LINEAR EQUATIONS IN TWO VARIABLES

An equation of the form ax + by + c = 0, where a, b and c are real numbers, such that a and b are not both zero, is called a linear equation in two variables.

Important points to Note:

S.no	Points
1	A linear equation in two variable has infinite solutions
2	The graph of every linear equation in two variable is a straight line
3	x = 0 is the equation of the y-axis and $y = 0$ is the equation of the x-axis
4	The graph x=a is a line parallel to y -axis.
5	The graph y=b is a line parallel to x -axis
6	An equation of the type $y = mx$ represents a line passing through the origin.
7	Every point on the graph of a linear equation in two variables is a solution of the linear
	equation. Moreover, every solution of the linear equation is a point on the graph

S.no	Type of equation	Mathematical representation	Solutions
1	Linear equation in one Variable	ax+b=0 ,a≠0 a and b are real number	One solution
2	Linear equation in two Variable	ax+by+c=0 , a≠0 and b≠0 a, b and c are real number	Infinite solution possible
3	Linear equation in three Variable	ax+by+cz+d=0 , a≠0 ,b≠0 and c≠0	Infinite solution possible
		a, b, c, d are real number	

Simultaneous pair of linear equation:

A pair of linear equation in two variables

 $a_1x + b_1y + c_1 = 0$

 $a_2x + b_2y + c_2 = 0$

Graphically it is represented by two straight lines on Cartesian plane.

The graphical solution can be obtained by drawing the lines on the Cartesian plane. *Algebraic Solution of system of Linear equation:*

S.no	Type of method	Working of method		
1	Method of elimination by substitution	1) Suppose the equation are		
		a1x+b1y+c1=0		
		$a_2x + b_2y + c_2 = 0$		
		2) Find the value of variable of either x or y in other variable term in first equation		
		3) Substitute the value of that variable in second equation		
		4) Now this is a linear equation in one variable. Find the value of the variable		
		5) Substitute this value in first equation and get the second variable		
2	Method of elimination by equating the coefficients	1) Suppose the equation are		
		a1x+b1y+c1=0		
		$a_2x + b_2y + c_2 = 0$		
		2) Find the LCM of a_1 and a_2 .Let it k.		
		3) Multiple the first equation by the value k/a_1		
		4) Multiple the first equation by the value $k/a_{\rm 2}$		
		4) Subtract the equation obtained. This way one variable will be eliminated and we can solve to get the value of variable y		
		5) Substitute this value in first equation and get the second variable		
3	Cross Multiplication method	1) Suppose the equation are		
		a1x+b1y+c1=0		
		$a_2x + b_2y + c_2 = 0$		
		2) This can be written as		
		$\frac{x}{b_1 \ c_1} = \frac{-y}{a_1 \ c_1} = \frac{1}{a_1 \ b_1}$ $b_2 \ c_2 \ a_2 \ c_2 \ a_2 \ b_2$		
		3) This can be written as		

x	_	-y	_	1
$b_1c_2-b_2c_1$	_	$a_1c_2 - a_2c_1$	_	$a_1b_2 - a_2b_1$

4) Value of x and y can be find using the

x => first and last expression

y=> second and last expression