MATHEMATICS

DAILY PRACTICE PROBLEMS

Topics : Solution of Triangle, Circle

Match the Following (no negative marking) Q.7

DPP No. 79

Total Marks : 28

Max. Time : 30 min.

Type of Questions (3 marks 3 min) Single choice Objective (no negative marking) Q.1,2,3,4 Subjective Questions (no negative marking) Q.5,6

- If in a $\triangle ABC$, $\frac{r}{r_1} = \frac{1}{2}$, then the value of $\tan \frac{A}{2} \left(\tan \frac{B}{2} + \tan \frac{C}{2} \right)$ is equal to : 1.
 - (B) $\frac{1}{2}$ (C) 1 (A) 2 (D) None of these
- 2. A triangle is inscribed in a circle. The vertices of the triangle divide the circle into three arcs of length 3, 4 and 5 units. Then area of the triangle is equal to:

(A)
$$\frac{9\sqrt{3}(1+\sqrt{3})}{\pi^2}$$
 (B) $\frac{9\sqrt{3}(\sqrt{3}-1)}{\pi^2}$ (C) $\frac{9\sqrt{3}(1+\sqrt{3})}{2\pi^2}$ (D) $\frac{9\sqrt{3}(\sqrt{3}-1)}{2\pi^2}$

Let PQR be a triangle of area \triangle with a = 2, b = $\frac{7}{2}$ and c = $\frac{5}{2}$, where a, b and c are the lengths of the sides 3.

of the triangle opposite to the angles at P, Q and R respectively. Then $\frac{2 \sin P - \sin 2P}{2 \sin P + \sin 2P}$ equals

(C) $\left(\frac{3}{4\Lambda}\right)^2$ (D) $\left(\frac{45}{4\Lambda}\right)^2$ (A) $\frac{3}{44}$ (B)

Orthocentre of an acute triangle ABC is at the origin and its circumcentre has the co-ordinates $\left(\frac{1}{2}, -\frac{1}{2}\right)$. 4.

If the base BC has the equation 4x - 2y = 5, then the radius of the circle circumscribing the triangle ABC, is

- (C) $\frac{3}{\sqrt{2}}$ (B) √3 (D) √6 (A) $\sqrt{5/2}$
- In a triangle ABC, prove that the area of the incircle is to the area of triangle itself is, 5.

$$\pi : \cot\left(\frac{A}{2}\right) . \cot\left(\frac{B}{2}\right) . \cot\left(\frac{C}{2}\right) .$$

M.M., Min.

(3 marks, 3 min.)	[12,	12]
(4 marks, 5 min.)	[8,	10]
(8 marks, 8 min.)	[8,	8]

6. In a triangle PQR, PL & QM are the medians. If PL = 6 cm, \angle QPL = $\pi/6$ and \angle PQM = $\pi/3$, then the area of triangle PQR is _____.

7.	Column – I		Column – II	
	(A)	In a $\triangle ABC$, a = 4, b = 3 and the medians AA_1 and BB_1 are mutually perpendicular, then square of area of the $\triangle ABC$ is equal to	(p)	3
	(B)	If in an acute angled $\triangle ABC$, line joining the circumcentre and orthocentre is parallel to side AC, then value of tan A.tan C is equal to	(q)	7
	(C)	In a $\triangle ABC$, a = 5, b = 4 and $\tan \frac{C}{2} = \sqrt{\frac{7}{9}}$, then side 'c' is equal to	(r)	6
	(D)	In a $\triangle ABC$, $2a^2 + 4b^2 + c^2 = 4ab + 2ac$, then value of (8 cos B)	(s)	11

Answers Key

- **1.** (B) **2.** (A) **3.** (C) **4.** (A)
- 6. $8\sqrt{3}$ sq. unit

is equal to

7. (A) \rightarrow (s), (B) \rightarrow (p), (C) \rightarrow (r), (D) \rightarrow (q)