Sample Question Paper - 1 Class- X Session- 2021-22 TERM 1 Subject- Mathematics (Basic)

Time A	llowed: 1 hour and 30 minutes	Ma	ximum Marks: 40
Genera	l Instructions:		
	1. The question paper contains th	nree parts A, B and C.	
	2. Section A consists of 20 question	ons of 1 mark each. Attempt any 16 questions.	
	3. Section B consists of 20 question	ons of 1 mark each. Attempt any 16 questions.	
	4. Section C consists of 10 question	ons based on two Case Studies. Attempt any 8 qu	estions.
	5. There is no negative marking.		
		Section A	
		Attempt any 16 questions	
1.	The product of a non-zero ration	al and an irrational number is	[1]
	a) always irrational	b) always rational	
	c) one	d) rational or irrational	
2.	The value of k for which the syst	em of equations	[1]
	x + 2y - 3 = 0 and		
	5x + ky + 7 = 0		
	has no solution, is		
	a) 1	b) 10	
	c) 6	d) 3	
3.	If $lpha$ and eta are the zeroes of the polynomial 3x 2 + 11x - 4, then the value of $rac{1}{lpha}+rac{1}{eta}$ is		is [1]
	a) $\frac{13}{4}$	b) $\frac{12}{4}$	
	c) $\frac{11}{4}$	d) $\frac{15}{4}$	
4.	If the system $6x - 2y = 3$, $kx - y =$	2 has a unique solution, then	[1]
	a) k = 3	b) $k eq 4$	
	c) $k eq 3$	d) k = 4	
5.	$5 \cot^2 A - 5 \csc^2 A =$		[1]
	a) 0	b) 5	
	c) 1	d) -5	
6.	If $9^{x+2} = 240 + 9^{x}$, then the value	of x is	[1]
	a) 0.5	b) 0.1	

	c) 0.3	d) 0.2	
7.	Which of the following expressions is not a po	olynomial?	[1]
	a) $_{5x^3}$ - $_{3x^2}$ - \sqrt{x} + 2	b) $_{5x^3}$ - $_{3x^2}$ - $_x$ + $\sqrt{2}$	
	c) $5x^2 - \frac{2}{3}x + 2\sqrt{5}$	d) $\sqrt{5}x^3 - \frac{3}{5}x + \frac{1}{7}$	
8.	The distance between the points A (0, 6) and I	3 (0, –2) is	[1]
	a) 8	b) 4	
	c) 6	d) 2	
9.	A quadratic polynomial whose zeros are $\frac{3}{5}$ ar	$d - \frac{1}{2}$, is	[1]
	a) _{10x² - x + 3}	b) _{10x² + x - 3}	
	c) _{10x² - x -3}	d) $10x^2 + x + 3$	
10.	A polynomial of degree is called a lin	ear polynomial.	[1]
	a) 1	b) 3	
	c) 2	d) 0	
11.	A ticket is drawn from a bag containing 100 ti getting a ticket with a number divisible by 10	ckets numbered from 1 to 100. The probability of is	[1]
	a) $\frac{3}{10}$	b) $\frac{1}{10}$	
	c) $\frac{4}{10}$	d) $\frac{1}{5}$	
12.	For every positive integer n, n ² - n is divisible	by	[1]
	a) 6	b) 4	
	c) 2	d) 8	
13.	If P(-1, 1) is the midpoint of the line segment j	oining A(-3, b) and B(1, b + 4) then b = ?	[1]
	a) 0	b) 2	
	c) 1	d) -1	
14.	The coordinates of the point P dividing the lir in the ratio 2: 1 are	ne segment joining the points A (1, 3) and B(4, 6)	[1]
	a) (2, 4)	b) (3, 5)	
	c) (4, 2)	d) (5, 3)	
15.	If one zero of the quadratic polynomial x^2+	3x+k is 2, then the value of 'k' is	[1]
	a) – 10	b) – 5	
	c) 10	d) 5	
16.	If $\cos heta = rac{4}{5}$ then $\tan heta$ = ?		[1]
	a) $\frac{3}{4}$	b) $\frac{5}{3}$	
	c) $\frac{4}{3}$	d) $\frac{3}{5}$	
17.	If x = α and y = β is the solution of the equation	ons x - y = 2 and x + y = 4, then	[1]

	a) α = 1 and β = 3	b) α = 3 and β = -1	
	c) α = 3 and β = 1	d) α = -3 and β = 1	
18.	In a family of 3 children, the probability of I	having at least one boy is	[1]
	a) $\frac{1}{8}$	b) $\frac{7}{8}$	
	c) $\frac{3}{4}$	d) $\frac{5}{8}$	
19.	The HCF of 135 and 225 is:		[1]
	a) 5	b) 15	
	c) 45	d) 75	
20.	The points A(9, 0), B(9, 6), C(-9, 6) and D(-9, 0)) are the vertices of a	[1]
	a) rhombus	b) trapezium	
	c) rectangle	d) square	
	Se	ection B	
	Attempt a	ny 16 questions	
21.	Ritu can row downstream 20 km in 2 hours current is	and upstream 4 km in 2 hours. The speed of the	[1]
	a) 12 km/hr	b) 6 km/hr	
	c) 4 km/hr	d) 8 km/hr	
22.	If the sum of the zeros of the quadratic poly	momial for $kx^2 + 2x + 3k$ is equal to the product of	[1]
	its zeros then k = ?		
	a) $\frac{1}{3}$	b) $\frac{2}{3}$	
	c) $\frac{-2}{3}$	d) $\frac{-1}{3}$	
23.	The decimal expansion of $rac{23}{2^5 imes 5^2}$ will termin	nate after how many places of decimal?	[1]
	a) 1	b) 5	
	c) 2	d) 4	
24.	$(\cos 0^{0} + \sin 30^{0} + \sin 45^{0}) (\sin 90^{0} + \cos 60^{0} -$	$\cos 45^{0}$) = ?	[1]
	a) $\frac{5}{8}$	b) $\frac{7}{4}$	
	c) $\frac{5}{6}$	d) $\frac{3}{5}$	
25.	If $rac{2}{x}+rac{3}{y}=6$ and $rac{1}{x}+rac{1}{2y}=2$ then		[1]
	a) $x=rac{2}{3},y=1$	b) $x=rac{3}{2},y=1$	
	c) $x=1,y=rac{2}{3}$	d) $x=1,y=rac{3}{2}$	
26.	The number of zeroes of a cubic polynomia	l is	[1]
	a) 3	b) 2	
	c) 4	d) 1	
27.	\triangle ABC $\sim \triangle$ PQR. If PQ = 3 cm, QR = 2 cm an	d RP = 2.5 cm, BC = 4 cm, then perimeter of \triangle ABC	[1]
	is		

	a) 20 cm.	b) 12 cm.	
	c) 15 cm.	d) 18 cm.	
28.	The abscissa of any point on the y – axis is		[1]
	a) 0	b) 1	
	c) y	d) – 1	
29.	If $ heta$ is an acute angle such that sec ² $ heta$ = 3, the	n the value of $rac{ an^2 heta-cosec^2 heta}{ an^2 heta+cosec^2 heta}$ is	[1]
	a) $\frac{1}{7}$	b) $\frac{3}{7}$	
	c) $\frac{2}{7}$	d) $\frac{4}{7}$	
30.	The solution of 217x + 131y = 913 and 131x +	- 217y = 827 is	[1]
	a) x = 2 and y =2	b) x = 2 and y = 3	
	c) x = 3 and y = 2	d) x = 3 and y = 3	
31.	The decimal expansion of the number $rac{14753}{1250}$	will terminate after.	[1]
	a) one decimal place	b) three decimal place	
	c) two decimal place	d) four decimal place	
32.	If the diagonals of a quadrilateral divide eac	h other proportionally then it is a	[1]
	a) square	b) rectangle	
	c) trapezium	d) parallelogram	
33.	$\sin^2 A + \sin^2 A \tan^2 A =$		[1]
	a) _{tan²A}	b) _{cos²A}	
	c) None of these	d) _{sin²A}	
34.	If A (-1, 0), B(5, -2) and C(8, 2) are the vertices	s of a $ riangle ABC$ then its centroid is	[1]
	a) (6, 0)	b) (0, 6)	
	c) (4, 0)	d) (12, 0)	
35.	If an event cannot occur then its probability	is	[1]
	a) $\frac{3}{4}$	b) $\frac{1}{2}$	
	c) 0	d) 1	
36.	The area of the triangle formed by the lines		[1]
	2x + 3y = 12, x - y = 1 and x = 0 is		
	a) 6.5 sq. units	b) 7 sq. units	
	c) 7.5 sq. units	d) 6 sq. units	
37.	The sum of the exponents of the prime facto	rs in the prime factorisation of 196, is	[1]
	a) 2	b) 1	
	c) 4	d) 6	
38.	If $\sqrt{3} an2 heta-3=0$ then $ heta$ = ?		[1]

	a) 30º	b) 60°	
	c) ₁₅₀	d) ₄₅ °	
39.	The probability that a non leap year selected	l at random will have 53 Sundays is	[1]
	a) $\frac{1}{7}$	b) $\frac{2}{7}$	
	c) $\frac{4}{7}$	d) $\frac{3}{7}$	
40.	If the points (6, 1), (8, 2), (9, 4) and (p, 3), take then the value of 'p' is	en in order are the vertices of a parallelogram,	[1]
	a) 5	b) – 7	
	c) 6	d) 7	

Section C

Attempt any 8 questions

Question No. 41 to 45 are based on the given text. Read the text carefully and answer the questions:

An aeroplane leaves an airport and flies due north at a speed of 1200 km /hr. At the same time, another aeroplane leaves the same station and flies due west at the speed of 1500 km/hr as shown below. After $1\frac{1}{2}$ hr both the aeroplanes reaches at point P and Q respectively.

41.	1. Distance travelled by aeroplane towards north after $1\frac{1}{2}$ hr is		[1]
	a) 1350 km	b) 1400 km	
	c) 1500 km	d) 1800 km	
42.	Distance travelled by aeroplane towards wes	t after $1\frac{1}{2}$ hr is	[1]
	a) 1800 km	b) 1600 km	
	c) 2400 km	d) 2250 km	
43.	In the given figure, \angle POQ is		[1]
	a) 80º	b) 70°	
	c) 90°	d) ₁₀₀ 0	
44.	Distance between aeroplanes after $1rac{1}{2}$ hr, is		[1]
	a) 350 $\sqrt{31}$ km	b) 472 $\sqrt{41}$ km	
	c) 125 $\sqrt{12}$ km	d) 450 $\sqrt{41}$ km	
45.	Area of $ riangle$ POQ is		[1]

a)	179000	km ²
----	--------	-----------------

b) 185000 km²

c) ₁₈₆₀₀₀ km²

d) 2025000 km²

[1]

Question No. 46 to 50 are based on the given text. Read the text carefully and answer the questions:

A farmer has a rectangular field of length 30 m and breadth 15 m. By the farmer a pit of diameter 7 m is dug 12 m deep for rain water harvesting. The earth taken out is spread in the field.

46. Find the volume of the earth taken out.

	a) 465 m ³	b) _{468 m³}	
	c) ₄₆₂ m ³	d) _{460 m³}	
47.	The area of the rectangular field is		[1]
	a) 450 m ²	b) ₄₄₀ m ²	
	c) ₄₂₀ m ²	d) _{430 m²}	
48.	Find the area of the top of the pit		[1]
	a) _{41.5} m ²	b) None of these	
	c) <u>38.5 m²</u>	d) _{40.5 m²}	
49.	The area of the remaining field is		[1]
	a) ₄₀₅ m ²	b) ₄₁₀ m ²	
	c) 411.5 m ²	d) _{402.3 m²}	
50.	Find the level rise in the field.		[1]
	a) 0.5 m	b) 2.12 m	
	c) 1.12 m	d) 3 m	

Solution

Section A

1. (a) always irrational

Explanation: The product of a non-zero rational and an irrational number is always irrational. For example, $\sqrt{3} \times 2 = 2\sqrt{3}$ This is an irrational number.

2. **(b)** 10

Explanation: The given system of equations are x + 2y - 3 = 0 5x + ky + 7 = 0For the equations to have no solutions, we must have $\frac{1}{5} = \frac{2}{k} \neq \frac{-3}{7}$ Taking, $\frac{1}{5} = \frac{2}{k}$

$$\Rightarrow$$
 k = 10

Therefore the value of k is10.

3. (c) $\frac{11}{4}$

Explanation: Here a = 3,b = 11,c = -4 Since $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha+\beta}{\alpha\beta}$ $\alpha + \beta = \frac{-11}{3}, \alpha\beta = \frac{-4}{3}$ So, $\frac{\frac{-11}{3}}{\frac{-4}{3}} = \frac{11}{4}$

4. (c) $k \neq 3$

Explanation: If the system has a unique solution, then $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ Here $a_1 = 6$, $a_2 = k$, $b_1 = -2$

Here
$$a_1 = 6, a_2 = k, b_1 = -2$$

and $b_2 = -1$
 $\therefore \frac{6}{k} \neq \frac{-2}{-1} \Rightarrow 3k \neq 6 \Rightarrow k \neq 3$
 $2k \neq 6$
 $k \neq 3$

5. **(d)** -5

Explanation: Given: $5\cot^2 A - 5 \csc^2 A$ = $5(\cot^2 A - \csc^2 A)$ = $5 \times -1 = -5$ [:: $\csc^2 \theta - \cot^2 \theta = 1$]

6. **(a)** 0.5

Explanation: $9^{x+2} = 240 + 9^{x}$ $\Rightarrow 9^{x} \times 9^{2} = 240 + 9^{x}$ $\Rightarrow 9^{x} (81 - 1) = 240$ $\Rightarrow 9^{x} = 3$ $\Rightarrow 9^{x} = 9^{1/2}$ $\Rightarrow x = \frac{1}{2} = 0.5$

7. **(a)** $5x^3 - 3x^2 - \sqrt{x} + 2$

Explanation: $5x^3 - 3x^2 - \sqrt{x} + 2$ is not a polynomial because each term of a polynomial should be a product of a constant and one or more variable raised to a positive, zero or integral power. Here \sqrt{x} does not satisfy the condition of being a polynomial.

8. **(a)** 8

Explanation: By using the distance formula:

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

 $d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$

Lets calculate the distance between the points (x_1, y_1) and (x_2, y_2)

We have; $x_1 = 0, x_2 = 0$ $y_1 = 6, y_2 = -2$ $d^2 = (0 - 0)^2 + (-2 - 6)^2$ $d = \sqrt{(0)^2 + (-8)^2}$ $d = \sqrt{64}$ d = 8 units So, the distance between A (0, 6) and B (0, -2) = 8

9. **(c)** $10x^2 - x - 3$

Explanation: $\alpha + \beta = \left(\frac{3}{5} - \frac{1}{2}\right) = \frac{1}{10}, \alpha\beta = \frac{3}{5} \times \left(\frac{-1}{2}\right) = \frac{-3}{10}$ Required olynomial is $x^2 - \frac{1}{10}x - \frac{3}{10}$, i.e., $10x^2 - x - 3$

10. **(a)** 1

Explanation: A polynomial of degree 1 is called a linear polynomial. Example 4x + 3, 65y are linear polynomials.

11. **(b)** $\frac{1}{10}$

Explanation: Number of possible outcomes = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} = 10 Number of Total outcomes = 100 \therefore Required Probability = $\frac{10}{100} = \frac{1}{10}$

12. **(c)** 2

Explanation: $n^2 - n = n(n - 1)$. Since n and (n - 1) are consecutive integers. Therefore, one of them must be divisible by 2.

13. **(d)** -1

Explanation: we have $rac{b+(b+4)}{2}=1\Rightarrow 2b+4=2\Rightarrow 2b=-2\Rightarrow b=-1$

14. **(b)** (3, 5)

Explanation: Point P divides the line segment joining the points A(1, 3) and B(4, 6) in the ratio 2: 1 Let coordinates of P be (x, y), then

$$x = \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2} = \frac{2 \times 4 + 1 \times 1}{2 + 1} = \frac{8 + 1}{3} = \frac{9}{3} = 3$$

$$y = \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2} = \frac{2 \times 6 + 1 \times 3}{2 + 1} = \frac{12 + 3}{3} = \frac{15}{3} = 5$$

$$\therefore \text{ Coordinates of P are (3, 5)}$$

15. **(a)** – 10

Explanation: Given Polynomial is $p(x) = x^2 + 3x + k$ According to question, p(x) = 0 (Put x = 2) p(2) = 0 $\Rightarrow (2)^2 + 3 \times 2 + k = 0$ $\Rightarrow 4 + 6 + k = 0$ $\Rightarrow k = -10$

```
16. (a) \frac{3}{4}

Explanation: \cos \theta = \frac{4}{5} = \frac{AB}{AC}

\therefore BC^2 = AC^2 - AB^2 = 25 - 16 = 9

\Rightarrow BC = 3

\therefore \tan \theta = \frac{BC}{AB} = \frac{3}{4}

17. (c) \alpha = 3 and \beta = 1
```

```
(c) \alpha = 3 and \beta = 1

Explanation: Given: x - y = 2 \dots (i) \dots (i)

And x + y = 4 \dots (ii)

Adding eq. (i) and (ii) for the elimination of y, we get

2x = 6

\Rightarrow x = 3

Putting the value of x in eq. (i), we get

3 - y = 2

\Rightarrow y = 1

\therefore x = \alpha = 3 and y = \beta = 1
```

```
18. (b) \frac{7}{8}
```

Explanation: All possible outcomes are BBB, BBG, BGB, GBB, BGG, GBG, GGB, GGG. Number of all possible outcomes = 8.

Let E be the event of having at least one boy. Then, E contains GGB, GBG, BGG, BBG, BGB, GBB, BBB. Number of cases favourable to E = 7. Therefore, required probability = P(E) = $\frac{7}{8}$

19. **(c)** 45

```
Explanation: We have,

135 = 3 \times 45

= 3 \times 3 \times 15

= 3 \times 3 \times 3 \times 5

= 3^3 \times 5

Now, for 225 will be

225 = 3 \times 75

= 3^2 \times 5^2

The HCF will be 3^2 \times 5 = 45
```

20. (c) rectangle

Explanation: A (9, 0), B(9, 6), C(-9, 6) and D(-9, 0) are the given vertices. Then, $AB^2 = (9 - 9)^2 + (6 - 0)^2$ $= (0)^2 + (6)^2 = 0 + 36 = 36$ units $BC^2 = (-9 - 9)^2 + (6 - 6)^2$ $= (-18)^2 + (0)^2 = 324 + 0 = 324$ units $CD^2 = (-9 + 9)^2 + (0 - 6)^2 = (0)^2 + (-6)^2 = 0 + 3 = 36$ units $DA^2 = (-9 - 9)^2 + (0 - 0)^2 = (-18)^2 + (0)^2 = 324 + 0 = 324$ units Therefore, we have: $AB^2 = CD^2$ and $BC^2 = DA^2$ Now, the diagonals are: $AC^2 = (-9 - 9)^2 + (6 - 0)^2 = (-18)^2 + (6)^2 = 324 + 36 = 360$ units $BD^2 = (-9 - 9)^2 + (0 - 6)^2 = (-18)^2 + (-6)^2 = 324 + 36 = 360$ units Therefore, $AC^2 = BD^2$ Hence, *ABCD* is a rectangle.

Section **B**

21. (c) 4 km/hr

Explanation: Let speed of boat = x km/h speed of current = y km/h \therefore Downstream speed = (x + y) km/h and Upstream speed = (x - y) km/h \therefore Speed = $\frac{\text{Distance}}{\text{Time}}$ \therefore Time = $\frac{\text{Distance}}{\text{Speed}}$ According to question, In downstream, $\frac{20}{x+y} = 2$ \Rightarrow x + y =10 ... (i) And In upstream, $\frac{4}{x-y} = 2$ \Rightarrow x - y = 2 ... (ii) Subtracting eq. (ii) from (i), we get 2y = 8 \Rightarrow y = 4 Therefore, the speed of the current is 4 km/h.

22. (c) $\frac{-2}{3}$

Explanation: $\alpha + \beta = \alpha \beta \Rightarrow \frac{-2}{k} = \frac{3k}{k} \Rightarrow \frac{-2}{k} = 3 \Rightarrow k = \frac{-2}{3}$

23. **(b)** 5

Explanation: We have, $\frac{23}{2^5 \times 5^2} = \frac{23 \times 5^3}{2^5 \times 5^2 \times 5^3}$ $= \frac{2875}{10000}$ = 0.02875

: the given number will be terminate after 5 digits.

Explanation: $(\cos 0^{\circ} + \sin 30^{\circ} + \sin 45^{\circ})$ $(\sin 90^{\circ} + \cos 60^{\circ} - \cos 45^{\circ}) = ?$ $= \left(1 + \frac{1}{2} + \frac{1}{\sqrt{2}}\right) \left(1 + \frac{1}{2} - \frac{1}{\sqrt{2}}\right) = \left(\frac{3}{2} + \frac{1}{\sqrt{2}}\right) \left(\frac{3}{2} - \frac{1}{\sqrt{2}}\right) = \left(\frac{9}{4} - \frac{1}{2}\right) = \frac{7}{4}$ 25. (a) $x = \frac{2}{3}, y = 1$ Explanation: Put $\frac{1}{x} = u$ and $\frac{1}{y} = v$. Then, 2u + 3v = 6(i) and $u + \frac{1}{2}v = 2 \Rightarrow 2u + v = 4$ (ii) Solve (i) an (ii) we get $x = \frac{2}{3}, y = 1$

26. **(a)** 3

Explanation: The number of zeroes of a cubic polynomial is at most 3 because the highest power of the variable in cubic polynomial is 3, i.e. $ax^3 + bx^2 + cx + d$

27. (c) 15 cm.

Explanation: Given: $\Delta ABC \sim \Delta PQR$ $\therefore \frac{\text{Perimeter of } \Delta ABC}{\text{Perimeter of } \Delta PQR} = \frac{BC}{QR}$

```
\Rightarrow \frac{\text{Perimeter of } \Delta \text{ABC}}{3+2+2.5} = \frac{4}{2}\Rightarrow \text{Perimeter of } \triangle \text{ABC} = 15 \text{ cm}
```

28. **(a)** 0

Explanation: Since coordinates of any point on y-axis is (0, y). Therefore, abscissa is 0.

29. (a) $\frac{1}{7}$

30.

Explanation: Given, $\sec^2 \theta = 3 \Rightarrow \sec \theta = \frac{\sqrt{3}}{1} = \frac{\text{Hypotenuse}}{\text{Base}}$ By Pythagoras Theorem, $(Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2$ $(\sqrt{3})^2 = (1)^2 + (\text{Perp.})^2$ \Rightarrow 3 = 1 + (Perp.)² \Rightarrow (Perp.)² = 3 - 1 = 2 $\Rightarrow 3 - 1 + (\text{Perp.})^{-} \Rightarrow (\text{Perp.})^{-} - 3 - 1 - 2$ $\therefore \text{ Perpendicular} = \sqrt{2}$ $\therefore \tan \theta = \frac{\text{Perpendicular}}{\text{Base}} = \frac{\sqrt{2}}{1} = \sqrt{2}$ $\text{cosec } \theta = \frac{\text{Hypotenuse}}{\text{Perpendicular}} = \frac{\sqrt{3}}{\sqrt{2}} = \sqrt{\frac{3}{2}}$ Now, $\frac{\tan^{2}\theta - \csc^{2}\theta}{\tan^{2}\theta + \csc^{2}\theta}$ $= \frac{(\sqrt{2})^{2} - (\sqrt{\frac{3}{2}})^{2}}{(\sqrt{2})^{2} + (\sqrt{\frac{3}{2}})^{2}} = \frac{2 - \frac{3}{2}}{2 + \frac{3}{2}}$ $=\frac{\frac{1}{2}}{\frac{7}{2}}=\frac{1}{2}\times\frac{2}{7}=\frac{1}{7}$ (c) x = 3 and y = 2 Explanation: Firstly add up both eq. 217x + 131y = 913, 131x + 217y = 827348x + 348y = 1740Dividing both side by 348 We get x + y = 5 ... (i)Similarly Subtract given eqn 217x + 131y = 913 - (131x + 217y = 827) 86x - 86y = 86 Dividing both side by 86 We get $x - y = 1 \dots$ (ii)equation Now, solve equation (i) and (ii) x + y = 5 x - y = 1 2x = 6 \Rightarrow x = 3 Put x = 3 in equation (i) x + y = 53 + y = 5y = 5 - 3 \Rightarrow y = 2 Hence, x = 3y = 2(d) four decimal place Explanation: $\frac{14753}{1250} = \frac{14753}{5^4 \times 2} = \frac{14753 \times 2^3}{5^4 \times 2^4} = \frac{118024}{10000} = 11.8024$ So, the decimal expansion of the number will terminate after four decimal places.

32. **(c)** trapezium

31.

Explanation: Diagonals of a quadrilateral divide each other proportionally, then it is

In quadrilateral ABCD, diagonals AC and BD intersect each-other at O and $\frac{AO}{OC} = \frac{BO}{OD}$ Then, quadrilateral ABCD is a trapezium.

33. **(a)** tan²A

Explanation: Given: $\sin^2 A + \sin^2 A \tan^2 A$

$$= \sin^{2}A(1 + \tan^{2}A)$$
$$= \sin^{2}A(\sec^{2}A)$$
$$= \sin^{2}A \times \frac{1}{\cos^{2}A}$$
$$= \frac{\sin^{2}A}{\cos^{2}A}$$
$$= \tan^{2}A$$

34. **(c)** (4, 0)

Explanation: Centriod is G $\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}\right) = G\left(\frac{-1+5+8}{3}, \frac{0-2+2}{3}\right) = (4,0)$

35. **(c)** 0

Explanation: The event which cannot occur is said to be impossible event and probability of impossible event is zero.

36. (c) 7.5 sq. units

Explanation: Graph of the equation 2x + 3y - 12 = 0We have 2x + 3y = 12 2x = 12 - 3y $x = \frac{12 - 3y}{2}$ Putting y = 4We get $x = \frac{12 - 3 \times 4}{2} = 0$ Putting y = 2, We get $x = \frac{12 - 3 \times 2}{2} = 3$ Thus, we have the following table for the points:

х	0	3
У	4	2

Plotting point A(0, 4), B(3, 2) on the graph paper and drawing a line passing through them we obtain a graph of the equation.

Graph of the equation x - y - 1

We have x - y = 1

x = 1 + y

Thus, we have the following table for the points for the line x - y = 1

X	1	0
у	0	-1

Plotting point C(1, 0) and D(0, -1) on the same graph paper drawing a line passing through them, we obtain the graph of the line represented by the equation x - y = 1

The graph of line 2x + 3y = 12 intersect with y-axis at B(0, 4) and the graph of the line x - y = 1 intersect with y-axis at C(0, -1)

So, the vertices of the triangle formed by the two straight lines and y-axis are A(3, 2) and B(0, 4) and C(0, -1) Now,

Area of $\Delta ABC = \frac{1}{2}$ [Base × Height] = $\frac{1}{2}(BC \times AB)$ = $\frac{1}{2}(5 \times 3)$ = $\frac{15}{2}$ sq. units = 7.5sq. units

37. **(c)** 4

Explanation:

Using the factor tree for prime factorisation, we have:

Therefore,

$$egin{aligned} 196 &= 2 imes 2 imes 7 imes 7 \ 196 &= 2^2 imes 7^2 \end{aligned}$$

The exponents of 2 and 7 are 2 and 2 respectively. Thus the sum of the exponents is 4.

38. **(a)** 30⁰

Explanation: $\sqrt{3} \tan 2\theta - 3 = 0$ $\Rightarrow \sqrt{3} \tan 2\theta = 3$ $\Rightarrow \tan 2\theta = \frac{3}{\sqrt{3}}$ $\Rightarrow \tan 2\theta = \sqrt{3}$ $\Rightarrow \tan 2\theta = \tan 60^{\circ}$ $\Rightarrow 2\theta = 60^{\circ}$ $\Rightarrow \theta = 30^{\circ}$

39. (a) $\frac{1}{7}$

Explanation: Non-leap year contains 365 days = 364 days + 1 day= (364/7) weeks + 1 day = 52 weeks + 1 remaining day = 52 Sundays + 1 remaining day

We will have 53 Sundays if 1 remaining day is a Sunday.

Possible outcomes = {(Monday), (Tuesday), (Wednesday), (Thursday), (Friday), (Saturday), (Sunday)} Number of Total outcomes = 7

Number of possible outcomes = 1

 \therefore Required Probability = $\frac{Possible outcomes}{Total outcomes} = \frac{1}{7}$

40. **(d)** 7

Explanation: In parallelogram, AB = CD, squaring both sides

$$D(p,3) = C(9,4)$$

$$A(6,1) = B(8,2)$$

$$A(6,1) = B(8,2)$$

$$A(6,-6)^{2} + (2-1)^{2} = (p-9)^{2} + (3-4)^{2}$$

$$A(6,-6)^{2} + (3-4)^{2} + (3-4)^{2} + (3-4)^{2}$$

$$A(6,-6)^{2} + (3-4)^{2} + (3$$

41. (d) 1800 km Explanation: Speed = 1200 km/hr Time = $1\frac{1}{2}hr = \frac{3}{2}hr$

∴ Required distance = Speed × Time = $1200 \times \frac{3}{2}$ = 1800 km

42. (d) 2250 km

Explanation: Speed = 1500 km/hr Time = $\frac{3}{2}$ hr \therefore Required distance = Speed \times Time = 1500 $\times \frac{3}{2}$ = 2250 km

43. **(c)** 90°

Explanation: Clearly, directions are always perpendicular to each other.

- ∴∠POQ = 90⁰
- 44. **(d)** $450\sqrt{41}$ km

Explanation: Distance between aeroplanes after $1\frac{1}{2}$ hour = $\sqrt{(1800)^2 + (2250)^2} = \sqrt{3240000 + 5062500}$ = $\sqrt{8302500} = 450\sqrt{41}$ km

45. **(d)** 2025000 km²

Explanation: Area of $\triangle POQ = \frac{1}{2} \times base \times height$

- = $rac{1}{2} imes2250 imes1800$ = 2250 imes 900 = 2025000 km 2
- 46. **(c)** 462 m³

Explanation: Volume of the earth taken out $\binom{7}{2}^2$ is $\binom{22}{7}$ 7 is use $\binom{3}{7}$

$$=\pi\left(\frac{7}{2}\right)^2 \times 12 = \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 12 = 462 \text{ m}^3$$

- (a) 450 m^2 Explanation: Area of the rectangular field = $30 \times 15 = 450 \text{ m}^2$
- 48. **(c)** 38.5 m²

47.

Explanation: Area of top of the pit = $\pi \left(\frac{7}{2}\right)^2 = \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}$ = $\frac{77}{2}$ = 38.5 m²

49. **(c)** 411.5 m²

Explanation: Area of the remaining field = Area of rectangular field - area of top of pit = $450 - 38.5 = 411.5 \text{ m}^2$

50. (c) 1.12 m Explanation: The rise in the level of field = $\frac{462}{411.5}$ = 1.12 m