Exercise 15.10

Chapter 15 Multiple Integrals 15.10 1E

Given equations are x = 5u-v, y = u + 3v

Therefore Jacobian is
$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

$$= \begin{vmatrix} 5 & -1 \\ 1 & 3 \end{vmatrix}$$

$$= 5.3-1.(-1)$$

Chapter 15 Multiple Integrals 15.10 2E

=16

Given equation is x = u.v, y = u/v

Therefore Jacobian is
$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$
$$= \begin{vmatrix} v & u \\ \frac{1}{v} & \frac{-u}{v^2} \end{vmatrix}$$
$$= v \cdot \frac{(-u)}{v^2} - u \cdot \frac{1}{v}$$
$$= -\frac{2u}{v}$$

Chapter 15 Multiple Integrals 15.10 3E

Given equation is $x = e^{-r} \sin \theta$, $y = e^{r} \cos \theta$

Therefore Jacobian is
$$\frac{\partial(x,y)}{\partial(r,\theta)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta \Box} \end{vmatrix}$$

$$= \begin{vmatrix} -e^{-r}\sin\theta & e^{-r}\cos\theta \\ e^{r}\cos\theta & -e^{r}\sin\theta \end{vmatrix}$$

$$=\sin^2\theta-\cos^2\theta$$

Chapter 15 Multiple Integrals 15.10 4E

Given that $x = e^{s+t}$, $y = e^{s-t}$

Therefore Jacobian is
$$\frac{\partial(x,y)}{\partial(s,t)} = \begin{vmatrix} \frac{\partial x}{\partial s} & \frac{\partial x}{\partial t} \\ \frac{\partial y}{\partial s} & \frac{\partial y}{\partial t} \end{vmatrix}$$

$$= \begin{vmatrix} e^{s+t} & e^{s+t} \\ e^{s-t} & -e^{s-t} \end{vmatrix}$$

$$= -e^{s+t}.e^{s-t} - e^{s+t}.e^{s-t}$$

$$= -e^{s+t+s-t} - e^{s+t+s-t}$$

$$= -e^{2s} - e^{2s}$$

$$= -2e^{2s}$$

Chapter 15 Multiple Integrals 15.10 5E

Consider the transformation.

$$x = \frac{u}{v}, y = \frac{v}{w}, z = \frac{w}{u}$$

The object is to find the Jacobean of the transformations.

Recall that, the Jacobean of the transformation

$$x = f(u, v, w), y = g(u, v, w), z = h(u, v, w)$$
 is defined as,

$$J\left(\frac{\partial(x,y,z)}{\partial(u,v,w)}\right) = \begin{vmatrix} \frac{\partial f}{\partial u} & \frac{\partial f}{\partial v} & \frac{\partial f}{\partial w} \\ \frac{\partial g}{\partial u} & \frac{\partial g}{\partial v} & \frac{\partial g}{\partial w} \\ \frac{\partial h}{\partial u} & \frac{\partial h}{\partial v} & \frac{\partial h}{\partial w} \end{vmatrix}.$$

The partial derivatives of the transformation are

$$\frac{\partial x}{\partial u} = \frac{1}{v} \frac{\partial}{\partial u} (u)$$

$$= \frac{1}{v} (1)$$

$$= \frac{1}{v}$$

$$\frac{\partial x}{\partial v} = u \frac{\partial}{\partial u} (\frac{1}{v})$$

$$= u (\frac{-1}{v^2})$$

$$= \frac{-u}{v^2}$$

$$\frac{\partial x}{\partial w} = \frac{\partial}{\partial w} (\frac{u}{v})$$

=0

$$\frac{\partial y}{\partial u} = \frac{\partial}{\partial u} \left(\frac{v}{w} \right)$$

$$= 0$$

$$\frac{\partial y}{\partial v} = \frac{\partial}{\partial v} \left(\frac{v}{w} \right)$$

$$= \frac{1}{w} (1)$$

$$= \frac{1}{w}$$

$$\frac{\partial z}{\partial u} = \frac{\partial}{\partial u} \left(\frac{w}{u} \right)$$

$$= w \left(\frac{-1}{u^2} \right)$$

$$= \frac{-w}{u^2}$$

$$\frac{\partial z}{\partial v} = \frac{\partial}{\partial v} \left(\frac{w}{u} \right)$$

$$= 0$$

$$\frac{\partial z}{\partial w} = \frac{\partial}{\partial w} \left(\frac{w}{u} \right)$$

 $=\frac{1}{u}(1)$

 $=\frac{1}{u}$

Substitute all the values into
$$J\left(\frac{\partial \left(x,y,z\right)}{\partial \left(u,v,w\right)}\right) = \begin{vmatrix} \frac{\partial f}{\partial u} & \frac{\partial f}{\partial v} & \frac{\partial f}{\partial w} \\ \frac{\partial g}{\partial u} & \frac{\partial g}{\partial v} & \frac{\partial g}{\partial w} \\ \frac{\partial h}{\partial u} & \frac{\partial h}{\partial v} & \frac{\partial h}{\partial w} \end{vmatrix}$$
, and then the Jacobean is

$$J\left(\frac{\partial(x,y,z)}{\partial(u,v,w)}\right) = \begin{vmatrix} \frac{\partial f}{\partial u} & \frac{\partial f}{\partial v} & \frac{\partial f}{\partial w} \\ \frac{\partial g}{\partial u} & \frac{\partial g}{\partial v} & \frac{\partial g}{\partial w} \\ \frac{\partial h}{\partial u} & \frac{\partial h}{\partial v} & \frac{\partial h}{\partial w} \end{vmatrix}$$
$$= \begin{vmatrix} \frac{1}{v} & \frac{-u}{v^2} & 0 \\ 0 & \frac{1}{w} & \frac{-v}{w^2} \\ \frac{-w}{u^2} & 0 & \frac{1}{u} \end{vmatrix}$$

The determinant of the matrix is calculated as,

$$J\left(\frac{\partial(x,y,z)}{\partial(u,v,w)}\right) = \begin{vmatrix} \frac{\partial f}{\partial u} & \frac{\partial f}{\partial v} & \frac{\partial f}{\partial w} \\ \frac{\partial g}{\partial u} & \frac{\partial g}{\partial v} & \frac{\partial g}{\partial w} \\ \frac{\partial h}{\partial u} & \frac{\partial h}{\partial v} & \frac{\partial h}{\partial w} \end{vmatrix}$$

$$= \begin{vmatrix} \frac{1}{v} & \frac{-u}{v^2} & 0 \\ 0 & \frac{1}{w} & \frac{-v}{w^2} \\ \frac{-w}{u^2} & 0 & \frac{1}{u} \end{vmatrix}$$

$$= \frac{1}{v} \begin{vmatrix} \frac{1}{w} & \frac{-v}{w^2} \\ 0 & \frac{1}{u} \end{vmatrix} - \left(\frac{-u}{v^2}\right) \begin{vmatrix} 0 & \frac{-v}{w^2} \\ \frac{-w}{u^2} & \frac{1}{u} \end{vmatrix} + 0 \begin{vmatrix} 0 & \frac{1}{w} \\ \frac{-w}{u^2} & 0 \end{vmatrix}$$

$$= \frac{1}{v} \left(\frac{1}{uw}\right) + \frac{u}{v^2} \left(0 - \frac{vw}{u^2w^2}\right) + 0$$

$$= \frac{1}{uvw} - \frac{1}{uvw}$$

$$= 0$$

Hence, the Jacobean of the transformation is

$$J = 0$$

Chapter 15 Multiple Integrals 15.10 6E

Givne that
$$x = v + w^2$$
, $y = w + u^2$, $z = u + v^2$

Jacobian is
$$\begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix} = \begin{vmatrix} 0 & 1 & 2w \\ 2u & 0 & 1 \\ 1 & 2v & 0 \end{vmatrix}$$
$$= 0 - 1(0 - 1) + 2w(2u \cdot 2v - 0)$$
$$= 1 + 8uvw$$

Chapter 15 Multiple Integrals 15.10 7E

$$S = \{(u, v)/0 \le u \le 3, \ 0 \le v \le 2\}$$

 $x = 2u + 3v, \ v = u - v$

The first side S_1 is given by v = 0, we have x = 2u, y = u, we get x = 2y which is equation of straight line with end points (0, 0) and (6, 3)

The second side S_2 is given by u=3, we get $x=6+3\nu$, $y=3-\nu$. Thus $x=15-3\nu$ is equation of straight line with end points (6,3) and (12,1)

The S_3 is given by v = 2, we get x = 2u + 6 and y = u - 2, so x = 2y + 10 is equation of straight line with end points (6, -2) and (12, 1)

The S_4 is given by u = 0, we get x = 3v, y = -v. Thus x = -3y is the equation of straight line with end points (0, 0) and (6, -2). Therefore the image of S is the parallelogram with vertices (0, 0), (6, 3), (12, 1),

Therefore the image of Δ is the parallelogram with vertices (0, 0), (6, 3), (12, 1), (6, -2)

Chapter 15 Multiple Integrals 15.10 8E

Consider the following transformation S is square bounded by the lines,

$$u = 0, u = 1, v = 0, v = 1, x = v, y = u(1 + v^2)$$

The objective is to find image of the set S.

Write the transformation as set notation as follows:

$$S = \{(u, v) \mid 0 \le u \le 1, 0 \le v \le 1\}$$

$$x = v, y = u(1 + v^{2})$$

Let S_i be the first transformation.

Substitute v = 0 in x = v, $y = u(1+v^2)$.

$$x=0,\,y=u\left(1+0^2\right)$$

$$x = 0, y = u$$

Since u = 0 and u = 1. So y = 0 and y = 1.

Thus, S_1 is mapped in to the line segment from (0,0) to (0,1).

Let S_2 be the second transformation.

Substitute v = 1 in x = v, $y = u(1 + v^2)$.

$$x = 1, y = u(1+1^2)$$

$$x = 1, y = 2u$$

Since u = 0 and u = 1. So y = 0 and y = 2.

Thus, S_2 is mapped in to the line segment from (1,0) to (1,2).

Let S_3 be the third transformation.

Substitute u = 0 in x = v, $y = u(1 + v^2)$.

$$x = v, y = u(1+1^2)$$

$$x = v, y = 0\left(1 + v^2\right)$$

$$x = v, y = 0$$

Since v = 0 and v = 1, So x = 0 and x = 1.

Thus, S_3 is mapped in to the line segment from (0,0) to (1,0).

Therefore, the image of S is the region x-axis, y-axis, line segment from (1,0) to (1,2) and the parabola given by equation $x^2 = y-1$.

Let S_4 be the fourth transformation.

Substitute
$$u = 1$$
 in $x = v$, $y = u(1 + v^2)$.

$$x = v, y = u\left(1 + 1^2\right)$$

$$x = v, y = 1(1 + v^2)$$

$$x = v, y = 1 + v^2$$

Substitute x = v in $y = 1 + v^2$,

$$y = 1 + x^2$$

$$x^2 = y - 1$$

Thus, the transformation S_4 is a parabola.

Chapter 15 Multiple Integrals 15.10 9E

Consider the triangular region S with vertices

$$(0,1),(1,1),(0,1); x = u^2, y = v$$

Find the image of the set S under the transformation:

Sketch the triangle (0,1),(1,1),(0,1) is as follows:

Let S_1 be the line segment $u = v, 0 \le u \le 1$

So, y = v = u and $x = u^2 = y^2$.

Since $0 \le u \le 1$, the image is the portion of the parabola $x = y^2, 0 \le y \le 1$.

Let S_2 be the line segment v = 1, $0 \le u \le 1$

Thus, y = v = 1 and $x = u^2$

The image is line segment $y=1, 0 \le u \le 1$

Let S_3 be the segment $u = 0, 0 \le v \le 1$

So
$$x = u^2 = 0$$
 and $y = v$

The image is the segment x = 0, $0 \le y \le 1$.

Therefore, the image of S is the region R in the first quadrant bounded by the parabola $\sqrt{x} = y$, the y - axis, and the line y = 1.

Sketch the image of S is the region R, $y = \sqrt{x}$, y = 1, x = 0

Chapter 15 Multiple Integrals 15.10 10E

S is the disk given by $u^2 + v^2 \le 1$

We divide the boundary of S into two parts S₁ and S₂ where S₁ is given by $-1 \le u \le 1$, $0 \le v \le \sqrt{1-u^2}$ and S₂ is given by $-1 \le u \le 1$, $-\sqrt{1-u^2} \le v \le 0$

Now it is given that x = au and y = bv

On S₁,
$$x = au$$
, $y = b\sqrt{1 - u^2}$

Eliminating u from these equations, we have

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

That is the image of S₁ is an elliptic arc $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Similarly on S₂, x = au, $y = -b\sqrt{1-u^2}$

On eliminating u we have $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$

That is image of S₂ is an elliptic arc $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Hence the image of S is the region R bounded by an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Chapter 15 Multiple Integrals 15.10 11E

Consider the region R in the xy-plane is

$$y = 2x - 1$$
, $y = 2x + 1$, $y = 1 - x$, $y = 3 - x$

Now need to find transformation T from uv plane to xy plane such that the rectangular region s maps to R

Where the sides of S are parallel to the u-and v-axis

Consider the rectangular region u = a, u = b, v = c, v = d

The lines are u = a, u = b parallel in uv – plane and x + y = 1, x + y = 3 are parallel in xy – plane

So one of the possibilities is u = a maps to x + y = 1, u = b maps to x + y = 3

$$1 \le u \le 3$$

Let
$$u = x + y$$

The lines are v = c, v = d parallel in uv – plane and 2x - y = -1, 2x - y = 1 are parallel in xy – plane

So one of the possibilities is v = c maps to 2x - y = -1, v = d maps to 2x - y = 1

$$-1 \le v \le 1$$

Let
$$v = 2x - y$$

Add the equations for u and v and solve for x.

$$u + v = x + y + 2x - y$$
$$u + v = 3x$$
$$u + v$$

$$x = \frac{u + v}{3}$$

Replace x with
$$\frac{u+v}{3}$$
 in $v=2x-y$.

$$v = 2\left(\frac{u+v}{3}\right) - y$$

$$v = \frac{2u+2v}{3} - y$$

$$y = \frac{2u+2v-3v}{3}$$

$$y = \frac{2u - v}{3}$$

Thus, we get
$$x = \frac{u+v}{3}$$
 and $y = \frac{2u-v}{3}, 1 \le u \le 3, -1 \le v \le 1$

That is
$$S = \{(u, v)/1 \le u \le 3, -1 \le v \le 1\}$$

Chapter 15 Multiple Integrals 15.10 12E

From the given vertices, we get the sides of the parallelogram as x + 2y = 0, x + 2y = 10, 4y - 3x = 0, and 4y - 3x = 10.

Let u = x + 2y and v = 4y - 3x. Then, we have u = 0, u = 10, v = 0 and v = 10.

Multiply both sides of u = x + 2y by 3 and add to v = 4y - 3x.

$$3u + v = 3x + 6y + 4y - 3x$$

$$3u + v = 10y$$

$$y = \frac{3u + v}{10}$$

Replace y with $\frac{3u+v}{10}$ in v=4y-3x.

$$v = 4\left(\frac{3u + v}{10}\right) - 3x$$

$$v = \frac{6u}{5} + \frac{2v}{5} - 3x$$

$$3x = \frac{6u}{5} + \frac{2v}{5} - \frac{5v}{5}$$

$$x = \frac{1}{5}(2u - v)$$

Thus, we get $x = \frac{1}{5}(2u - v)$ and $y = \frac{3u + v}{10}$, where $0 \le u \le 10$ and $0 \le v \le 10$.

Chapter 15 Multiple Integrals 15.10 13E

Let
$$u^2 = x^2 + y^2$$
 and $v = \tan^{-1} \left(\frac{y}{x} \right)$.

Then, obtain that u=1, $u=\sqrt{2}$, v=0 and $v=\pi/2$.

Take the square root on both sides of the equation.

$$\sqrt{u^2} = \sqrt{x^2 + y^2}$$
$$u = \sqrt{x^2 + y^2}$$

Since

$$v = \tan^{-1} \left(\frac{y}{x} \right)$$

$$\tan v = \frac{y}{x}$$

$$y = x \tan v$$

Replace y with $x \tan y$ in $u = \sqrt{x^2 + y^2}$.

$$u = \sqrt{x^2 + (x \tan v)^2}$$

$$u^2 = x^2 + (x \tan v)^2$$

$$= x^2 + x^2 \tan^2 v$$

$$= x^{2} + x \tan^{2} v$$
$$= x^{2} \left(1 + \tan^{2} v\right)$$

$$u^2 = x^2 \sec^2 v$$

$$\frac{u^2}{\sec^2 v} = x^2$$

$$x^2 = u^2 \cos^2 v$$

$$x = u \cos v$$

Substitute $u\cos v$ for x in $u = \sqrt{x^2 + y^2}$

$$u = \sqrt{\left(u\cos v\right)^2 + y^2}$$

$$u^2 = u^2 \cos^2 v + y^2$$

$$u^2 - u^2 \cos^2 v = y^2$$

$$u^2\left(1-\cos^2v\right)=y^2$$

$$u^2 \sin^2 v = v^2$$

$$y = u \sin v$$

Thus, $x = u \cos v$ and $y = u \sin v$, where $1 \le u \le \sqrt{2}$ and $0 \le v \le \pi/2$.

Hence the required equations are $x = u \cos v$ and $y = u \sin v$

Chapter 15 Multiple Integrals 15.10 14E

Let
$$u = xy$$
 and $v = \frac{y}{x}$.

Then, we have u = 1, u = 4, v = 1 and v = 4.

Multiply both the equations for u and v.

$$uv = (xy)\frac{y}{x}$$
$$uv = y^{2}$$
$$v = \sqrt{uv}$$

We get
$$y = \sqrt{uv}$$
.

Divide the equation u = xy by $v = \frac{y}{x}$.

$$\frac{u}{v} = \frac{xy}{\frac{y}{x}}$$

$$\frac{u}{v} = x^2$$

$$x = \sqrt{\frac{u}{v}}$$

Thus, we get $x = \sqrt{\frac{u}{v}}$ and $y = \sqrt{uv}$, where $1 \le u \le 4$ and $1 \le v \le 4$.

Chapter 15 Multiple Integrals 15.10 15E

Determine the equations of the lines of the triangle.

The line R_1 passes through the points A(0,0) and B(2,1).

So, the equation of the line R_1 is:

$$\frac{x-0}{2-0} = \frac{y-0}{1-0}$$
$$y = \frac{x}{2}$$

The line R_2 passes through the points B(2,1) and C(1,2).

So, the equation of the line R_2 is:

$$\frac{x-2}{1-2} = \frac{y-1}{2-1}$$
$$y = 3-x$$

The line R_3 passes through the points C(1,2) and A(0,0).

So, the equation of the line R_3 is:

$$\frac{x-1}{0-1} = \frac{y-2}{0-2}$$
$$y = 2x$$

The transformation x = 2u + v, y = u + 2v on R_1 gives:

$$y = \frac{x}{2}$$

$$u + 2v = \frac{1}{2}(2u + v)$$

$$v = 0 \dots (1)$$
On R

On R_2 :

$$x + y = 3$$

 $(2u + v) + (u + 2v) = 3$

$$u + v = 1$$
 (2)

And the transformation x = 2u + v, y = u + 2v on R_3 gives:

$$y = 2x$$

$$u + 2v = 2(2u + v)$$

$$u = 0 \dots (3)$$

From (1), (2) and (3) observe that the transformed region R is given by:

$$S = \{(u, v), 0 \le u \le 1, 0 \le v \le 1 - u\}$$

The jacobian of the transformation is:

$$\begin{vmatrix} \frac{\partial(x,y)}{\partial(u,v)} \end{vmatrix} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$
$$= \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix}$$
$$= 4 - 1$$
$$= 3$$

The integral is evaluated as follows:

$$\iint_{R} (x-3y) dA = \iint_{S} [2u+v-3u-6v] \frac{\partial(x,y)}{\partial(u,v)} du dv$$

$$= -\iint_{S} (u+5v) 3 du dv$$

$$= -3 \int_{0}^{1} \int_{0}^{1-u} (u+5v) dv du$$

$$= -3 \int_{0}^{1} \left[uv + \frac{5}{2}u^{2} \right]_{u=0}^{u=1-v} du$$

Further evaluate:

$$\iint_{R} (x-3y) dA = -3 \int_{0}^{1} \left(u - u^{2} + \frac{5}{2} (1-u)^{2} \right) du$$

$$= -3 \left[\frac{1}{2} u^{2} - \frac{1}{3} u^{3} - \frac{5}{6} (1-u)^{3} \right]_{0}^{1}$$

$$= -3 \left(\frac{1}{2} - \frac{1}{3} + \frac{5}{6} \right)$$

$$= -3$$

Therefore, the value of the integral is:

$$\iint\limits_{R} (x-3y) dA = -3$$

Chapter 15 Multiple Integrals 15.10 16E

Consider the integral,

$$\iint_{B} (4x + 8y) dA$$

Here, R is the parallelogram with vertices A(-1,3), B(1,-3), C(3,-1), D(1,5), and the transformation $x = \frac{1}{4}(u+v)$ and $y = \frac{1}{4}(v-3u)$.

The objective is to evaluate the above integral.

Use the change of variables in a double integral to evaluate the integral as follows:

Change of variables in a double integral:

Suppose that T is a C^1 transformation whose Jacobian is nonzero and that maps a region S in the uv – plane onto a region R in the xy – plane. Suppose that S is continuous on S and that S are type I or type II plane regions. Suppose also that S is one-to-one, except perhaps on the boundary of S. Then

$$\iint_{R} f(x,y) dA = \iint_{S} f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| dudv \dots (1)$$

Find the Jacobean of T as follows:

$$T = \frac{\partial(x, y)}{\partial(u, v)}$$
$$= \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

Find the partials of x, y with respect to u and v as follows:

$$x = \frac{1}{4}(u+v)$$

$$\frac{\partial x}{\partial u} = \frac{1}{4}$$

$$\frac{\partial x}{\partial v} = \frac{1}{4}$$

$$y = \frac{1}{4}(v-3u)$$

$$\frac{\partial y}{\partial u} = \frac{-3}{4}$$

$$\frac{\partial y}{\partial v} = \frac{1}{4}$$

Substitute these values in the Jacobean T.

$$jac(T) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$
$$= \begin{vmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{-3}{4} & \frac{1}{4} \end{vmatrix}$$

$$= \frac{1}{16} + \frac{3}{16}$$

$$= \frac{4}{16}$$

$$= \frac{1}{4}$$

Thus, the required value is $jac(T) = \frac{1}{4}$.

Consider the region R is the parallelogram with vertices

$$A(-1,3), B(1,-3), C(3,-1)$$
 and $D(1,5)$

Sketch the rough graph of the parallelogram using above vertices as follows:

The equation of the straight line passing through $P(x_1,y_1)$ and $Q(x_2,y_2)$ is

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$$

The equation of the straight line L_1 passing through A(-1,3), B(1,-3) is,

$$\frac{x+1}{1+1} = \frac{y-3}{-3-3}$$

$$\frac{x+1}{2} = \frac{y-3}{-6}$$

$$-3(x+1) = y-3$$

$$-3x-3 = y-3$$

$$3x + y = 0$$

The equation of the straight line L_2 passing through B(1,-3),C(3,-1) is

$$\frac{x-1}{3-1} = \frac{y+3}{-1+3}$$

$$\frac{x-1}{2} = \frac{y+3}{2}$$

$$x-1 = y+3$$

$$x = y+4$$

x-y=4

The equation of the straight line L_3 passing through C(3,-1) and D(1,5) is,

$$\frac{x-1}{3-1} = \frac{y-5}{-1-5}$$

$$\frac{x-1}{2} = \frac{y-5}{-6}$$

$$-3(x-1) = y-5$$

$$-3x+3 = y-5$$

$$3x + y = 8$$

The equation of the straight line L_4 passing through A(-1,3) and D(1,5) is,

$$\frac{x+1}{1+1} = \frac{y-3}{5-3}$$

$$\frac{x+1}{2} = \frac{y-3}{2}$$

$$x+1 = y-3$$

$$x-y = -4$$

Now calculating u, v from x, y as follows:

$$x = \frac{1}{4}(u+v)$$

$$4x = u+v \qquad(1)$$

$$y = \frac{1}{4}(v-3u)$$

$$4y = v-3u \qquad(2)$$

Subtracting equation (2) from equation (1),

$$4x = u + v$$

$$4y = -3u + v$$

$$4x - 4y = 4u$$

$$x - y = u$$
.....(3)

Now. $(1) \times 3 + (2)$

$$12x = 3u + 3v$$

$$4y = -3u + v$$

$$12x + 4y = 4v$$

$$3x + y = v$$
.....(4)

Substitute the values of u = x - y and v = 3x + y in the equations 3x + y = 0, x - y = 4, 3x + y = 8, and x - y = -4.

That implies,

$$v = 0, u = 4, v = 8, \text{ and } u = -4$$

Thus, the region is,

$$R = \{(u, v) \mid -4 \le u \le 4, 0 \le v \le 8\}$$

Convert the function f(x,y) = 4x + 8y in terms of u and v as follows:

$$4x + 8y = 4\left(\frac{1}{4}(u+v)\right) + 8\left(\frac{1}{4}(v-3u)\right)$$
$$= u + v + 2(v-3u)$$
$$= u + v + 2v - 6u$$
$$= 3v - 5u$$

Substitute these values in the equation (I).

$$\iint_{R} (4x + 8y) dA = \iint_{S} (3v - 5u) \left| \frac{\partial(x, y)}{\partial(u, v)} \right| du \, dv$$

$$= \iint_{0}^{8} \frac{1}{4} (3v - 5u) \, du \, dv$$

$$= \iint_{0}^{8} \frac{1}{4} \left(3vu - 5 \left[\frac{u^{2}}{2} \right] \right)_{-4}^{4} \, dv$$

$$= \frac{1}{4} \iint_{0}^{8} \left[(12v + 12v) - \frac{5}{2} (16 - 16) \right] dv$$

$$= \frac{24}{4} \iint_{0}^{8} (v) \, dv$$

$$= 6\left(\frac{v^2}{2}\right)_0^8$$
$$= 3(8^2 - 0)$$
$$= 3(64)$$

Thus, the required value is, $\iint_{B} (4x + 8y) dA = \boxed{192}.$

Chapter 15 Multiple Integrals 15.10 17E

$$x = 2u, y = 3v$$

$$\frac{\partial x}{\partial u} = 2, \frac{\partial x}{\partial v} = 0, \frac{\partial y}{\partial u} = 0, \frac{\partial y}{\partial v} = 3$$
So
$$\frac{\partial (x, y)}{\partial (u, v)} = \begin{vmatrix} 2 & 0 \\ 0 & 3 \end{vmatrix}$$

$$= 6 - 0$$

$$= 6$$

Now R is region bounded by the ellipse

$$9x^2 + 4y^2 = 36$$
, thus $36u^2 + 36v^2 = 36$
 $\Rightarrow u^2 + v^2 = 1$

And
$$S = \{(u, v) / -1 \le v \le 1, -\sqrt{1 - v^2} \le u \le \sqrt{1 - v^2} \}$$

$$\iint_{R} x^{2} dA = \int_{-1}^{1} \int_{-\sqrt{1-v^{2}}}^{\sqrt{1-v^{2}}} 4u^{2}.6.du dv$$

Let $u = r \cos \theta$, and $v = r \sin \theta$, then dud $v = r drd \theta$.

$$So, \iint_{\mathbb{R}} x^{2} dA = 24 \int_{-1-\sqrt{1-v^{2}}}^{1} \int_{-\sqrt{1-v^{2}}}^{\sqrt{1-v^{2}}} u^{2} du \, dv = 24 \int_{\theta=0}^{2\pi} \int_{r=0}^{1} r^{2} \cos^{2}\theta . r dr \, d\theta$$

$$= 24 \int_{\theta=0}^{2\pi} \int_{r=0}^{1} r^{3} \cos^{2}\theta \, dr \, d\theta = 24 \int_{0}^{2\pi} \left[\frac{r^{4}}{4} \right]_{0}^{1} \cos^{2}\theta \, d\theta$$

$$= 6 \int_{0}^{2\pi} \cos^{2}\theta \, d\theta = 3 \int_{0}^{2\pi} (1 + \cos 2\theta) \, d\theta$$

$$= 3 \left[\theta + \frac{\sin 2\theta}{2} \right]_{0}^{2\pi} = 3(2\pi - 0) = 6\pi$$

Chapter 15 Multiple Integrals 15.10 18E

The region R is bounded by ellipse $x^2 - xy + y^2 = 2$

The given transformation is

$$x = \sqrt{2u} - \sqrt{\frac{2}{3}v}$$
$$y = \sqrt{2u} + \sqrt{\frac{2}{3}v}$$

On using this transformation we find that the image of the region R is

$$\left(\sqrt{2}u - \sqrt{\frac{2}{3}v}\right)^2 - \left(\sqrt{2}u - \sqrt{\frac{2}{3}v}\right)\left(\sqrt{2}u + \sqrt{\frac{2}{3}v}\right) + \left(\sqrt{2}u + \sqrt{\frac{2}{3}v}\right)^2 = 2$$
i.e.
$$2u^2 + \frac{2}{3}v^2 - \frac{u}{\sqrt{3}}uv - 2u^2 + \frac{2}{3}v^2 + 2u^2 + \frac{2}{3}u^2 + \frac{u}{3}uv = 2$$

i.e.
$$2u^2 + 2v^2 = 2$$

i.e.
$$u^2 + v^2 = 1$$

Which is a circle with center at (0, 0) and radius 1.

Now
$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$
$$= \begin{vmatrix} \sqrt{2} & -\sqrt{2/3} \\ \sqrt{2} & \sqrt{2/3} \end{vmatrix}$$
$$= \frac{2}{\sqrt{3}} + \frac{2}{\sqrt{3}}$$
$$= \frac{4}{\sqrt{3}}$$

Then by theorem of change of variables in double integrals:

$$\iint_{\mathbb{R}} \left(x^2 - xy + y^2 \right) dA = \iint_{\mathbb{R}} 2\left(u^2 + v^2 \right) \frac{\partial \left(x, y \right)}{\partial \left(u, v \right)} dS$$

Where $S = \{(u, v): u^2 + v^2 \le 1\}$

On using polar co - ordinates we have

$$2\iint_{S} (u^{2} + v^{2}) \cdot \frac{4}{\sqrt{3}} dS$$

$$= \frac{8}{\sqrt{3}} \int_{0}^{2\pi} \int_{0}^{1} r^{2} r dr d\theta$$

$$= \frac{8}{\sqrt{3}} \left[\frac{r^{4}}{4} \right]_{0}^{1} (\theta)_{0}^{2\pi}$$

$$= \frac{8}{\sqrt{3}} \left[\frac{r^{4}}{4} \right]_{0}^{1} (\theta)_{0}^{2\pi}$$

$$= \frac{8}{\sqrt{3}} \left(\frac{1}{4} \right) (2\pi)$$

$$= \frac{4\pi}{\sqrt{3}}$$

Hence $\iint_{R} \left(x^2 - xy + y^2 \right) dA = \boxed{\frac{4\pi}{\sqrt{3}}}$

Chapter 15 Multiple Integrals 15.10 19E

Consider the double integral $\iint_R xy \, dA$ where the region in the first quadrant bounded by the lines y=x,y=3x, and the hyperbolas xy=1,xy=3.

The objective is to find the double integral $\iint_R xy \, dA$ in the given region by using transformations $x = \frac{u}{v}$ and y = v.

The graph of four equations in the first quadrant is as shown below.

To transform these four equations in terms of u and v, replace each x and y with their transformation equations $x = \frac{u}{v}$ and y = v.

First, transform equation y = x,

$$y = x$$

$$v = \frac{u}{v}$$

$$v^2 = u$$

$$v = \pm \sqrt{u}$$

Next transform equation y = 3x,

$$y = 3x$$

$$v = 3\frac{u}{v}$$

$$v^2 = 3u$$

$$v = \pm \sqrt{3u}$$

Now transform the third equation xy = 1

$$xy = 1$$

$$\left(\frac{u}{v}\right)v=1$$

$$u = 1$$

Now transform the third equation xy = 3

$$xy = 3$$

$$\left(\frac{u}{v}\right)v = 3$$

$$u = 3$$

The region S in the uv- plane is bound by the equations u=1, u=3, $v=\sqrt{u}$ and $v=\sqrt{3u}$ i.e. $S=\left\{ \!\! \left\{ u,v \right\} \; \middle| \; 1 \leq u \leq 3, \; \sqrt{u} \leq v \leq \sqrt{3u} \; \right\}$

The region is as shown below.

The value of dA using Jacobian is,

$$dA = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} du \, dv$$
$$= \begin{vmatrix} \frac{1}{v} & -\frac{u}{v^2} \\ 0 & 1 \end{vmatrix} du \, dv$$
$$= \frac{1}{v} du \, dv$$

Hence, the value of dA is $dA = \frac{1}{v} du dv$.

The value of the integral $\iint_{\mathbb{R}} xy \, dA$ is,

$$\iint_{R} xydA = \int_{1}^{3} \int_{\sqrt{u}}^{\sqrt{3u}} \left(\frac{u}{v}\right)(v) \left(\frac{1}{v}\right) dv du$$

$$= \int_{1}^{3} \int_{\sqrt{u}}^{\sqrt{3u}} \frac{u}{v} dv du$$

$$= \int_{1}^{3} u \left[\ln(v)\right]_{v=\sqrt{u}}^{v=\sqrt{3u}} du$$

$$= \int_{1}^{3} u \left[\ln(\sqrt{3u}) - \ln(\sqrt{u})\right] du$$

$$= \frac{1}{2} \left[\int_{1}^{3} u \cdot \ln(3u) du - \int_{1}^{3} (u) \cdot \ln(u) du\right] \qquad \left(\text{Since, } \ln(\sqrt{x}) = \frac{1}{2} \ln(x)\right)$$

$$= \frac{1}{2} \left[\frac{u^{2}}{2} \ln(3u) - \int_{2}^{u} \frac{u^{2}}{2} \cdot \frac{1}{u} du\right]_{u=1}^{u=3} - \left[\frac{u^{2}}{2} \ln(u) - \int_{2}^{u} \frac{u^{2}}{u} du\right]_{u=1}^{u=3}$$

$$= \frac{1}{2} \left[\frac{u^{2}}{2} \ln(3u) - \frac{u^{2}}{4} - \frac{u^{2}}{2} \ln(u) + \frac{u^{2}}{4}\right]_{u=1}^{u=3}$$

$$= \frac{1}{2} \left[\frac{u^{2}}{2} \ln(3u) - \frac{u^{2}}{2} \ln(u)\right]_{u=1}^{u=3}$$

$$= \frac{1}{4} \left[u^{2} (\ln(3u) - \ln(u))\right]_{u=1}^{u=3}$$

$$= \frac{1}{4} \left[u^{2} \ln(3)\right]_{u=1}^{u=3} \qquad \left(\text{Since, } \ln(3u) - \ln(u) = \ln\left(\frac{3u}{u}\right)\right)$$

$$= \ln(3)$$

$$= \frac{1}{4} (8) \ln(3)$$

$$= 2 \ln(3)$$

Hence, the value of the integral is $\iint_{R} xy \, dA = 2 \ln(3)$

Chapter 15 Multiple Integrals 15.10 20E

Consider the following region:

$$\iint_{B} y^{2} dA$$

Here, R is the region bounded by the curves.

$$xy = 1, xy = 2, xy^2 = 1, xy^2 = 2; u = xy, \text{ and } v = xy^2$$

Evaluate the region bounded by the given curves using a graphing calculator.

Sketch the graph of the given curves as shown below:

Observe the above figure; the required region is blue in colour.

Since
$$u = xy$$
, $\Rightarrow y = \frac{u}{x} \Rightarrow y^2 = \frac{u^2}{x^2}$.

Substitute
$$y^2 = \frac{u^2}{x^2}$$
 in $v = xy^2$ to get $x = \frac{u^2}{v}$.

Now substitute
$$x = \frac{u^2}{v}$$
 in $y = \frac{u}{x}$, to get $y = \frac{v}{u}$.

Therefore,
$$y = \frac{v}{u}, x = \frac{u^2}{v}$$
.

Differentiate y with respect to u and v, to get the following result:

$$\frac{\partial y}{\partial u} = -\frac{v}{u^2}$$
, and $\frac{\partial y}{\partial v} = \frac{1}{u}$

Differentiate x with respect to u and v, to get the following result:

$$\frac{\partial x}{\partial u} = \frac{2u}{v}$$
, and $\frac{\partial x}{\partial v} = -\frac{u^2}{v^2}$

Observe the given curves x and y functions in u and v.

Compute the Jacobian as follows:

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial x}{\partial v} \end{vmatrix}$$

$$= \begin{vmatrix} \frac{2u}{v} & -\frac{u^2}{v^2} \\ -\frac{v}{u^2} & \frac{1}{u} \end{vmatrix}$$

$$= \left(\frac{2u}{v}\right) \left(\frac{1}{u}\right) - \left(-\frac{u^2}{v^2}\right) \left(-\frac{v}{u^2}\right)$$

$$= \frac{2}{v} - \frac{1}{v}$$

$$= \frac{1}{v}$$

The region
$$R$$
 is the region with vertices $(1,1),(2,1),\left(4,\frac{1}{2}\right)$, and $\left(\frac{1}{2},2\right)$.

Therefore, the region of R is calculated as follows:

$$\iint_{R} y^{2} dA = \int_{1}^{2} \int_{1}^{2} \frac{v^{2}}{u^{2}} \left| \frac{\partial(x, y)}{\partial(u, v)} \right| du dv$$

$$= \int_{1}^{2} \int_{1}^{2} \frac{v^{2}}{u^{2}} \left(\frac{1}{v} \right) du dv$$

$$= \int_{1}^{2} \int_{1}^{2} \frac{v}{u^{2}} du dv$$

$$= \int_{1}^{2} v \left[-\frac{1}{2} + \frac{1}{1} \right] dv$$

$$= \frac{1}{2} \int_{1}^{2} v dv$$

$$= \frac{1}{2} \left[\frac{v^{2}}{2} \right]_{1}^{2}$$

$$= \frac{1}{2} \left[\frac{4}{2} - \frac{1}{2} \right]$$

$$= \frac{1}{2} \left[\frac{3}{2} \right]$$

$$= \left[\frac{3}{4} \right]$$

Chapter 15 Multiple Integrals 15.10 21E

(a)

Consider the solid E which is enclosed by ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

The volume of this solid is given by the following triple integral

Use the transformation

$$x = au, y = bv, z = cw$$

The ellipsoid $E_{\scriptscriptstyle xyz}$ in xyz space transform to $E_{\scriptscriptstyle uvw}$ in uvw space

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

$$\frac{(au)^2}{a^2} + \frac{(bv)^2}{b^2} + \frac{(cw)^2}{c^2} = 1$$

$$u^2 + v^2 + w^2 = 1$$

So E_{ww} is a solid enclosed by sphere with radius is 1.

$$\iiint_{E_{yyz}} dV = \iiint_{E_{yyz}} dxdydz$$

$$= \iiint_{E_{yyz}} \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| dudvdw$$

$$\left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$$

$$= \begin{vmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{vmatrix}$$

$$= abc$$

$$\left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| = abc \qquad(1)$$

Using this Jacobean value to find the integral

$$\iiint_{E_{xyz}} dV = \iiint_{E_{wv}} \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| dudvdw$$

$$= \iiint_{E_{yvw}} abcdudvdw$$

$$= abc \iiint_{E_{yvw}} dudvdw$$

$$= (abc) \times \left(\text{volume of the sphere u}^2 + v^2 + w^2 = 1 \right)$$

$$= \left(abc \right) \times \left(\frac{4}{3} \pi \left(1 \right)^3 \right)$$

$$= \frac{4}{3} \pi abc$$

The earth is approximately ellipsoid shape with

$$a = b = 6378km$$
 and $c = 6356km$

The volume of earth is approximately from result of part (a) is

$$V = \frac{4\pi abc}{3}$$

$$\approx \frac{4\pi (6378)(6378)(6356)}{3}$$

$$\approx \frac{4\pi (258554986704)}{3}$$

$$\approx \boxed{1.0830 \times 10^{12}}$$

Thus, we get the volume of the earth as $1.0830 \times 10^{12} \text{km}^3$.

It is known that the moment of inertia of a solid about the z axis is given by

$$I_z = \iiint_E (x^2 + y^2) \rho(x, y, z) dV$$

But it is given that the solid has constant density k

$$I_{z} = \iiint_{E_{xyz}} (x^{2} + y^{2}) \rho(x, y, z) dV$$

$$= \iiint_{E_{xyz}} (x^{2} + y^{2}) k \, dx dy dz$$

$$= k \iiint_{E_{xyz}} ((au)^{2} + (bv)^{2}) \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| du dv dw$$

$$= k \iiint_{E} (a^{2}u^{2} + b^{2}v^{2}) (abc) \, du dv dw \qquad \text{(from equation (1))}$$

Since boundary of E_{ww} is a sphere we use spherical coordinates

$$E_{uvw} = \left\{ \left(\rho, \theta, \phi \right) \mid 0 \le \rho \le 1, 0 \le \theta \le 2\pi, 0 \le \phi \le \pi \right\}$$

 $u = \rho \sin \phi \cos \theta, v = \rho \sin \phi \sin \theta, w = \rho \cos \phi$

Now calculate above triple integral using spherical coordinates, that is coordinates (u, v, w)

convert into (ρ,θ,ϕ) so in this case use the Jacobean $\left|\frac{\partial(u,v,w)}{\partial(\rho,\theta,\phi)}\right|$

$$k \iiint_{E_{unv}} (a^2u^2 + b^2v^2)(abc) dudvdw$$

$$k(abc)\int_{0}^{1}\int_{0}^{2\pi}\int_{0}^{\pi}\left(a^{2}\left(\rho\sin\phi\cos\theta\right)^{2}+b^{2}\left(\rho\sin\phi\sin\theta\right)^{2}\right)\left|\frac{\partial(u,v,w)}{\partial(\rho,\theta,\phi)}\right|d\phi d\theta d\rho$$

$$k(abc) \int_{0}^{1} \int_{0}^{2\pi} \int_{0}^{\pi} (\rho^{2} \sin^{2} \phi) (a^{2} \cos^{2} \theta + b^{2} \sin^{2} \theta) (\rho^{2} \sin \phi) d\phi d\theta d\rho$$

$$k(abc) \int_{0}^{1} \int_{0}^{2\pi} \int_{0}^{\pi} \left(\rho^{4} \sin^{3} \phi\right) \left(a^{2} \cos^{2} \theta + b^{2} \sin^{2} \theta\right) d\phi d\theta d\rho$$

$$k(abc)\int_{0}^{1} \rho^{4} d\rho \int_{0}^{2\pi} \left(a^{2}\cos^{2}\theta + b^{2}\sin^{2}\theta\right) d\theta \int_{0}^{\pi} \sin^{3}\phi d\phi$$

These three limits are independent so calculate separate integrals and then product all the values

$$\int_{0}^{1} \rho^{4} d\rho = \left[\frac{\rho^{5}}{5}\right]_{0}^{1} = \frac{1}{5} \qquad \dots (2)$$

$$\int_{0}^{2\pi} \left(a^{2} \cos^{2} \theta + b^{2} \sin^{2} \theta\right) d\theta = \int_{0}^{2\pi} \left(a^{2} \left(\frac{1 + \cos 2\theta}{2}\right) + b^{2} \left(\frac{1 - \cos 2\theta}{2}\right)\right) d\theta$$

$$= \int_{0}^{2\pi} a^{2} \left[\frac{\theta}{2} + \frac{1}{2} \left(\frac{\sin 2\theta}{2}\right)\right] + b^{2} \left[\frac{\theta}{2} - \frac{1}{2} \left(\frac{\sin 2\theta}{2}\right)\right]$$

$$= a^{2} \left[\frac{2\pi}{2} + \frac{1}{2} \left(\frac{\sin 2(2\pi)}{2}\right) - \frac{0}{2} - \frac{1}{2} \left(\frac{\sin 2(0)}{2}\right)\right]$$

$$+ b^{2} \left[\frac{2\pi}{2} - \frac{1}{2} \left(\frac{\sin 2(2\pi)}{2}\right) - \frac{0}{2} + \frac{1}{2} \left(\frac{\sin 2(0)}{2}\right)\right]$$

$$= \pi \left(a^{2} + b^{2}\right)$$

$$\int_{0}^{2\pi} \left(a^{2} \cos^{2} \theta + b^{2} \sin^{2} \theta\right) d\theta = \pi \left(a^{2} + b^{2}\right) \qquad \dots (3)$$

Now consider the integral on that variable ϕ

$$\int_{0}^{\pi} \sin^{3} \phi d\phi = \int_{0}^{\pi} \left(\frac{3 \sin \phi - \sin 3\phi}{4} \right) d\phi$$

$$= \frac{3}{4} \left[-\cos \phi \right]_{0}^{\pi} - \frac{1}{4} \left[\frac{-\cos 3\phi}{3} \right]_{0}^{\pi}$$

$$= \frac{3}{4} \left[-\cos \pi + \cos 0 \right] - \frac{1}{4} \left[\frac{-\cos 3\pi}{3} + \frac{\cos 3(0)}{3} \right]$$

$$= \frac{3}{2} - \frac{1}{6}$$

$$= \frac{4}{3}$$

$$\int_{0}^{\pi} \sin^{3} \phi d\phi = \frac{4}{3} \qquad \dots (4)$$

From the equations (2),(3) and (4)

$$k(abc)\int_{0}^{1} \rho^{4} d\rho \int_{0}^{2\pi} \left(a^{2} \cos^{2} \theta + b^{2} \sin^{2} \theta\right) d\theta \int_{0}^{\pi} \sin^{3} \phi d\phi$$
$$\left(k(abc)\right) \left(\frac{1}{5}\right) \left(\pi \left(a^{2} + b^{2}\right)\right) \left(\frac{4}{3}\right)$$
$$\frac{4}{15} \cdot \left(\pi kabc\right) \cdot \left(a^{2} + b^{2}\right)$$

Therefore, the moment of inertia about the z axis is $\frac{4}{15}\pi(a^2+b^2)abck$.

Chapter 15 Multiple Integrals 15.10 22E

Use a change of variables to find an easy integral for calculating the area.

The change of variables can be used to calculate a double integral as follows:

$$\iint_{\mathbb{R}} f(x,y)dA = \iint_{\mathbb{S}} f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| dudv \quad \dots \quad (1)$$

Where $\frac{\partial(x,y)}{\partial(u,v)}$ is the Jacobin of the transformation, calculable by

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$
$$= \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$$

The equations the problem provides suggest an easy transformation to u and v, as follows:

$$u = xy$$

$$v = xv^{1.4}$$

This is a transformation from the xy-plane to the uv-plane, however. We want the inverse transformation: the transformation from the xy-plane to the uv-plane, which we hope will make the region easier to integrate. To find the inverse transformation, solve these equations to get them in terms of x and y.

First solve for x in the first equation:

$$x = \frac{u}{v} \quad \dots \quad (2)$$

Plug this into the equation for ν :

$$v = \frac{u}{y}y^{1.4}$$

$$v = uy^{0.4}$$

The decimal .4 is the same as the fraction 2/5; we rewrite the exponent this way so we can solve for y by taking both sides to the power of 5/2:

$$v = uy^{2/5}$$

$$y^{2/5} = \frac{v}{u}$$

$$y = \left(\frac{v}{u}\right)^{5/2}$$

Now plug this back into (2):

$$x = \frac{u}{\left(\frac{v}{u}\right)^{5/2}}$$

$$= u \left(\frac{u}{v}\right)^{5/2}$$

$$= \frac{u^{7/2}}{v^{5/2}}$$

We now have the desired transformation equations,

$$x(u,v) = \frac{u^{7/2}}{v^{5/2}}$$

$$y(u,v) = \frac{v^{5/2}}{u^{5/2}}$$

We'll need the partial derivatives of x(u,v) and y(u,v) to plug into (1). Hold v constant and take the derivatives in terms of u:

$$\frac{\partial x}{\partial u} = \frac{7u^{5/2}}{2v^{5/2}}$$

$$\frac{\partial y}{\partial u} = -\frac{5v^{5/2}}{2u^{7/2}}$$

Now hold u constant and take the derivative in terms of v:

$$\frac{\partial x}{\partial v} = -\frac{5u^{7/2}}{2v^{7/2}}$$

$$\frac{1}{\partial v} = -\frac{1}{2v^{7/2}}$$

$$\frac{\partial y}{\partial v} = \frac{5v^{3/2}}{2u^{5/2}}$$

Use the partial derivatives to calculate the Jacobian:

$$\frac{\partial(x,y)}{\partial(u,v)} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$$

$$= \left(\frac{7u^{5/2}}{2v^{5/2}}\right) \left(\frac{5v^{3/2}}{2u^{5/2}}\right) - \left(-\frac{5u^{7/2}}{2v^{7/2}}\right) \left(-\frac{5v^{5/2}}{2u^{7/2}}\right)$$

$$= \frac{35}{4v} - \frac{25}{4v}$$

$$= \frac{5}{2v}$$

Since we are trying to find the area, the function f we are double-integrating equals 1. The limits of integration are given in the problem; since xy ranges from a to b, now that we have u = xy, the limits of u are a and b. Similarly, since $xy^{1.4}$ is given as ranging from c to d, the limits of v are c and d.

We now plug into the transformation integral given in (1):

$$\iint_{S} f(x(u,v), y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv = \int_{c}^{d} \int_{a}^{b} (1) \left(\frac{5}{2v} \right) du dv$$
$$= \int_{c}^{d} \int_{a}^{b} \left(\frac{5}{2v} \right) du dv$$

Integrate in terms of u:

$$\int_{c}^{d} \int_{a}^{b} \left(\frac{5}{2v}\right) du dv = \int_{c}^{d} \left(\frac{5u}{2v}\right) \Big|_{a}^{b} dv$$
$$= \int_{c}^{d} \left(\frac{5b - 5a}{2v}\right) dv$$
$$= \frac{5b - 5a}{2} \int_{c}^{d} \left(\frac{1}{v}\right) dv$$

Integrate in terms of v:

$$\frac{5b - 5a}{2} \int_{c}^{d} \left(\frac{1}{v}\right) dv = \frac{5b - 5a}{2} (\ln v) \Big|_{c}^{d}$$
$$= \left[\frac{5b - 5a}{2} \left(\ln d - \ln c\right)\right]$$

Chapter 15 Multiple Integrals 15.10 23E

Consider the integral,

$$\iint_{R} \frac{x-2y}{3x-y} dA$$

As the integrand $\frac{x-2y}{3x-y}$ is not easily integrable, make a change of variables.

Let us use the transformations.

$$u = x - 2y , \quad v = 3x - y$$

These equations define a transformation T^{-1} from xy – plane to the uv – plane.

Recall the theorem change of variables in a double integral,

If a transformation is defined from uv-plane onto xy- plane and the Jacobian is non-zero then

$$\iint_{R} f(x,y) dA = \iint_{R} f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| dudv \dots (1)$$

So, the transformation from uv-plane to xy-plane is

$$x = \frac{2v - u}{5}, \quad y = \frac{3u - v}{-5}$$
$$= \frac{v - 3u}{5}$$

Differentiate partially x, y with respect to u, v.

$$\frac{\partial x}{\partial u} = \frac{-1}{5}$$
, $\frac{\partial x}{\partial v} = \frac{2}{5}$, $\frac{\partial y}{\partial u} = \frac{-3}{5}$, $\frac{\partial y}{\partial v} = \frac{1}{5}$

Find the Jacobian.

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{-1}{5} & \frac{2}{5} \\ -\frac{3}{5} & \frac{1}{5} \end{vmatrix}$$

$$=\frac{-1}{25}+\frac{6}{25}$$

$$=\frac{5}{25}$$

$$=\frac{1}{5}$$

Change the limits of integration.

The region R is given by x-2y=0, x-2y=4, 3x-y=1 and 3x-y=8

After applying the transformation, the region is

$$u = 0, u = 4, v = 1, v = 8$$

Sketch the region bounded by this lines.

Use (1) to evaluate the integral.

$$\iint_{R} \frac{x - 2y}{3x - y} dA = \int_{1}^{8} \int_{0}^{4} \frac{u}{v} \cdot \frac{1}{5} du \, dv$$

$$= \frac{1}{5} \int_{1}^{8} \frac{1}{v} dv \int_{0}^{4} u \, du$$

$$= \frac{1}{5} \cdot \ln|v| \int_{1}^{8} \frac{u^{2}}{2} \int_{0}^{4}$$

$$= \frac{1}{5} [\ln 8 - \ln 1] \cdot \frac{16}{2}$$

$$= \frac{8}{5} (\ln 8 - 0)$$

$$= \boxed{\frac{8}{5} \ln 8}$$

Chapter 15 Multiple Integrals 15.10 24E

Consider the following integral:

$$\iint_{B} (x+y)e^{x^2-y^2} dA$$

Here, R is the region bounded by equations x-y=0, x-y=2, x+y=0, and x+y=3.

The region R is as shown below:

Let
$$u = x - y$$
 and $v = x + y$

$$x(u,v) = \frac{u+v}{2}$$
 and $y(u,v) = \frac{v-u}{2}$

The limits of new region is,

$$T = \{(u, v) / 0 \le u \le 2, 0 \le v \le 3\}$$

To find the value of the integral, use the following formula:

$$\iint_{R} f(x,y) dA = \iint_{T} f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| dudv \qquad \dots (1)$$

Find the partial derivatives as follows:

$$x_{u} = \frac{\partial}{\partial u} \left(\frac{u+v}{2} \right)$$

$$= \frac{1}{2}$$

$$x_{v} = \frac{\partial}{\partial v} \left(\frac{u+v}{2} \right)$$

$$= \frac{1}{2}$$

$$y_{u} = \frac{\partial}{\partial u} \left[\frac{v-u}{2} \right]$$

$$= -\frac{1}{2}$$

$$y_{v} = \frac{1}{2}$$

The Jacobian of T:

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} x_u & x_v \\ y_u & y_v \end{vmatrix}$$

$$= x_u y_v - x_v y_u$$

$$= \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) - \left(\frac{1}{2}\right) \left(\frac{-1}{2}\right)$$

$$= \frac{1}{4} + \frac{1}{4}$$

$$= \frac{1}{2}$$

Evaluate the integral is as follows:

$$\iint_{R} (x+y)e^{x^{2}-y^{2}}dA = \iint_{T} \left[\frac{u+v}{2} + \frac{v-u}{2} \right] e^{uv} \left(\frac{1}{2} \right) du dv \qquad \text{use (1)}$$

$$= \frac{1}{2} \int_{0}^{3} \int_{0}^{2} v e^{uv} du dv$$

$$= \frac{1}{2} \int_{0}^{3} v \left(\frac{e^{uv}}{v} \right)_{0}^{2} dv$$

$$= \frac{1}{2} \int_{0}^{3} \left(e^{2v} - 1 \right) dv$$

$$= \frac{1}{2} \left(\frac{e^{2v}}{2} - v \right)_{0}^{3}$$

$$= \frac{1}{2} \left(\frac{e^{6}}{2} - 3 - \frac{1}{2} \right)$$

$$= \frac{1}{4} \left(e^{6} - 7 \right)$$

Therefore, the value of the integral is $\left|\frac{1}{4}(e^6-7)\right|$

$$\frac{1}{4}(e^6-7)$$

Chapter 15 Multiple Integrals 15.10 25E

Evaluate
$$\iint_{R} \cos\left(\frac{y-x}{y+x}\right) dA$$

Since it is not easy to integrate $\cos\left(\frac{y-x}{y+x}\right)$, we make a change of variables suggested by the

form of this function

$$u = x + y$$
, $v = y - x$ (1)

These equations define a transformation T^{-1} from the xy-plane to the uv-plane.

Change of variable in a double integral: Suppose that T is a C^1 transformation whose jacobian is nonzero and that maps a region S in the uv-plane onto a region R in the xy-plane. Suppose that f is continuous on R and that R and S are type I and type II regions. Suppose also that T is one-to-one, except on the boundary of S

Then
$$\iint_R f(x,y) dA = \iint_S f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right|$$

It is obtained by solving (I) for x and y

$$u+v=2y, u-v=2x$$

Then
$$y = \frac{1}{2}(u+v)$$
, $x = \frac{1}{2}(u-v)$

And then the Jacobian of T is:

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

$$=\begin{vmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{vmatrix}$$

$$=\frac{1}{4}+\frac{1}{4}$$

$$=\frac{1}{2}$$

The given region R is a trapezoidal with vertices (1, 0), (2, 0), (0, 2), (0, 1)

The region R is a trapezoidal with vertices (1, 0), (2, 0), (0, 2), (0, 1) shown in the below

To find the region S (the image of R) in uv – plane corresponding is R, we see that the sides of R lie on the lines: x = 0, y = 0, y = 1 - x, y = 2 - x

Then on using (I) we find that the image lines in uv – plane are:

$$u = v$$
, $u = -v$, $u = 1$. $u = 2$

Thus
$$S = \{(u, v): 1 \le u \le 2, -u \le v \le u\}$$

Then using the theorem of change of variables in double integral,

$$\iint_{R} \cos\left(\frac{y-x}{y+x}\right) dA = \iint_{S} \cos\left(\frac{v}{u}\right) \left|\frac{\partial(x,y)}{\partial(u,v)}\right| du \, dv$$

$$= \int_{1-u}^{2} \cos\left(\frac{v}{u}\right) \cdot \frac{1}{2} \, dv \, du$$

$$= \frac{1}{2} \int_{1}^{2} \left[u \sin\left(\frac{v}{u}\right)\right]_{v=-u}^{v=u} \, du$$

$$= \frac{1}{2} \int_{1}^{2} \left[u \sin(1) - u \sin(-1)\right] dv$$

$$= \frac{1}{2} \int_{1}^{2} \left[u \sin(1) + u \sin(1)\right] du$$

$$= \sin 1 \int_{1}^{2} u \, du$$

$$= \sin 1 \left(\frac{u^{2}}{2}\right)_{1}^{2}$$

$$= \sin(1) \left[2 - \frac{1}{2}\right]$$

$$= \frac{3}{2} \sin 1$$
Hence
$$\iint_{R} \cos\left(\frac{y-x}{y+x}\right) dA = \frac{3}{2} \sin 1$$

Chapter 15 Multiple Integrals 15.10 26E

We need to integrate $\sin(9x^2 + 4y^2)$, then we make transformation of the

form
$$x = \frac{u}{3}$$
 and $y = \frac{v}{2}$

Then u = 3x and v = 2y

And then
$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

$$= \begin{vmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{2} \end{vmatrix}$$

$$= \frac{1}{6}$$

The given region R is the region in first quadrant bounded by ellipse $9x^2 + 4y^2 = 1$ To find the region S (the image of R) in uv - plane corresponding to R, we see that S is the region of circle $u^2 + v^2 = 1$ in the first quadrant.

In polar co - ordinates the region S is

$$S = \left\{ (r, \theta): \ 0 \le r \le 1, \ 0 \le \theta \le \frac{\pi}{2} \right\}$$

Then using the theorem of change of variables in double integral,

$$\iint_{\mathbb{R}} \sin(9x^2 + 4y^2) dA = \iint_{\mathbb{S}} \sin(u^2 + v^2) \frac{\partial(x, y)}{\partial(u, v)} du dv$$

$$= \frac{1}{6} \int_{0}^{\pi/2} \int_{0}^{1} \sin(r^2) r dr d\theta$$

$$= \frac{1}{6} \int_{0}^{\pi/2} d\theta \int_{0}^{1} r \sin(r^2) dr$$

$$= \frac{1}{6} (\theta)_{0}^{\pi/2} \left[\frac{-1}{2} \cos r^2 \right]_{0}^{1}$$

$$= \frac{1}{6} \left(\frac{\pi}{2} \right) \left[\frac{-1}{2} \cos 1 + \frac{1}{2} \cos 0 \right]$$

$$= \frac{\pi}{12} \left(-\frac{1}{2} \cos 1 + \frac{1}{2} \right)$$

$$= \frac{\pi}{24} (1 - \cos 1)$$

Hence
$$\iint_{\mathbb{R}} \sin(9x^2 + 4y^2) dA = \frac{\pi}{24} (1 - \cos 1)$$

Chapter 15 Multiple Integrals 15.10 27E

We need to integrate e^{x+y} over the region R given by $|x|+|y| \le 1$

We make transformation x + y = u and x - y = v

Or
$$x = \frac{1}{2}(u+v)$$
, $y = \frac{1}{2}(u-v)$ -----(I)

Then region R is bounded by lines R_1 : y = x - 1, R_2 : y = 1 - x, R_3 : y = x + 1and R_4 : y = -x-1, then to find the image of R in uv - plane, on using (I) we find that the image lines are given by

$$u = 1, u = -1, v = 1, v = -1$$
 (Since $x + y = u$ and $x - y = v$)

Then the image of R is given by

$$S = \{(u, v): -1 \le u \le 1, -1 \le v \le 1\}$$

Also
$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$
$$= \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{vmatrix}$$
$$= -\frac{1}{4} - \frac{1}{4}$$
$$= -\frac{1}{2}$$

Then by the theorem of change of variables in double integrals we have

$$\iint_{R} e^{x+y} dA = \iint_{S} e^{u} \left| \frac{\partial (x, y)}{\partial (u, v)} \right| du \, dv$$

$$= \frac{1}{2} \int_{-1}^{1} \int_{-1}^{1} e^{u} \, du \, dv$$

$$= \frac{1}{2} \int_{-1}^{1} dv \int_{-1}^{1} e^{u} \, du$$

$$= \frac{1}{2} (v)_{-1}^{1} (e^{u})_{-1}^{1}$$

$$= \frac{1}{2} (2) (e^{1} - e^{-1})$$

$$= e - e^{-1}$$

Hence
$$\iint_{R} e^{x+y} dA = e - e^{-1}$$

Chapter 15 Multiple Integrals 15.10 28E

Consider

Triangular region with vertices (0,0),(1,0) and (0,1)

Take transformation: x + y = u and x - y = v

Adding these two equations

$$x + y = u$$

$$x - y = v$$

$$2x = u + v$$

$$x = \frac{1}{2}(u+v)$$

Now, subtracting the equations

$$x + y = u$$

$$x - y = v$$

$$2y = u - v$$

$$y = \frac{1}{2}(u - v)$$

Now.

$$x = \frac{1}{2}(u+v)$$

Taking partial derivative with respect to u

$$\frac{\partial x}{\partial u} = \frac{1}{2}$$

Taking partial derivative with respect to v

$$\frac{\partial x}{\partial y} = \frac{1}{2}$$

And
$$y = \frac{1}{2}(u - v)$$

Taking partial derivative with respect to u

$$\frac{\partial y}{\partial u} = \frac{1}{2}$$

Taking partial derivative with respect to v

$$\frac{\partial y}{\partial v} = -\frac{1}{2}$$

The region R is bounded by lines y = 0, x = 0 and y = 1 - x

Then on using $x = \frac{1}{2}(u+v)$ and $y = \frac{1}{2}(u-v)$, the image lines in uv - plane are:

$$u = 0, u = 1, v = u$$
 and $v = -u$

Then the set S (the image of R in uv-plane) is:

$$S = \left\{ \left(u, v \right) \colon \ 0 \le u \le 1, \ -u \le v \le u \right\}$$

Also
$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

$$= \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{vmatrix}$$
$$= -\frac{1}{4} - \frac{1}{4}$$
$$= -\frac{1}{2}$$

Change of variables in a double integral:

Suppose that T is a C^1 transformation whose Jacobian is nonzero and that maps a region S in the uv- plane onto a region R in the xy- plane. Suppose that S is continuous on S and that S are type I or type II plane regions. Suppose also that S is one-to-one, except perhaps on the boundary of S. Then

$$\iint\limits_{R} f(x,y) dA = \iint\limits_{S} f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv$$

Then by the theorem of change of variables in double integrals we have

$$\iint_{R} f(x,y) dA = \iint_{S} f(u) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv$$

$$= \frac{1}{2} \int_{0}^{1} \int_{-u}^{u} f(u) dv du \quad \left(\text{Since } \left| \frac{\partial(x,y)}{\partial(u,v)} \right| = \left| -\frac{1}{2} \right| \right)$$

$$= \frac{1}{2} \int_{0}^{1} f(u) \cdot (v)_{-u}^{u} du$$

$$= \frac{1}{2} \int_{0}^{1} f(u) (2u) du$$

$$= \int_{0}^{1} (u) f(u) du$$

Hence

$$\iint\limits_R f(x+y)dA = \int\limits_0^1 u f(u)du$$