx - \sqrt{x^2 + y^2} \, dx = 0$$

$$\Rightarrow x \, dy = \left(y + \sqrt{x^2 + y^2}\right) dx$$

$$\Rightarrow \frac{dy}{dx} = \frac{y + \sqrt{x^2 + y^2}}{x}$$

It is a homogeneous differential equation.

Put
$$y = vx$$
 and $\frac{dy}{dx} = v + x \frac{dv}{dx}$, we get

$$v + x \frac{dv}{dx} = \frac{vx + \sqrt{x^2 + v^2x^2}}{x} = v + \sqrt{1 + v^2}$$
$$x \frac{dv}{dx} = \sqrt{1 + v^2} \implies \frac{dv}{\sqrt{1 + v^2}} = \frac{dx}{x}$$

On integrating both sides, we have

$$\int \frac{dv}{\sqrt{1+v^2}} = \int \frac{dx}{x} \implies \log|v + \sqrt{1+v^2}| = \log x + \log C$$

$$\Rightarrow \qquad \log\left|\frac{v + \sqrt{1+v^2}}{x}\right| = \log C$$

$$\Rightarrow \qquad \frac{\frac{y}{x} + \sqrt{1+\frac{y^2}{x^2}}}{x} = C \implies y + \sqrt{x^2 + y^2} = Cx^2$$

8. Find the particular solution of the differential equation $\frac{dy}{dx} + \sec^2 x$. $y = \tan x$. $\sec^2 x$, given that y(0) = 0. [CBSE 2023 (65/1/1)]

Sol. Given differential equation be

$$\frac{dy}{dx} + \sec^2 x \cdot y = \tan x \cdot \sec^2 x, \quad \text{given } y(0) = 0$$

It is a linear differential equation of type

$$\frac{dy}{dx} + Py = Q, \text{ where } P, Q \text{ be the function of } x \text{ or constant}$$

$$\therefore P = \sec^2 x, Q = \tan x \sec^2 x$$

$$\therefore IF = e^{\int Pdx} = e^{\int \sec^2 x dx} = e^{\tan x}$$

Its solution be

$$y \times IF = \int Q \times IF \ dx$$

 $\Rightarrow y \times e^{\tan x} = \int \tan x \cdot \sec^2 x \cdot e^{\tan x} dx$ Let $\tan x = t \Rightarrow \sec^2 x \, dx = dt$

$$=\int t \cdot e^t dt = t \int e^t dt - \int \left(\frac{dt}{dt} \cdot \int e^t dt\right) dt$$

$$= t \cdot e^t - \int e^t dt = t e^t - e^t + C = e^t (t - 1) + C$$

$$\Rightarrow y e^{\tan x} = e^{\tan x} (\tan x - 1) + C$$

$$\Rightarrow y = \tan x - 1 + C e^{-\tan x}$$
Given, $y(0) = 0 \Rightarrow 0 = \tan 0 - 1 + Ce^{\tan 0}$

$$\Rightarrow 0 = C - 1 \Rightarrow C = 1$$

Particular solution is given by $y = \tan x - 1 + e^{-\tan x}$

 $(xy - x^2) dy = y^2 dx.$ [CBSE 2023 (65/2/1)]

Sol. Given differential equation be

$$(xy - x^2) dy = y^2 dx$$

$$\Rightarrow \frac{dy}{dx} = \frac{y^2}{xy - x^2}$$

$$\frac{dy}{dx} = \frac{y^2}{xy - x^2}$$

It is a homogeneous differential equation.

Put
$$x = vy$$
 $\Rightarrow \frac{dx}{dy} = v + y \frac{dv}{dy}$
 $\Rightarrow v + y \frac{dv}{dy} = \frac{vy^2 - v^2y^2}{y^2} = \frac{v - v^2}{1} = v - v^2$
 $\Rightarrow v + y \frac{dv}{dy} = v - v^2$

$$\Rightarrow$$
 $y \frac{dv}{dv} = -v^2$

On integrating both sides, we have

$$\int \frac{dv}{v^2} = -\int \frac{dy}{y} \qquad \Rightarrow \int v^{-2} dv = -\log y + C$$

$$\Rightarrow \frac{v^{-1}}{-1} = -\log y + C \qquad \Rightarrow \log y - \frac{1}{v} = C$$

$$\Rightarrow \log y - \frac{y}{v} = C$$

 $\Rightarrow \frac{dv}{r^2} = -\frac{dy}{v}$

[CBSE 2023 (65/2/1)]

10. Find the general solution of the differential equation:

$$(x^2+1)\frac{dy}{dx} + 2xy = \sqrt{x^2+4}$$

Sol. Given differential equation be

Sol. Given differential equation be
$$(x^2 + 1) \frac{dy}{dx} + 2xy = \sqrt{x^2 + 4}$$

 $\Rightarrow \frac{dy}{dx} + \frac{2x}{x^2 + 1} \cdot y = \frac{\sqrt{x^2 + 4}}{x^2 + 1}$

 $\frac{dy}{dx} + Py = Q$

Thus, its solution be

$$\frac{\partial x}{\partial r}$$
 $\frac{\sqrt{r^2+4}}{r^2+4}$

Hence, $P = \frac{2x}{x^2 + 1}$, $Q = \frac{\sqrt{x^2 + 4}}{x^2 + 1}$

:
$$IF = e^{\int P dx} = e^{\int \frac{2x}{x^2 + 1} dx} = e^{\log(x^2 + 1)} = (x^2 + 1)$$

 $y \times IF = \int Q \times IF \, dx$

$$\Rightarrow y \times (x^2 + 1) = \int \frac{\sqrt{x^2 + 4}}{x^2 + 1} \times (x^2 + 1) \, dx = \int \sqrt{x^2 + 4} \, dx$$

$$\Rightarrow y(x^2 + 1) = \frac{x}{2} \sqrt{x^2 + 4} + \frac{4}{2} \log|x + \sqrt{x^2 + 4}| + C$$

$$= \frac{x}{2}\sqrt{x^2 + 4} + 2\log|x + \sqrt{x^2 + 4}| + C$$

11. Find the particular solution of the differential equation $\frac{dy}{dx} + 2y \tan x = \sin x$, given that y = 0 when $x = \frac{\pi}{3}$. [CBSE 2018]

Sol.

	$\frac{dy}{dx} + \frac{dy}{dx} + \frac{dy}{dx} = \frac{1}{2} \ln x$
- 1	
-	en comparing the about Equation with the Handord linear equation
	$\frac{dy}{dx} + P_{yy} = Q$
	W
	yu get, P= 2 tanx, Q= sinx
	Therifore, I.f. = e IPdx
	$T.f. = e^{2\int \tan x dx}$
	$= \rho^{(\log ku(x))}$
	therefore, I.f. = espect Therefore, I.f. = espect T.f. = espect (Legkeex) = especial = especial = especial
	NOTE:
	$y \cdot T \cdot f = \int G \times I \cdot f dx$ $y \cdot S \cdot c^{2} x = \int dx \cdot x \cdot dc^{2} x dx$
	11. Sec 2 = (8) 2 x 2002 - de
	god i =) and i ad i de
	$V \cdot S c x^2 = \int S dx \times I dx$
	$y \cdot sec^2 x = \int sin x \times \frac{1}{coin} dx$
	U. Sec x = [tomx. Sec x dx
	y. sec n = J tanx: sec x dx
	Put sec x = ut
	(Suxtanx)dx=at
	y. sec2x = 1 st at
	y. &c2x = t+c
	y sec 2 = sec x + c
	1000 11000 . 50 X = 17/2
	New wehen y=0, x=11/3.
	$0 = \sec \frac{\pi}{3} + c , 0 = +2 + c$
	3
	c = -2.
	Theretore
20	Thurryone, y = y - 2 y = 1 - 2
	W U = 1 - 2
	sec y = 1 - 2 secx secx
	or y = secx - 2(sec x) - we
	[Topper's Answer 2018]

12. Solve the following differential equation: $(1 + e^{y/x})dy + e^{y/x}\left(1 - \frac{y}{x}\right)dx = 0$, $(x \ne 0)$. [CBSE 2020 (65/2/1)]

Sol. Given differential equation

$$(1 + e^{y/x})dy + e^{y/x} \left(1 - \frac{y}{x}\right)dx = 0$$

$$\Rightarrow (1 + e^{y/x})dy = \left(\frac{y}{x} - 1\right)e^{y/x}dx$$

$$\Rightarrow \frac{dy}{dx} = \frac{\left(\frac{y}{x} - 1\right)e^{y/x}}{\left(1 + e^{y/x}\right)}$$

It is a homogeneous differential equation.

Put y = vx and $\frac{dy}{dx} = v + x \frac{dv}{dx}$

Put
$$y = vx$$
 and $\frac{y}{dx} = v + x \frac{dv}{dx}$

We have,

$$v + x \frac{dv}{dx} = \frac{(v-1)}{1+x^2} e^v = \frac{ve^v - e^v}{1+x^v}$$

$$\Rightarrow x\frac{dv}{dx} = \frac{ve^v - e^v}{1 + e^v} - v = \frac{ve^v - e^v - v - ve^v}{1 + e^v}$$

$$\Rightarrow x\frac{dv}{dx} = -\frac{(v + e^v)}{1 + e^v}$$

$$\Rightarrow \frac{1+e^v}{v+e^v}dv = -\frac{dx}{x}$$

On integrating both sides, we have

$$\int \frac{1+e^v}{v+e^v} dv = -\int \frac{dx}{x}$$

$$\Rightarrow \log|v + e^{v}| + \log|x| = \log|C|$$

$$\Rightarrow \log|x(v + e^{v})| = \log|C|$$

 $\log|v + e^v| = -\log|x| + \log|C|$

$$\Rightarrow \log|x(v+e^{v})| = \log|C|$$

$$\Rightarrow x(v+e^{v}) = C \Rightarrow x(\frac{y}{v} + e^{y/x}) = C$$

$$\Rightarrow x(v+e^{v}) = C \Rightarrow x\left(\frac{y}{x} + e^{y/x}\right) = C$$

$$\Rightarrow y + x e^{y/x} = C$$

13. Solve the differential equation $(1+x^2)\frac{dy}{dx} + y = e^{\tan^{-1}x}$.

$$(1+x^2)\frac{dy}{dx} + y = e^{\tan^{-1}x}$$

 $\Rightarrow \frac{dy}{dx} + \frac{1}{1+x^2}y = \frac{e^{\tan^{-1}x}}{1+x^2}$

$$\frac{dy}{dx} + Py = Q$$
, where $P = \frac{1}{1+x^2}$, $Q = \frac{e^{\tan^{-1}x}}{1+x^2}$

: IF =
$$e^{\int Pdx} = e^{\int \frac{1}{1+x^2} dx} = e^{\tan^{-1}x}$$

Therefore, general solution of required differential equation is

$$y.e^{\tan^{-1}x} = \int e^{\tan^{-1}x} \cdot \frac{e^{\tan^{-1}x}}{1+x^2} dx + C$$

$$\Rightarrow \qquad y.e^{\tan^{-1}x} = \int \frac{e^{2\tan^{-1}x}}{1+x^2} dx + C \qquad ...(ii)$$

$$e^{\tan^{-1}x} = \int \frac{e^{-x^{-1}}}{1+x^2} dx + C$$
 ...(ii)

...(i)

[CBSE (AI) 2014]

Let
$$tan^{-1} x = z$$

$$y.e^{\tan^{-1}x} = \int e^{2z} dz + C$$

$$\Rightarrow y.e^{\tan^{-1}x} = \frac{e^{2\tan^{-1}x}}{2} + C \qquad [Putting z = \tan^{-1}x]$$

$$y = \frac{e^{\tan^{-1}x}}{2} + C.e^{-\tan^{-1}x}$$

It is the required solution.

14. Find the particular solution of the differential equation $e^x \sqrt{1-y^2} dx + \frac{y}{x} dy = 0$ given that y = 1 when x = 0.

 $\Rightarrow \frac{1}{1+z^2}dx = dz$

 $\Rightarrow \qquad y.e^{\tan^{-1}x} = \frac{e^{2z}}{2} + C$

[Dividing both sides by $e^{\tan^{-1}x}$]

[CBSE (AI) 2013; Delhi 2015]

...(i)

Sol. We have,
$$e^x \sqrt{1-y^2} dx + \frac{y}{x} dy = 0$$

$$\Rightarrow e^x \sqrt{1 - y^2} dx = -\frac{y}{x} dy \qquad \Rightarrow xe^x dx = -\frac{y}{\sqrt{1 - y^2}} dy$$

$$\Rightarrow \int \underset{III}{x} e^x dx = -\int \frac{y}{\sqrt{1 - y^2}} dy$$

$$\Rightarrow xe^x - \int e^x dx = \frac{1}{2} \int \frac{dt}{\sqrt{t}}, \text{ where } t = 1 - y^2 \Rightarrow \frac{dt}{2} = -ydy \text{ (Using ILATE on LHS)}$$

$$\Rightarrow xe^{x} - e^{x} = \frac{1}{2} \left(\frac{t^{1/2}}{1/2} \right) + C \Rightarrow xe^{x} - e^{x} = \sqrt{t} + C$$

$$\Rightarrow$$
 $xe^x - e^x = \sqrt{1 - y^2 + C}$, is the general solution.

Putting
$$y = 1$$
 and $x = 0$, we get

 $0e^{0} - e^{0} = \sqrt{1 - 1^{2}} + C$

Therefore, required particular solution is
$$xe^x - e^x = \sqrt{1 - y^2} - 1$$
.
15. Solve the differential equation:

$$(\tan^{-1} y - x) dy = (1 + y^2) dx$$

Sol. The given differential equation can be written as

$$\frac{dx}{dy} + \frac{x}{1+y^2} = \frac{\tan^{-1}y}{1+y^2}$$

Now, (i) is of the form
$$\frac{dx}{dy} + Px = Q$$
, where $P = \frac{1}{1 + v^2}$ and $Q = \frac{\tan^{-1}y}{1 + v^2}$

Therefore, IF = $e^{\int \frac{1}{1+v^2} dy} = e^{\tan^{-1} y}$

Thus, the solution of the given differential equation is

$$xe^{\tan^{-1}y} = \int \left(\frac{\tan^{-1}y}{1+x^2}\right)e^{\tan^{-1}y}dy + C$$
 ...(ii)

Let
$$I = \int \left(\frac{\tan^{-1} y}{1 + y^2}\right) e^{\tan^{-1} y} dy$$

Substituting $\tan^{-1} y = t$ so that $\left(\frac{1}{1 + u^2}\right) dy = dt$, we get

$$I = \int t e^t dt = t e^t - \int 1.e^t dt = t e^t - e^t \equiv e^t (t - 1)$$

or $I = e^{\tan^{-1}y} (\tan^{-1}y - 1)$

Substituting the value of *I* in equation (ii), we get

$$x.e^{\tan^{-1}y} = e^{\tan^{-1}y}(\tan^{-1}y - 1) + C$$

or $x = (\tan^{-1}y - 1) + Ce^{-\tan^{-1}y}$ is the required solution.

16. Solve the differential equation $(x^2 - 1)\frac{dy}{dx} + 2xy = \frac{2}{x^2 - 1}$, where $x \in (-\infty, -1) \cup (1, \infty)$.

Sol. The given differential equation is $(x^2 - 1)\frac{dy}{dx} + 2xy = \frac{2}{x^2 - 1}$.

$$\Rightarrow \frac{dy}{dx} + \frac{2x}{x^2 - 1}y = \frac{2}{(x^2 - 1)^2}$$
...

This is a linear differential equation of the form $\frac{dy}{dx} + Py = Q$, where $P = \frac{2x}{x^2 - 1}$ and $Q = \frac{2}{(x^2 - 1)^2}$

$$\therefore \text{ IF} = e^{\int P dx} = e^{\int 2x/(x^2 - 1)dx} = e^{\log|x^2 - 1|} = x^2 - 1$$

Multiplying both sides of (i) by IF = $x^2 - 1$, we get $(x^2 - 1)\frac{dy}{dx} + 2xy = \frac{2}{x^2 - 1}$

$$\Rightarrow d(y(x^2-1)) = \frac{2}{x^2-1}$$

Integrating both sides, we get

$$y(x^{2}-1) = \int \frac{2}{x^{2}-1} dx + C \qquad \text{[Using:} y(\text{IF}) = \int Q.(\text{IF}) dx + C \text{]}$$

$$\Rightarrow y(x^{2}-1) = \frac{2}{2} \log \left| \frac{x-1}{x+1} \right| + C \qquad \Rightarrow \qquad y(x^{2}-1) = \log \left| \frac{x-1}{x+1} \right| + C$$

This is the required solution.

17. Find the particular solution of the differential equation $\frac{dy}{dx} = 1 + x + y + xy$ given that y = 0 when x = 1.

Sol. Given differential equation is $\frac{dy}{dx} = 1 + x + y + xy$.

$$\Rightarrow \frac{dy}{dx} = (1+x) + y(1+x) \Rightarrow \frac{dy}{dx} = (1+x)(1+y) \Rightarrow \frac{dy}{1+y} = (1+x)dx$$

Integrating both sides, we get $\log |1 + y| = \int (1 + x) dx$

$$\Rightarrow \log |1+y| = x + \frac{x^2}{2} + C$$
 is the general solution.

Putting x = 1, y = 0, we get

$$\log 1 = 1 + \frac{1}{2} + C \implies 0 = \frac{3}{2} + C \implies C = \frac{-3}{2}$$

Hence, particular solution is $\log |1+y| = x + \frac{x^2}{2} - \frac{3}{2}$.

18. Solve the differential equation $x \log x \frac{dy}{dx} + y = \frac{2}{x} \log x$. [CBSE (F) 2014]

Sol. Given differential equation is $x \log x \frac{dy}{dx} + y = \frac{2}{x} \log x$

$$\Rightarrow \frac{dy}{dx} + \left(\frac{1}{x \cdot \log x}\right) \cdot y = \frac{2}{x^2}$$
 (Divide each term by $x \log x$)

It is in the form $\frac{dy}{dx} + Py = Q$, where $P = \frac{1}{x \log x}$ and $Q = \frac{2}{x^2}$.

$$\therefore \text{ IF} = e^{\int Pdx} = e^{\int \frac{dx}{x \log x}}$$

Put $\log x = z \implies \frac{dx}{dz} = dz$

IF
$$e^{\int \frac{1}{z} dz} = e^{\log z} = z = \log x$$

∴ General solution is

$$y \cdot \log x = \int \log x \cdot \frac{2}{x^2} dx + C$$
 \Rightarrow $y \cdot \log x = 2 \int \frac{\log x}{x^2} dx + C$

Let $\log x = z \Rightarrow \frac{1}{x} dx = dz$ also $\log x = z \Rightarrow x = e^z$

$$\therefore y \log x = 2 \int \frac{z}{e^z} dz + C \qquad \Rightarrow y \log x = 2 \int z \cdot e^{-z} dz + C$$

$$\Rightarrow y \log x = 2 \left[z \cdot \frac{e^{-z}}{-1} - \int \frac{e^{-z}}{-1} dz \right] + C \Rightarrow y \log x = 2 \left[-ze^{-z} + \int e^{-z} dz \right] + C$$

$$\Rightarrow y \log x = -2ze^{-z} - 2e^{-z} + C \qquad \Rightarrow y \log x = -2\log x e^{-\log x} - 2e^{-\log x} + C$$

$$\Rightarrow y \log x = -2\log x \cdot \frac{1}{x} - \frac{2}{x} + C \qquad \left[\because e^{-\log x} = e^{\log \frac{1}{x}} = \frac{1}{x} \right]$$

$$\Rightarrow y \log x = -\frac{2}{3}(1 + \log x) + C$$

19. Show that the differential equation $x \frac{dy}{dx} \sin(\frac{y}{x}) + x - y \sin(\frac{y}{x}) = 0$ is homogeneous. Find the particular solution of this differential equation, given that x = 1 when $y = \frac{\pi}{2}$. [CBSE Delhi 2013]

...(i)

Sol. Given differential equation is $x \frac{dy}{dx} \sin \frac{y}{x} + x - y \sin \frac{y}{x} = 0$.

Dividing both sides by
$$x\sin\frac{y}{x}$$
, we get

 $\frac{dy}{dx} + \csc \frac{y}{x} - \frac{y}{x} = 0 \implies \frac{dy}{dx} = \frac{y}{x} - \csc \frac{y}{x}$ Let $F(x, y) = \frac{y}{x} - \csc \frac{y}{x}$

$$\therefore F(\lambda x, \lambda y) = \frac{\lambda y}{\lambda x} - \csc \frac{\lambda y}{\lambda x} = \lambda^0 \left[\frac{y}{x} - \csc \frac{y}{x} \right] = \lambda^0 F(x, y)$$

Hence, differential equation (i) is homogeneous.

Let y = vx \Rightarrow $\frac{dy}{dx} = v + x \cdot \frac{dv}{dx}$

Now, equation (i) becomes $v + x \frac{dv}{dx} = \frac{vx}{x} - \csc \frac{vx}{x}$

$$v + x \cdot \frac{dv}{dx} = v - \csc v \implies x \cdot \frac{dv}{dx} = -\csc v$$

$$\Rightarrow -\sin v dv = \frac{dx}{x} \qquad \Rightarrow -\int \sin v dv = \int \frac{dx}{x}$$

$$\Rightarrow \cos v = \log |x| + C \Rightarrow \cos \frac{y}{x} = \log |x| + C \qquad \dots (ii)$$

Putting $y = \frac{\pi}{2}$, x = 1 in (ii), we get

$$\therefore \quad \cos \frac{\pi}{2} = \log 1 + C \quad \Rightarrow \quad 0 = 0 + C \quad \Rightarrow \quad C = 0$$

Hence, particular solution is

$$\cos \frac{y}{x} = \log |x| + 0$$
 i.e., $\cos \frac{y}{x} = \log |x|$

20. Solve the differential equation:

$$\sqrt{1+x^2+y^2+x^2y^2}+xy\frac{dy}{dx}=0$$
 [CBSE (AI) 2010; (F) 2015]

Sol. Given $\sqrt{1 + x^2 + y^2 + x^2y^2} + xy\frac{dy}{dx} = 0$

$$xy\frac{dy}{dx} = -\sqrt{1+x^2+y^2+x^2}y^2 = -\sqrt{1+x^2+y^2}(1+x^2)$$

$$\Rightarrow xy \frac{dy}{dx} = -\sqrt{(1+x^2)(1+y^2)} = -\sqrt{(1+x^2)}\sqrt{(1+y^2)}$$

$$\Rightarrow \frac{y}{\sqrt{(1+y^2)}}dy = -\frac{\sqrt{(1+x^2)}}{x}dx$$

Integrating both sides, we get

$$\int \frac{y}{\sqrt{(1+y^2)}} dy = -\int \frac{\sqrt{(1+x^2)}}{x} dx = -\int \frac{\sqrt{1+x^2}}{x^2} \times x dx \qquad ...(i)$$

Let $1 + y^2 = t \Rightarrow 2y \, dy = dt$ and $1 + x^2 = m^2 \Rightarrow 2x \, dx = 2m \, dm \Rightarrow x \, dx = m \, dm$

$$\therefore (i) \Rightarrow \frac{1}{2} \int \frac{1}{\sqrt{t}} dt = -\int \frac{m}{m^2} .m dm$$

$$\Rightarrow \frac{1}{2} \frac{t^{1/2}}{1/2} + \int \frac{m^2}{m^2 - 1} dm = 0 \Rightarrow \sqrt{t} + \int \frac{m^2 + 1 - 1}{m^2 - 1} dm = 0$$

$$\Rightarrow \sqrt{t} + \int \left(1 + \frac{1}{m^2 - 1}\right) dm = 0 \Rightarrow \sqrt{t} + m + \frac{1}{2} \log \left|\frac{m - 1}{m + 1}\right| = 0$$

Now, substituting the value of t and m, we get

$$\sqrt{1+y^2} + \sqrt{1+x^2} + \frac{1}{2}\log\left|\frac{\sqrt{1+x^2-1}}{\sqrt{1+x^2+1}}\right| + C = 0$$

21. $(x^2 + y^2)dy = xy dx$. If y(1) = 1 and $y(x_0)e$, then find the value of x_0 . [CBSE Bhubneshwar 2015]

Sol. Given differential equation is $(x^2 + y^2)dy = xy dx$ It is also written as

$$\frac{dy}{dx} = \frac{xy}{x^2 + y^2} \qquad \dots (i)$$

Now, to solve let y = vx. [:: (i) is a homogeneous equation]

Differentiating y = vx with respect to x, we get

$$\frac{dy}{dx} = v + \frac{xdv}{dx}$$

Putting y = vx and $\frac{dy}{dx} = v + x \frac{dv}{dx}$ in (i), we get

$$v + x \frac{dv}{dx} = \frac{x.vx}{x^2 + (vx)^2}$$

$$v + x \frac{dv}{dx} = \frac{vx^2}{x^2 + v^2x^2}$$
 \Rightarrow $v + x \frac{dv}{dx} = \frac{vx^2}{x^2(1 + v^2)} = \frac{v}{1 + v^2}$

$$dx \quad x^2 + v^2 x^2 \qquad dx \quad x^2 (1 + v^2)$$

$$\Rightarrow \quad x \frac{dv}{dx} = \frac{v}{(1 + v^2)} - v \qquad \Rightarrow \qquad x \frac{dv}{dx} = \frac{v - v - v^3}{(1 + v^2)}$$

$$\Rightarrow \quad x\frac{dv}{dx} = \frac{-v^3}{(1+v^2)} \qquad \Rightarrow \qquad \frac{(1+v^2)dv}{v^3} = -\frac{dx}{x}$$

Integrating both sides, we get

$$\int \frac{(1+v^2)dv}{v^3} = -\int \frac{dx}{x}$$

$$\Rightarrow \int \frac{dv}{v^3} + \int \frac{dv}{v} = -\log |x| + C \qquad \Rightarrow \quad -\frac{1}{2n^2} + \log |v| = -\log |x| + C$$

$$\Rightarrow \qquad -\frac{x^2}{2y^2} + \log \left| \frac{y}{x} \right| = -\log \left| x \right| + C \qquad \Rightarrow \qquad -\frac{x^2}{2y^2} + \log \left| y \right| - \log \left| x \right| = -\log \left| x \right| + C$$

$$\Rightarrow \qquad -\frac{x^2}{2y^2} + \log |y| = C \qquad \dots (ii)$$

$$\Rightarrow -\frac{1}{1} + \log 11$$

$$\Rightarrow \qquad -\frac{1}{2 \times 1} + \log |1| = C \qquad \Rightarrow \qquad -\frac{1}{2} = C \qquad [\because \log 1 = 0]$$

Now (ii) becomes

Given, x = 1, y = 1

$$-\frac{x^2}{2y^2} + \log |y| = -\frac{1}{2} \implies \log |y| = \frac{x^2}{2y^2} - \frac{1}{2} \implies \log |y| = \frac{x^2 - y^2}{2y^2} \qquad \dots (iii)$$

Putting $x = x_0$ and y = e in (iii), we get

$$\log |e| = \frac{x_0^2 - e^2}{2e^2} \implies 1 = \frac{x_0^2 - e^2}{2e^2} \implies x_0^2 - e^2 = 2e^2$$

22. Show that the differential equation $(x-y)\frac{dy}{dx} = x + 2y$ is homogeneous and solve it.

...(i)

By simplifying the above equation, we get

Sol. Given, $(x-y)\frac{dy}{dx} = x + 2y$

$$\frac{dy}{dx} = \frac{x + 2y}{x - y}$$

Let
$$F(x,y) = \frac{x+2y}{x-y}$$

then $F(\lambda x, \lambda y) = \frac{\lambda x + 2\lambda y}{\lambda x - \lambda u} = \frac{\lambda (x + 2y)}{\lambda (x - u)} = \lambda^0 F(x, y)$

F(x, y) is homogeneous function and hence given differential equation is homogeneous.

Now, let
$$y = vx \implies \frac{dy}{dx} = v + x \frac{dv}{dx}$$

Substituting these values in equation (i), we get

$$v + x \frac{dv}{dx} = \frac{x + 2vx}{x - vx}$$

$$\Rightarrow x \frac{dv}{dx} = \frac{1 + 2v}{1 - v} - v = \frac{1 + 2v - v + v^2}{1 - v} = \frac{1 + v + v^2}{1 - v}$$

$$\Rightarrow \frac{1 - v}{1 + v + v^2} dv = \frac{dx}{x}$$

By integrating both sides, we get

$$\int \frac{1-v}{1+v+v^2} dv = \int \frac{dx}{x} \qquad \dots (ii)$$

LHS = $\int \frac{1-v}{v^2+v+1} dv$ Let 1-v = A(2v+1) + B = 2Av + (A+B)

Comparing coefficients of both sides, we get

$$2A = -1$$
, $A + B = 1$ or $A = -\frac{1}{2}$, $B = \frac{3}{2}$

$$\therefore \int \frac{1-v}{v^2+v+1} dv = \int \frac{-\frac{1}{2}(2v+1) + \frac{3}{2}}{v^2+v+1} dv
= -\frac{1}{2} \int \frac{2v+1}{v^2+v+1} dv + \frac{3}{2} \int \frac{dv}{v^2+v+1}
= -\frac{1}{2} \int \frac{2v+1}{v^2+v+1} dv + \frac{3}{2} \int \frac{dv}{\left(v+\frac{1}{2}\right)^2 + \frac{3}{4}}
= -\frac{1}{2} \log |v^2+v+1| + \frac{3}{2} \times \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{v+\frac{1}{2}}{\sqrt{3}}\right)^2$$

Now, substituting it in equation (ii), we get

$$-\frac{1}{2}\log |v^2 + v + 1| + \sqrt{3} \tan^{-1} \left(\frac{2v + 1}{\sqrt{3}}\right) = \log x + C$$

$$\Rightarrow -\frac{1}{2}\log\left|\frac{y^2}{x^2} + \frac{y}{x} + 1\right| + \sqrt{3}\tan^{-1}\left(\frac{2y}{x} + 1\right) = \log x + C$$

$$\Rightarrow -\frac{1}{2}\log|x^2 + xy + y^2| + \frac{1}{2}\log x^2 + \sqrt{3}\tan^{-1}\left(\frac{2y + x}{\sqrt{3}x}\right) = \log x + C$$

$$\Rightarrow -\frac{1}{2}\log |x^2 + xy + y^2| + \sqrt{3} \tan^{-1} \left(\frac{2y + x}{\sqrt{3}x}\right) = C$$

23. Solve $\frac{dy}{dx} = \cos(x + y) + \sin(x + y)$. [NCERT Exemplar]

Sol. Given,
$$\frac{dy}{dx} = \cos(x+y) + \sin(x+y)$$

Put
$$x + y = z$$
 \Rightarrow $1 + \frac{dy}{dx} = \frac{dz}{dx}$

On substituting these values in equation (i), we get

$$\left(\frac{dz}{dx} - 1\right) = \cos z + \sin z \implies \frac{dz}{dx} = (\cos z + \sin z + 1) \implies \frac{dz}{\cos z + \sin z + 1} = dx$$

On integrating both sides, we get

 \Rightarrow

$$\int \frac{dz}{\cos z + \sin z + 1} = \int 1 dx$$

$$\Rightarrow \int \frac{dz}{\frac{1 - \tan^2 z/2}{1 + \tan^2 z/2} + \frac{2 \tan z/2}{1 + \tan^2 z/2} + 1} = \int dx$$

$$\Rightarrow \int \frac{dz}{\frac{1-\tan^2 z/2 + 2\tan z/2 + 1 + \tan^2 z/2}{(1+\tan^2 z/2)}} = \int dx$$

$$\Rightarrow \int \frac{(1 + \tan^2 z/2)dz}{2 + 2\tan z/2} = \int dx \qquad \Rightarrow \int \frac{\sec^2 z/2 dz}{2(1 + \tan z/2)} = \int dx$$
Put 1 + tan z/2 = t \Rightarrow \left(\frac{1}{2}\sec^2 z/2\right)dz = dt

24. Find the particular solution of the differential equation:

$$(1-y^2)(1 + \log x) dx + 2xy dy = 0$$
 given that $y = 0$ when $x = 1$ [CBSE Delhi 2016]

Sol. We have
$$(1 - y^2)(1 + \log x) dx + 2xy dy = 0$$

$$\Rightarrow 2xy dy = -(1 - y^2)(1 + \log x) dx \qquad \Rightarrow \qquad \frac{2y dy}{1 - y^2} = -\frac{(1 + \log x) dx}{x}$$

Integrating both sides, we get

$$\Rightarrow \int \frac{2y}{1-y^2} dy = -\int \frac{(1+\log x)}{x} dx \qquad \Rightarrow \qquad -\log \mid 1-y^2 \mid = -\int \frac{(1+\log x)}{x} dx$$

$$\Rightarrow -\log |1 - y^2| = -\int z dz \left[\text{Let } 1 + \log x = z \right] \Rightarrow \frac{1}{x} dx = dz$$

$$\Rightarrow \log |1 - y^2| = \frac{z^2}{2} + C \qquad \Rightarrow \log |1 - y^2| = \frac{(1 + \log x)^2}{2} + C$$

Putting x = 1 and y = 0, we get

$$\Rightarrow \log 1 = \frac{(1 + \log 1)^2}{2} + C \qquad \Rightarrow 0 = \frac{1}{2} + C \Rightarrow C = -\frac{1}{2}$$

Hence, particular solution is
$$\log |1-y^2| = \frac{(1+\log x)^2}{2} - \frac{1}{2}$$
.

25. Find the general solution of the following differential equation:

$$(1+y^2) + (x - e^{\tan^{-1}y})\frac{dy}{dx} = 0$$
 [CBSE Delhi 2016]

Sol. We have $(1+y^2) + (x - e^{\tan^{-1}y}) \frac{dy}{dx} = 0$

$$\Rightarrow (x - e^{\tan^{-1}y}) \frac{dy}{dx} = -(1 + y^2)$$

$$\Rightarrow \frac{dy}{dx} = -\left(\frac{1 + y^2}{x - e^{\tan^{-1}y}}\right) \Rightarrow \frac{dx}{dy} = -\left(\frac{x - e^{\tan^{-1}y}}{1 + y^2}\right)$$

$$\Rightarrow \frac{dx}{dy} = -\frac{x}{1+y^2} + \frac{e^{\tan^{-1}y}}{1+y^2} \Rightarrow \frac{dx}{dy} + \frac{1}{1+y^2}x = \frac{e^{\tan^{-1}y}}{1+y^2}$$
It is in the form $\frac{dx}{dy} + Px = Q$, where $P = \frac{1}{1+y^2}$ and $Q = \frac{e^{\tan^{-1}y}}{1+y^2}$.

:. IF =
$$e^{\int P \cdot dy} = e^{\int \frac{1}{1+y^2} dy} = e^{\tan^{-1} y}$$

Therefore, general solution is $x \cdot e^{\tan^{-1}y} = \int \frac{e^{\tan^{-1}y}}{1+u^2} \cdot e^{\tan^{-1}y} dy + C$.

$$\Rightarrow x \cdot e^{\tan^{-1}y} = \int e^z \cdot e^z dz + C \qquad \left[\text{Let } \tan^{-1}y = z \Rightarrow \frac{1}{1+y^2} dy = dz \right]$$

$$\Rightarrow x \cdot e^{\tan^{-1}y} = \int e^{2z} dz + C$$

$$\Rightarrow x \cdot e^{\tan^{-1}y} = \frac{e^{2z}}{2} + C \qquad \Rightarrow \qquad x \cdot e^{\tan^{-1}y} = \frac{e^{2\tan^{-1}y}}{2} + C$$

$$\Rightarrow x = \frac{1}{2} e^{\tan^{-1} y} + C \cdot e^{-\tan^{-1} y}$$

26. Find the particular solution of differential equation:
$$\frac{dy}{dx} = -\frac{x+y\cos x}{1+\sin x}$$
 given that $y = 1$ when $x = 0$. [CBSE (North) 2016]

Sol. We have

$$\frac{dy}{dx} = -\frac{x+y\cos x}{1+\sin x}$$

$$\Rightarrow \frac{dy}{dx} = -\frac{x}{1+\sin x} - \frac{y\cos x}{1+\sin x} \Rightarrow \frac{dy}{dx} + \frac{\cos x}{1+\sin x} y = -\frac{x}{1+\sin x}$$

It is in the form $\frac{dy}{dx} + Py = Q$, where $P = \frac{\cos x}{1 + \sin x}$, $Q = -\frac{x}{1 + \sin x}$.

Now IF = $e^{\int \frac{\cos x}{1 + \sin x} dx} = e^{\log |1 + \sin x|} = 1 + \sin x$

Therefore, general solution is

$$y(1 + \sin x) = \int -\frac{x}{1 + \sin x} (1 + \sin x) dx + C$$
 = $-\int x dx + C$

$$\Rightarrow y(1+\sin x) = -\frac{x^2}{2} + C$$

$$1(1+\sin 0) = 0 + C \qquad [Given y = 1 \text{ and } x = 0] \qquad \Rightarrow C = 1$$

$$= 0 + C \qquad [Given y = 1 \text{ and } x = 0]$$

Hence, particular solution is

$$y(1+\sin x) = -\frac{x^2}{2} + 1$$

$$\Rightarrow \qquad y = \frac{2-x^2}{2(1+\sin x)}$$

1. Solve the following differential equation:

$$3e^x \tan y \, dx + (2 - e^x) \sec^2 y \, dy = 0$$
, given that when $x = 0$, $y = \frac{\pi}{4}$ [CBSE (F) 2012]

Long Answer Questions

Sol. Given, $3e^x \tan y \, dx + (2 - e^x) \sec^2 y \, dy = 0$

$$\Rightarrow (2 - e^x) \sec^2 y \, dy = -3e^x \tan y \, dx$$

$$\Rightarrow \frac{\sec^2 y}{\tan y} dy = \frac{-3e^x}{2 - e^x} dx$$

$$\Rightarrow \int \frac{\sec^2 y \, dy}{\tan y} = 3 \int \frac{-e^x \, dx}{2 - e^x}$$

$$\Rightarrow$$
 log $|\tan y| = 3 \log |2 - e^x| + \log C$

$$\Rightarrow \log |\tan y| = \log |C. (2 - e^x)^3|$$

Putting
$$x = 0$$
, $y = \frac{\pi}{4}$, we get

 \Rightarrow tan $y = C(2 - e^x)^3$

$$\Rightarrow \tan \frac{\pi}{4} = C(2 - e^0)^3 \qquad \Rightarrow 1 = C(2 - 1)^3 \Rightarrow 1 = C$$

Therefore, particular solution is $\tan y = (2 - e^x)^3$.

2. Solve:
$$x dy - y dx = \sqrt{x^2 + y^2} dx$$
 [CBSE (AI) 2011]

Sol. The given differential equation can be written as

$$\frac{dy}{dx} = \frac{\sqrt{x^2 + y^2} + y}{x}, x \neq 0$$

Clearly, it is a homogeneous differential equation.

Putting y = vx and $\frac{dy}{dx} = v + x \frac{dv}{dx}$ in it, we get

$$v + x\frac{dv}{dx} = \frac{\sqrt{x^2 + v^2 x^2 + vx}}{x} \quad \Rightarrow \quad v + x\frac{dv}{dx} = \sqrt{1 + v^2 + v}$$

$$\Rightarrow \qquad x \frac{dv}{dx} = \sqrt{1 + v^2} \qquad \Rightarrow \qquad \frac{dv}{\sqrt{1 + v^2}} = \frac{dx}{x}$$

Integrating both sides, we get

$$\int \frac{1}{\sqrt{1+v^2}} dv = \int \frac{1}{x} dx \qquad \Rightarrow \qquad \log |v + \sqrt{1+v^2}| = \log |x| + \log C$$

$$\Rightarrow |v + \sqrt{1 + v^2}| = |Cx| \qquad \Rightarrow \left| \frac{y}{x} + \sqrt{1 + \frac{y^2}{x^2}} \right| = |Cx| \qquad [\because v = y/x]$$

$$\Rightarrow \left\{ y + \sqrt{x^2 + y^2} \right\}^2 = C^2 x^2$$
 [Squaring both sides]

Hence, $\{y + \sqrt{x^2 + y^2}\}^2 = C^2 x^2$ gives the required solution.

3. Show that the differential equation $(xe^{y/x} + y) dx = x dy$ is homogeneous. Find the particular solution of this differential equation, given that x = 1 when y = 1. [CBSE Delhi 2013]

Sol. Given differential equation is
$$\left(x e^{\frac{y}{x}} + y\right) dx = x dy$$
 $\Rightarrow \frac{dy}{dx} = \frac{x \cdot e^{\frac{x}{x}} + y}{x}$...(i)

Let
$$F(x,y) = \frac{x \cdot e^{\frac{y}{x}} + y}{x}$$

$$\Rightarrow F(\lambda x, \lambda y) = \frac{\lambda x.e^{\frac{\lambda y}{\lambda x}} + \lambda y}{\lambda x} = \lambda^0 \frac{x.e^{\frac{y}{x}} + y}{x} = \lambda^0 F(x, y)$$

Hence, given differential equation (i) is homogeneous.

Let
$$y = vx$$
 $\Rightarrow \frac{dy}{dx} = v + x \cdot \frac{dv}{dx}$

Now, given differential equation (i) would become

$$v + x \frac{dv}{dx} = \frac{x \cdot e^{\frac{vx}{x}} + vx}{x} \implies v + x \cdot \frac{dv}{dx} = e^{v} + v \implies x \cdot \frac{dv}{dx} = e^{v}$$

$$\Rightarrow \frac{dv}{v} = \frac{dx}{v} \implies \int e^{-v} dv = \int \frac{dv}{v} \implies \frac{e^{-v}}{v} = \log x + C$$

$$\Rightarrow -e^{-\frac{y}{x}} = \log x + C \qquad \Rightarrow \qquad -\frac{1}{\underline{y}} = \log x + C \qquad \Rightarrow \qquad e^{\frac{y}{x}} \cdot \log x + Ce^{\frac{y}{x}} + 1 = 0$$

Putting x = 1, y = 1, we get

$$\therefore e \log 1 + Ce + 1 = 0 \qquad \Rightarrow \qquad C = -\frac{1}{e}$$

The required particular solution is

$$\frac{y}{e^{x}} \cdot \log x - \frac{1}{e^{x}} \cdot \frac{y}{e^{x}} + 1 = 0$$
 or $\frac{y}{e^{x}} \log x - \frac{y}{e^{x}} - 1 + 1 = 0$

Show that the differential equation $\left[x \sin^2\left(\frac{y}{x}\right) - y\right] dx + x dy = 0$ is homogeneous. Find the particular solution of this differential equation, given that $y = \frac{\pi}{4}$ when x = 1. [CBSE (AI) 2013]

particular solution of this differential equation, given that
$$y = \frac{\pi}{4}$$
 when $x = 1$. [CBSE (AI) 2013

Sol. Given differential equation is
$$\left[x\sin^2\left(\frac{y}{x}\right) - y\right]dx + xdy = 0$$
 $\Rightarrow \frac{dy}{dx} = \frac{y - x\sin^2\left(\frac{y}{x}\right)}{x}$...

Let
$$F(x,y) = \frac{y - x\sin^2(\frac{y}{x})}{x}$$
Then
$$F(\lambda x, \lambda y) = \frac{\lambda y - \lambda x\sin^2(\frac{\lambda y}{\lambda x})}{\lambda x} = \lambda^0 \frac{y - x\sin^2(\frac{y}{x})}{x} = \lambda^0 F(x, y)$$

Then
$$F(\lambda x, \lambda y) = \frac{\lambda y - \lambda x \sin \frac{x}{\lambda x}}{\lambda x} = \lambda^0 \frac{y - x \sin \frac{x}{x}}{x} = \lambda^0 F(x, y)$$

Hence, differential equation (i) is homogeneous.

Now, let $y = vx \implies \frac{dy}{dx} = v + x \frac{dv}{dx}$

Putting these value in (i), we get

$$v + x \frac{dv}{dx} = \frac{vx - x\sin^2 \frac{vx}{x}}{x} \implies v + x \frac{dv}{dx} = \frac{x\{v - \sin^2 v\}}{x}$$

$$\Rightarrow v + x \frac{dv}{dx} = v - \sin^2 v \implies x \frac{dv}{dx} = -\sin^2 v \implies \frac{dv}{\sin^2 v} = -\frac{dx}{x}$$

Integrating both sides, we get

$$\Rightarrow \int \csc^2 v \, dv = -\int \frac{1}{x} dx \qquad \Rightarrow -\cot v = -\log x + C \Rightarrow \log x - \cot \left(\frac{y}{x}\right) = C \qquad \dots (ii)$$

Putting $y = \frac{\pi}{4}$ and x = 1 in (ii), we get

$$\log 1 - \cot \frac{\pi}{4} = C \implies 0 - 1 = C \implies C = -1$$

Hence, particular solution is

$$\log x - \cot\left(\frac{y}{x}\right) = -1$$
 \Rightarrow $\log x - \cot\left(\frac{y}{x}\right) + 1 = 0$

5. Find the particular solution of the differential equation $\frac{dy}{dx} = \frac{x(2 \log x + 1)}{\sin y + y \cos y}$ given that $y = \frac{\pi}{2}$ when x = 1. [CBSE Delhi 2014] [HOTS]

Sol. Given differential equation is
$$\frac{dy}{dx} = \frac{x(2 \log x + 1)}{\sin y + y \cos y}$$

 $\Rightarrow (\sin y + y \cos y) dy = x (2 \log x + 1) dx$

$$\Rightarrow \int \sin y \, dy + \int y \cos y \, dy = 2 \int x \log x \, dx + \int x \, dx$$

$$\Rightarrow \int \sin y \, dy + \left[y \sin y - \int \sin y \, dy \right] = 2 \left[\log x \frac{x^2}{2} - \int \frac{1}{x} \cdot \frac{x^2}{2} \, dx \right] + \int x \, dx$$

$$\Rightarrow \int \sin y \, dy + [y \sin y - \int \sin y \, dy] = 2[\log x - \int x - \frac{1}{x} \cdot \frac{1}{x} \cdot \frac{1}{x}] + 1$$

$$\Rightarrow \int \sin y \, dy + y \sin y - \int \sin y \, dy = x^2 \log x - \int x \, dx + \int x \, dx + C$$

$$\Rightarrow \int \sin y \, dy + y \sin y - \int \sin y \, dy = x^2 \log x - \int x \, dx + \int x \, dx + C$$

$$\Rightarrow y \sin y = x^2 \log x + C, \text{ is general solution.}$$

For particular solution, we put $y = \frac{\pi}{2}$ when x = 1

(i) becomes
$$\frac{\pi}{2}\sin\frac{\pi}{2} = 1.\log 1 + C$$
 $\Rightarrow \frac{\pi}{2} = C$ [: log 1 = 0]

Putting the value of C in (i), we get the required particular solution

$$y\sin y = x^2\log x + \frac{\pi}{2}$$

6. If a curve y = f(x), passing through the point (1, 2) is the solution of the differential equation $2x^2 dy = (2xy + y^2)dx.$

Find the value of f(1/2).

Sol. We have

$$2x^{2} dy = (2xy + y^{2})dx$$

$$\Rightarrow \frac{dy}{dx} = \frac{2xy + y^{2}}{2x^{2}}$$

... (i)

$$f(x,y) = \frac{2xy + y^2}{2x^2}$$

$$\Rightarrow f(\lambda x, \lambda y) = \frac{2\lambda^2 xy + \lambda^2 y^2}{2\lambda^2 x^2} = \frac{2xy + y^2}{2x^2} = \lambda 0 f(x, y)$$

⇒ Given differential equation is a homogeneous differential equation.

Put $y = vx \implies \frac{dy}{dx} = v + x \frac{dv}{dx}$

Using these values in (i), we get

$$v + x \frac{dv}{dx} = \frac{2x vx + v^2 x^2}{2x^2} = \frac{2x^2 v + v^2 x^2}{2x^2}$$

$$\Rightarrow v + x \frac{dv}{dx} = \frac{2v + v^2}{2x^2}$$

$$\Rightarrow v + x \frac{dx}{dx} - 2$$

$$\Rightarrow x \frac{dv}{dx} = \frac{2v + v^2}{2} - v = \frac{2v + v^2 - 2v}{2} = \frac{v^2}{2}$$

$$\Rightarrow \frac{dv}{v^2} = \frac{1}{2} \frac{dx}{x} \Rightarrow 2 \frac{dv}{v^2} = \frac{dx}{x}$$

Integrating, we get

$$\Rightarrow \frac{-2}{v} = \log|x| + C$$

$$\Rightarrow \frac{-2x}{y} = \log|x| + C$$

$$\therefore \frac{-2}{2} = \log|1| + C \implies C = -1$$

$$\frac{-2x}{y} = \log x - 1$$

$$\Rightarrow \frac{2x}{y} = 1 - \log x \Rightarrow y = \frac{2x}{1 - \log x}$$

$$y\left(\frac{1}{2}\right) = \frac{2 \times \frac{1}{2}}{1 - \log \frac{1}{2}} = \frac{1}{1 + \log 2}$$

i.e.,
$$y\left(\frac{1}{2}\right) = f\left(\frac{1}{2}\right) = \frac{1}{1 + \log 2}$$
.

7. If
$$\cos x \frac{dy}{dx} - y \sin x = 6x$$
, $0 < x < \frac{\pi}{2}$ and $y(\frac{\pi}{3}) = 0$. Find the value of $y(\frac{\pi}{6})$.

...(ii)

Sol. We have

$$\cos x \frac{dy}{dx} - y \sin x = 6x$$

$$\Rightarrow \frac{dy}{dx} - \frac{y \sin x}{\cos x} = \frac{6x}{\cos x} \Rightarrow \frac{dy}{dx} + \left(\frac{-\sin x}{\cos x}\right)y = \frac{6x}{\cos x}$$

It is of the form $\frac{dy}{dx} + Py = Q$, where $P = \frac{-\sin x}{\cos x}$, $Q = \frac{6x}{\cos x}$.

$$\therefore \quad \text{IF} = e^{\int Pdx} = e^{\int \frac{-\sin x}{\cos x} dx} = e^{\log|\cos x|} = \cos x$$

$$\therefore$$
 Solution is $y \cos x = \int \frac{6x}{\cos x} \cos x \, dx + C$

$$\Rightarrow y \cos x = \int 6x \, dx + C = \frac{6x^2}{2} + C = 3x^2 + C$$

$$y\left(\frac{\pi}{3}\right) = 0$$

$$\Rightarrow 0 = 3 \times \frac{\pi^2}{9} + C = \frac{\pi^2}{3} + C \Rightarrow C = -\frac{\pi^2}{3}$$

$$y\cos x = 3x^2 - \frac{\pi^2}{3}$$

$$y = \left(3x^2 - \frac{\pi^2}{2}\right)\sec x$$

$$\therefore y\left(\frac{\pi}{6}\right) = \left(\frac{3\pi^2}{36} - \frac{\pi^2}{3}\right) \sec\frac{\pi}{6}$$

$$= \left(\frac{\pi^2}{12} - \frac{\pi^2}{3}\right) \times \frac{2}{\sqrt{3}} = \frac{-3\pi^2}{12} \times \frac{2}{\sqrt{3}} = \frac{-\pi^2}{2\sqrt{3}}$$

8. Solve:
$$x \frac{dy}{dx} + y - x + xy$$
 cot $x = 0 (x \neq 0)$

Sol. The given differential equation
$$x \frac{dy}{dx} + y - x + xy$$
 cot $x = 0 (x \neq 0)$

$$\Rightarrow \frac{dy}{dx} + \left(\cot x + \frac{1}{x}\right)y = 1$$
 (Dividing both sides by x)

This is a linear differential equation of the form
$$\frac{dy}{dx} + Py = Q$$
, where $P = \cot x + \frac{1}{x}$ and $Q = 1$.
So, $IF = e^{\int (\cot x + \frac{1}{x}) dx} = e^{\log |\sin x| + \log |x|}$

[NCERT][CBSE (East) 2016]

...(i)

$$=e^{\log|x\sin x|}=x\sin x$$

$$x\sin x \frac{dy}{dx} + x\sin x \left(\cot x + \frac{1}{x}\right) y = x\sin x$$

$$\Rightarrow x \sin x \frac{dy}{dx} + (x \cos x + \sin x)y = x \sin x \qquad \Rightarrow \qquad \frac{d}{dx}(yx \sin x) = x \sin x \qquad [By product rule]$$

On integrating both sides, we get

 $yx\sin x = \int x\sin x dx + C$

$$\Rightarrow d(yx\sin x) = x\sin x \, dx$$

Let
$$I = \int x \sin x dx = x \times (-\cos x) - \int 1 \cdot (-\cos x) dx$$
 (Using by parts)

$$I = -x\cos x + \sin x$$

Putting the value of *I* in (*ii*), we get

$$y x \sin x = -x \cos x + \sin x + C$$

$$\Rightarrow$$
 $y x \sin x = \sin x - x \cos x + C$

Hence,
$$y = \frac{1}{x} - \cot x + \frac{C}{x \sin x}$$
 is the required solution.

9. Find the particular solution of the differential equation

$$(1 + e^{2x})dy + (1 + y^2)e^x dx = 0$$
 given that $y = 1$ when $x = 0$. [NCERT] [CBSE (F) 2011]

Sol. We have, $(1 + e^{2x}) dy + (1 + y^2) e^x dx = 0$ and given that y = 1, when x = 0

$$\therefore \frac{dy}{dx} = \frac{-(1+y^2)e^x}{1+e^{2x}} \implies \frac{dy}{-(1+y^2)} = \frac{e^x dx}{1+e^{2x}}$$

Integrating both sides, we get

 $\Rightarrow -\tan^{-1} y = \tan^{-1} (t) + C$

$$-\int \frac{dy}{1+y^2} = \int \frac{e^x dx}{1+e^{2x}} \qquad \Rightarrow \qquad -\tan^{-1} y = \int \frac{e^x dx}{1+(e^x)^2}$$

$$\Rightarrow -\tan^{-1}y = \int \frac{dt}{1+t^2} \qquad [Putting e^x = t \Rightarrow e^x dx = dt]$$

⇒
$$-\tan^{-1} y = \tan^{-1} (e^x) + C$$

Put $x = 0$, $y = 1$ in (i), we get

$$-\tan^{-1} 1 = \tan^{-1} (e^0) + C \qquad \Rightarrow \qquad -\frac{\pi}{4} = \frac{\pi}{4} + C \qquad \Rightarrow \qquad C = -\frac{\pi}{2}$$

...(i)

(d) x

Putting the value of C in (i), we get

$$-\tan^{-1}y = \tan^{-1}(e^x) - \frac{\pi}{2}$$
 $\Rightarrow \frac{\pi}{2} = \tan^{-1}(e^x) + \tan^{-1}y$

Hence, $\tan^{-1}(e^x) + \tan^{-1} y = \frac{\pi}{2}$ is the required solution.

Ouestions for Practice

- Objective Type Questions
 - 1. Choose and write the correct option in each of the following questions.
 - (i) The degree of the differential equation is $\left(1 + \frac{dy}{dx}\right)^3 = \left(\frac{d^2y}{dx^2}\right)^2$ [NCERT Exemplar]
 - (a) 1 (b) 2 (c) 3 (d) 4
 - (ii) The order and degree of the differential equation $\frac{d^4y}{dx^4} = y + \left(\frac{dy}{dx}\right)^4$ are respectively
 - (a) 4, 1 (b) 4, 2 (c) 2, 2 (d) 2, 4
 - (iii) The integrating factor of the differential equation $x\frac{dy}{dx} y = 2x^2$ is
 - (iv) Solution of the differential equation $x \frac{dy}{dx} + y = x e^x$ is
 - dx
 - (a) $xy = e^x (1-x) + C$ (b) $xy = e^x (x+1) + C$ (c) $xy = e^y (y-1) + C$ (d) $xy = e^x (x-1) + C$
 - (v) The general solution of the differential equation $e^x dy + (y e^x + 2x) dx = 0$ is
 - (a) $x e^y + x^2 = C$ (b) $x e^y + y^2 = C$ (c) $y e^x + x^2 = C$ (d) $y e^y + x^2 = C$

■ Conceptual Questions

2. What is the degree of the following differential equation:

$$5x\left(\frac{dy}{dx}\right)^2 - \frac{d^2y}{dx^2} - 6y = \log x?$$
 [CBSE Delhi 2010]

3. Write the degree of the following differential equation:

$$x^{3} \left(\frac{d^{2}y}{dx^{2}}\right)^{2} + x \left(\frac{dy}{dx}\right)^{4} = 0$$
 [CBSE Delhi 2013]

4. Write the sum of the order and degree of the following differential equation:

$$\left(\frac{d^2y}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^3 + x^4 = 0$$
 [CBSE (F) 2015]

5. Find the product of the order and degree $x \left(\frac{d^2y}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^2 + y^2 = 0$. [CBSE Chennai 2015]

6. Write the integrating factor of $\frac{dy}{dx}(x\log x) + y = 2\log x$. [CBSE Punchkula 2015]

7. Solve: $e^{dy/dx} = x^2$

8. State whether $y = e^{-x}(x + a)$ is the solution of differential equation:

$$\frac{dy}{dx} + y = e^{-x}$$
9. Solve:
$$\frac{dy}{dx} - \frac{y(x+1)}{x} = 0$$

■ Very Short Answer Questions

10. Write the general solution of the differential equation $\frac{dy}{dx} = \frac{y}{x}$.

11. Write the integrating factor of $\frac{dy}{dx} + y = \frac{1+y}{x}$.

12. Given that $\frac{dy}{dx} = e^{-2y}$ and y = 0 when x = 5. Find the value of x when y = 3.

13. Find the general solution of the differential equation $\frac{dy}{dx} = 2^{y-x}$.

■ Short Answer Questions

14. Solve the following differential equation:

$$\cos^2 x \frac{dy}{dx} + y = \tan x$$
 [CBSE Delhi 2008, 2011; (AI) 2009]

15. Solve the differential equation:

$$(x^2+1)\frac{dy}{dx} + 2xy = \sqrt{x^2+4}$$
 [CBSE (AI) 2010]

16. Solve the differential equation:

$$(x^2 + 3xy + y^2)dx - x^2dy = 0$$
 given that $y = 0$, when $x = 1$ [CBSE (East) 2016]

17. Solve the differential equation: $(x+1)\frac{dy}{dx} - y = e^{3x}(x+1)^3$ [CBSE (South) 2016]

18. Find the particular solution of this differential equation $x^2 \frac{dy}{dx} - xy = 1 + \cos(\frac{y}{x}), x \neq 0$. Find the particular solution of this differential equation, given that when $x = 1, y = \frac{\pi}{2}$. [CBSE (F) 2013]

- 19. Find the particular solution of the differential equation $\frac{dy}{dx} = \frac{xy}{x^2 + y^2}$ given that y = 1, when x = 0. [CBSE Delhi 2015]
- 20. Solve the differential equation $\frac{dy}{dx} + y \cot x = 2 \cos x$, given that y = 0, when $x = \frac{\pi}{2}$. [CBSE (F) 2014]
- 21. Solve the differential equation $(x^2 yx^2) dy + (y^2 + x^2y^2) dx = 0$, given that y = 1, when x = 1.

[CBSE 2019 (65/3/1)]

[CBSE 2019 (65/3/1)]

[CBSE Chennai 2015]

[CBSE (F) 2015]

- [CBSE (F) 2014] 22. Solve the differential equation:

$$dx \quad x-y$$

$$(1+x^2)dy + 2xy dx = \cot x dx$$

- 24. Find the general solution of the differential equation $x^2y dx (x^3 + y^3) dy = 0$. [CBSE 2020 (65/3/1)]
- 25. Find the particular solution of the differential equation $\log \left(\frac{dy}{dx}\right) = 3x + 4y$, given that y = 0 when x = 0. [CBSE (AI) 2014]

■ Long Answer Questions

26. Solve the following differential equation, given that y = 0, when $x = \frac{\pi}{4}$:

$$\sin 2x \frac{dy}{dx} - y = \tan x$$

$$\left[y - x\cos\left(\frac{y}{x}\right)\right]dy + \left[y\cos\left(\frac{y}{x}\right) - 2x\sin\left(\frac{y}{x}\right)\right]dx = 0$$

$$\left[CBSE(F)\ 2015\right]$$

$$dx = 0$$

$$\left[CBSE(F)\ 2015\right]$$

- 28. Find the particular solution of the differential equation $(1+x^2)\frac{dy}{dx} = (e^{m \tan^{-1} x} y)$ given that y = 1, [CBSE Panchkula 2015] when x = 0.
- 29. Find the particular solution of the following differential equation:

$$xy\frac{dy}{dx} = (x+2)(y+2); y = -1 \text{ when } x = 1$$
 [CBSE Delhi 2012]

30. Find the particular solution of the differential equation

$$\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, (y \neq 0) \text{ given that } x = 0 \text{ when } y = \frac{\pi}{2}.$$
 [CBSE (AI) 2013]

- 31. Find the particular solution of the differential equation $x(1 + y^2)dx y(1 + x^2)dy = 0$ given that [CBSE (AI) 2014] y = 1 when x = 0.
- 32. Find the particular solution of the differential equation satisfying the given conditions $x^{2} dy + (xy + y^{2}) dx = 0$; y = 1 when x = 1. [CBSE Delhi 2010]

33.
$$(x^2 + y^2) dy = xy dx$$
. If $y(1) = 1$ and $y(x_0) = e$, then find the value of x_0 . [CBSE Bhubaneswar 2015]

- 34. Find the particular solution of the differential equation $(y \sin x) dx + (\tan x) dy = 0$ satisfying the condition that y = 0 when x = 0. [CBSE Guwahati 2015]
- 35. If $\frac{ydx xdy}{y} = 0$, x, y > 0 and $y(1) = x^2$ then find the value of y(5)

Answers

2. 1 3. 2 4. 4 5. 4 6.
$$\log x$$

7.
$$y = 2 (x \log x - x) + C$$
 8. Yes 9. $y = x e^{x+C}$ 10. $y = C x$ 11. $\frac{e^x}{x}$

12.
$$\frac{e^6 + 9}{2}$$
 13. $2^{-x} - 2^{-y} = C$ 14. $y = \tan x - 1 + Ce^{-\tan x}$

15.
$$(x^2 + 1)y = \frac{x}{2}\sqrt{x^2 + 4} + 2\log|x + \sqrt{x^2 + 4}|$$
 16. $y = \frac{x\log|x|}{1 - \log|x|}$

17.
$$\frac{y}{x+1} = (x+1)\frac{e^{3x}}{3} - \frac{e^{3x}}{9} + C$$
 18. $\tan\left(\frac{y}{2x}\right) = -\frac{1}{2x^2} + \frac{3}{2}$ 19. $-\frac{x^2}{2y^2} + \log|y| = 0$
20. $2y \sin x = -(1 + \cos 2x)$ 21. $\log|y| + \frac{1}{y} = -\frac{1}{x} + x + 1$

22.
$$\log|y| + \frac{C}{y} = -\frac{1}{x} + x + 1$$

22. $\tan^{-1}(\frac{y}{x}) = \frac{1}{2} \log(x^2 + y^2) + C$ 23. $y = \frac{1}{2} \log|\sin x| + \frac{C}{2}$ 24. $\log|y| = \frac{x^3}{2}$

22.
$$\tan^{-1}\left(\frac{y}{x}\right) = \frac{1}{2}\log(x^2 + y^2) + C$$
 23. $y = \frac{1}{1+x^2}\log|\sin x| + \frac{C}{1+x^2}$ 24. $\log|y| = \frac{x^3}{3y^3} + C$

25.
$$4e^{3x} + 3e^{-4y} = 7$$
 26. $y = \tan x - \sqrt{\tan x}$ 27. $y^2 - 2x^2 \cos\left(\frac{y}{x}\right) = C$

28.
$$y e^{\tan^{-1}x} = \frac{e^{(m+1)\tan^{-1}x}}{m+1} + \frac{m}{m+1}$$
 29. $x + 2\log|x| - 2$ 30. $x \sin y = y^2 \sin y - \frac{\pi^2}{4}$

28.
$$y e^{\tan^{-1}x} = \frac{e^{(m+x)\sin x}}{m+1} + \frac{m}{m+1}$$
 29. $x + 2 \log |x| - 2$ 30. $x \sin y = y^2 \sin y - 3$ 31. $y^2 = 2x^2 + 1$ 32. $3x^2y = y + 2x$ 33. $x_0 = \sqrt{3}e$

31.
$$y = 2x + 1$$
 32. $3x y = y + 2x$ 33. $x_0 - \sqrt{3}e$
34. $y = \frac{1}{2}\sin x$ 35. 25