
Class-X Session 2022-23 Subject - Mathematics (Standard) Sample Question Paper - 39 With Solution

Ċ,	Chapter Name	Per Unit	Section-A (1 Mark)	rk)	Section-B (2 Marks)	Section-C (3 Marks)	Section-D (5 Marks)	Section-E (4 Marks)	Total
NO.	•	Marks	MCQ	AIR	VSA	SA	LA	Case-Study	Marks
-	Real Number	9	2(Q6, 17)	1(Q19)		1(Q31)			9
2	Polynomials		1(01)		1.	1(027)			4
9	Pair of Linear Equations in Two Variables	20	1(O5)		1(021)	1 (026)			9
4	Quadratic Equations		1(02)				1(032)		9
5	Arithmetic Progression		8		33B			1(036)	4
9	Triangles	1	1(Q7, 9)		1(023)		1(033)		6
7	Circles	2	1(Q10)		1(024)	1(029)			9
8	Coordinate Geometry	9	1(Q3, 8)					1(037)	9
6	Introduction to Trigonometry		1(04)	1(Q20)	1(022)	1 (Q28)			7
10	Some Applications of Trigonometry	12	1(Q18)				2	1(Q38)	NO.
11	Areas Related to Circles		2(Q11, 14)		1(025)				4
12	Surface Areas and Volumes	10	1(Q13)				1(034)		9
13	Statistics		1(Q12, 16)				1(Q35)		7
14	Probability	-	1(Q15)			1(Q30)			4
ta	Total Marks (Total Questions)	80	18(18)	2(2)	10(5)	18(6)	20(4)	12(3)	80(38)

Time : 3 Hours

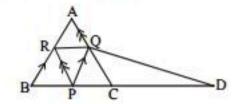
		Genero	al Instruc	tions		
1.	This Question pap choices in some qu	er contains - five sections A, B, uestions.	C, D and E.	Each section is comp	ulsory. I	However, there are internal
2.	Section A has 18 M	MCQ's and 02 Assertion-Reaso	on based que	stions of 1 mark each	L.	
3.		ery Short Answer (VSA)-type q				
4.	Section C has 6 Si	hort Answer (SA)-type question	ns of 3 marks	each.		
5.		ong Answer (LA)-type question				
6.	Section E has 3 ca each respectively.	se based/integrated units of as	sessment (4 i	marks each) with sub	parts of	values of I, I and 2 marks
		SECTION-A (Mu	Itiple Choi	ce Questions)		
Eac	h question carries I ma	rk.				
1.	The zeroes of the poly	nomial are				
	$p(x) = x^2 - 10x - 75$					
	(a) 5,-15	(b) 5,15		15,-5	(d)	-5, -15
		x + k = 0 be the reciprocal of the				
	(a) 0 If P(x, y) is any point of	(b) 1 n the line joining the points A (a)	(c)		(d)	5
			1922/1921/1929/2020	and and the second		
	(a) $\frac{x}{b} + \frac{y}{a} = 1$	(b) $\frac{x}{a} - \frac{y}{b} = 1$	(c)	$\frac{x}{a} + \frac{y}{b} = 1$	(d)	$\frac{x}{b} - \frac{y}{a} = 1$
	$\sin^2\theta + \csc^2\theta$ is alw	4 0		a 0		0 a
1	(a) greater than 1	(b) less than 1	(c)	greater than or equal t	to 2 (d)	equal to 2
ι.		ionsx + 2y = 5 and 3x + 12y = 10		5 11		1
	(a) unique solution	(b) no solution	100 B 200			infinitely many solutions
		mber that divides 70 and 125, le	-			
	(a) 13 Which of the following	(b) 9	(c)	3	(d)	585
	(a) All isosceles trian		(b)	All quadrilateral triar	oles are	similar
	(c) All circles are simi			None of the above	-Eres are	gennen.
3.		uidistant from the points A(-1, 0				
	(a) (2,0)	(b) (0,2)	(c)	(3,0)	(d)	(2,2)
9.	In the given figure, exp	press x in terms of a, b and c.	20132			
			×			
		/				
		a	>	P		
		140	×/			
		A+0"				
		<i>▲</i> b	$\rightarrow c$	\longrightarrow		
	(a) $x = \frac{ab}{ab}$	(b) $x = \frac{ac}{ac}$	(c)	r = bc	(4)	x = ac
	$a = \frac{a+b}{a+b}$	$\frac{b}{b+c}$	(c)	$\frac{1}{b+c}$	(u)	$x = \frac{1}{a+c}$
10.	In the figure, APB is	formed by three tangents to the	circle with c	entre O. If $\angle APB = 4$	10°, then	the measure of ∠BOA is
			/			
			R			
			BA			

(a) 50°

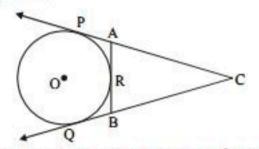
11.	The area of a sec	tor of angle	e p (in degr	ees) of a circ	le with radiu	s R is			
	(a) $\frac{p}{360^\circ} \times 2\pi R$		(b) <u>p</u> 180	$-\times \pi R^2$	(c)	$\frac{p}{720^{\circ}} \times 2\pi R$	(d)	P 720	$\frac{1}{10^{\circ}} \times 2\pi R^2$
12.	For the data (2, 9	x+6, 2x+	3, 5, 10, 5)	if mean is 7,	then mode is				
	(a) 3		(b) 5			9	(d)	10	
13.	If a sphere and a	cube have	equal surfa	ace areas, the	en the ratio o	f the diameter o	f the sphere to	the e	dge of the cube is
	(a) 1:2		(b) 2:1		(c)	$\sqrt{\pi}:\sqrt{6}$	(d)	√6	: √π
14.	If the sector of a	circle of di	ameter 10 c	m subtends	an angle of 14	44° at the centre	, then the leng	thoft	the arc of the sector is
	(a) 2πcm		(b) 4πc			5πcm		6π α	m
15.	An unbiased die	is rolled tw	vice. Find th	ne probabilit	y of getting th	ne sum of two nu	umbers as a pri	me	
	(a) $\frac{3}{5}$		(b) $\frac{5}{12}$		(4)	$\frac{7}{12}$	15	4	
	$(a) \frac{1}{5}$		(0) 12		(c)	12	(d)	5	
16.	Find the mean of	f the follow	ing frequer	cy distributi	on.				
	Class Interval	0-10	10-20	20-30	30-40	40-50			
	Frequency	8	12	10	11	9			
	(a) 25.3		(b) 25.2	8	(c)	24	(d)	25.5	
17.		tegers p an	Color and the second se						ers, then LCM (p, q) is
	(a) ab		(b) a ² b ²		(c)	a ³ b ²		(d)	a ³ b ³
18.	If a pole 6 m hig	h casts a sh	adow 2J3	m long on t	he ground, th	en the sun's elev	vation is		
	(a) 60°		(b) 45°		CONTRACTOR OF STREET	30°		(d)	90°
				FOTION D	STREET, STREET	EDQUESTION	191	1-2	
In th	e following quest	ions, a state						ooset	he correct answer out
	e following choic							0.000.000	
(a)	Both A and R ar		R is the con	rect explan	ntion of A.				
b)	Both A and R ar	e true but	R is not the	correct expl	lanation of A	2			
(c)	A is true but R is								
(d)	A is false but R i	s true.							
19.	Assertion : Den	ominator o	f 34,12345	When expre	essed in the f	orm $\frac{p}{q}, q \neq 0, i$	s of the form 2	^m × 5'	, where m, n are non-
	negative integen	s.				4			
	Reason : 34.1234	45 is a termi	inating deci	mal fraction.					
20.	Assertion: In a r	right angled	l triangle, i	$f \tan \theta = \frac{3}{4},$	the greatest s	ide of the triang	le is 5 units.		
	Reason: (greates	st side) ² = $($	(hypotenus	$e)^2 = (perpendent$	$ndicular)^2 + ($	base)2.			
					STORE STORE STORE	States and the states of the			

SECTION-B

This section comprises of very short answer type-questions (VSA) of 2 marks each.


21. Solve the system of equations :
$$ax + by = 1$$
, $bx + ay = \frac{2ab}{a^2 + b^2}$.

22. Prove that
$$\tan^2 \theta + \cot^2 \theta + 2 = \sec^2 \theta + \csc^2 \theta = \sec^2 \theta \csc^2 \theta$$

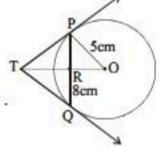

If
$$\frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta} = \frac{1 - \sqrt{3}}{1 + \sqrt{3}}$$
, then find the value of θ .

OR

23. In the given figure, PQ || BA and PR || CA. If PD = 12 cm, find BD × CD.

 In the given figure, CP and CQ are tangents to a circle wih centre O. ARB is another tangent touching the cirlce at R. If CP=11 cm and BC=7 cm, then find the length of BR.

The area enclosed by the circumferences of two concentric circle is 346.5 cm². If the circumference of the inner circle is 88 cm, calculate the radius of the outer circle.


SECTION-C

This section comprises of short answer type questions (SA) of 3 marks each.

- 26. Determine the values of m and n so that the following system of linear equations have infinite number of solutions:
 (2m-1) x + 3y 5 = 0
 3x + (n-1)y 2 = 0
- 27. If α and β are the zeroes of the polynomial $x^2 + 4x + 3$, find the polynomial whose zeroes are $1 + \frac{\beta}{\alpha}$ and $1 + \frac{\alpha}{\beta}$.

28. Solve
$$\frac{\cos^2 \theta - 3\cos \theta + 2}{\sin^2 \theta} = 1; (\theta < 90^\circ).$$

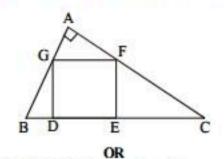
29. PQ is a chord of length 8 cm of a circle of radius 5 cm. The tangents at P and Q intersect at a point T (see Fig.). Find the length of TP.

 A card is drawn at random from a well shuffled pack of 52 playing cards. Find the probability of getting neither a red card nor a queen.

OR

Two different dice are tossed together. Find the probability that the product of the two numbers on the top of the dice is 6. 31. Find how many integers between 200 and 500 are divisible by 8.

OR


Find the greatest number of six digits exactly divisible by 18, 24 and 36.

SECTION-D

- This section comprises of long answer-type questions (LA) of 5 marks each.
- 32. Solve the following quadratic equation for x :

 $4\sqrt{3}x^2 + 5x - 2\sqrt{3} = 0$

33. $\triangle ABC$ is right-angled at A. DEFG is a square as shown in the figure. Prove that $DE^2 = BD \times EC$.

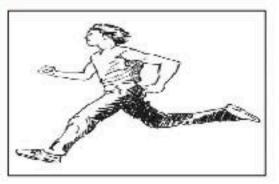
In AABC, D is the midpoint of BC and AE L BC. If AC > AB, show that

$$AB^2 = AD^2 - BC \cdot DE + \frac{1}{4}BC^2$$

- 34. If h, c, v are respectively the height, the curved surface area and the volume of a cone, prove that 3πvh³-c²h²+9v²=0.
- 35. Find the mean of the following frequency distribution by Assumed Mean Method.

Class Interval	Frequency
0_4	6
4-8	3
8-12	6
12-16	16
16-20	3
20-24	14
24-28	10
28-32	8

OR

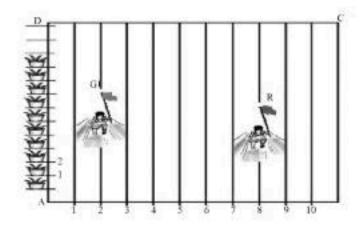

Calculate the mean for the following frequency distribution (By step deviation method).

Class interval	0-80	80-160	160-240	240-320	320 - 400
frequency	22	35	44	25	24

SECTION-E

This section comprises of 3 case study/passage - based questions of 4 marks each with three sub-parts (i), (ii), (iii) of marks 1, 1, 2 respectively.

36. Case - Study 1: Read the following passage and answer the questions given below. Your friend Veer wants to participate in a 200m race. He can currently run that distance in 51 seconds and with each day of practice it takes him 2 seconds less.


- (i) Which day he takes 31 seconds to complete
- (ii) Which day he taks 27 seconds to complete
- (iii) Find the time in 10th day

Find the time in 15th day.

OR

37. Case - Study 2: Read the following passage and answer the questions given below.

In order to conduct Sports Day activities in your School, lines have been drawn with chalk powder at a distance of 1 m each, in a rectangular shaped ground ABCD, 100 flowerpots have been placed at a distance of 1 m from each other along AD, as shown in given figure below. Niharika runs 1/4 th the distance AD on the 2nd line and posts a green flag. Preet runs 1/5 th distance AD on the eighth line and posts a red flag.

- (i) Find the position of green flag
- (ii) Find the position of red flag
- (iii) What is the distance between both the flags?

OR

If Rashmi has to post a blue flag exactly halfway between the line segment joining the two flags, where should she post her flag?

38. Case - Study 3: Read the following passage and answer the questions given below.

A group of students of class X visited India Gate on an education trip. The teacher and students had interest in history as well. The teacher narrated that India Gate, official name Delhi Memorial, originally called All-India War Memorial, monumental sandstone arch in New Delhi, dedicated to the troops of British India who died in wars fought between 1914 and 1919. The teacher also said that India Gate, which is located at the eastern end of the Rajpath (formerly called the Kingsway), is about 138 feet (42 metres) in height.

- (i) What is the angle of elevation if they are standing at a distance of 42m away from the monument?
- (ii) They want to see the tower at an angle of 60°. So, they want to know the distance where they should stand and hence find the distance.
- (iii) If the altitude of the Sun is at 60°, then find the height of the vertical tower that will cast a shadow of length 20 m.

OR

The ratio of the length of a rod and its shadow is 1:1. Find the angle of elevation of the Sun.

Solution

SAMPLE PAPER-7

- 1. (c) We have, $p(x) = x^2 10x 75 = x^2 15x + 5x 75$ = x(x-15) + 5(x-15) = (x-15)(x+5) $\therefore p(x) = (x-15)(x+5)$ So, p(x) = 0 when x = 15 or x = -5. Therefore required zeroes are 15 and -5.
- 2. (d) Let the roots be α and $\frac{1}{\alpha}$. Then, product of roots

$$= \left(\alpha \times \frac{1}{\alpha} \right) = 1.$$

So, $\frac{k}{5} = 1 \Rightarrow k = 5.$

 (c) As the point P (x, y) lies on the line joining the points A (a, 0) and B (0, b), the points A, B and P are collinear
 ⇒ a (b-y)+0 (y-0)+x (0-b) = 0
 ⇒ ab - ay - bx = 0 ⇒ bx + ay = ab

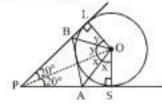
$$\Rightarrow \frac{x}{a} + \frac{y}{b} = 1$$

- (c) Hint: [at θ = 90°]
- 5. (a) The pair of linear equations are x + 2y - 5 = 0 and 3x + 12y - 10 = 0Here, $a_1 = 1$, $b_1 = 2$, $c_1 = -5$ and $a_2 = 3$, $b_2 = 12$, $c_2 = -10$. Now, $\frac{a_1}{a_2} = \frac{1}{3}$, $\frac{b_1}{b_2} = \frac{2}{12} = \frac{1}{6}$. As $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ So, pair of equations has a unique solution.
- (a) Required number = H.C.F. {(70-5), (125-8)} = H.C.F. (65, 117)=13.
- 7. (a) Statement given in option (a) is false.

8. (a)
$$P(x, 0) = \left(\frac{5-1}{2}, 0\right) = (2, 0)$$

[: A and B both lies on x-axis]

Three or more points lies in same line are called collinear.


9. (b) In $\triangle KPN$ and $\triangle KLM$, we have $\angle KNP = \angle KML = 46^{\circ}$

 $\angle K = \angle K$ (Common)

∴ ∆KNP~∆KML (By A A criterion of similarity)

$$\Rightarrow \frac{KN}{KM} = \frac{NP}{ML} \Rightarrow \frac{c}{b+c} = \frac{x}{a}$$

10. (d) We redraw the figure.

In $\triangle OPS$, using Pythagoras theorem, $\angle POS = 70^{\circ}$ and In $\triangle POL$, $\angle POL = 70^{\circ}$ From figure, $2x + 2y = 140^{\circ}$ $\angle BOA = x + y = 70^{\circ}$

11. (d) Hint: Area of sector =
$$\frac{1}{2}r^2\theta$$

12. (c) Mean =
$$\frac{2+9+x+6+2x+3+5+10+5}{7} = 7$$

 $3x+40 = 49 \Rightarrow x = 3$
 $x+6 = 9 \Rightarrow 2x+3 = 9$
Data (2, 9, 9, 9, 5, 10, 5) and Mode = 9

 (d) Let the diameter of the sphere be d units and the edge of the cube be a units, then

$$4\pi \left(\frac{d}{2}\right)^2 = 6a^2 \Rightarrow \frac{d^2}{a^2} = \frac{6}{\pi} \Rightarrow \frac{d}{a} = \frac{\sqrt{6}}{\sqrt{\pi}}$$

- 14. (b) Length of arc = $\frac{114}{369}\pi 10 = 4\pi$
- (b) The sum of the two numbers lies between 2 and 12. So, the primes are 2, 3, 5, 7, 11.

No. of ways for getting 2 = (1, 1) = 1

No. of ways of getting 3 = (1, 2), (2, 1) = 2

No. of ways of getting 5

=(1, 4), (4, 1), (2, 3), (3, 2) = 4

No. of ways of getting 7

$$=(1, 6), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3)=6$$

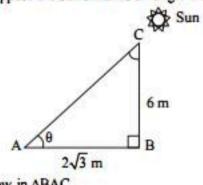
No. of ways of getting 11 = (5, 6), (6, 5) = 2

No. of favourable ways = 1 + 2 + 4 + 6 + 2 = 15

No. of exhaustive ways = $6 \times 6 = 36$

.. Probability of getting the sum as a prime

16.


36 12

(b)	CT	×,	f	fx
	0-10	5	8	40
	10-20	15	12	180
	20-30	25	10	250
	30-40	35	11	385
	40-50	45	9	405
			50	1260

We have
$$\bar{x} = \frac{\Sigma fx}{\Sigma f} = \frac{1260}{50} = 25.2$$

a3b2

18. (a) Suppose BC = 6 m be the height of the pole and AB = $2\sqrt{3}$ m be the length of the shadow on the ground. Suppose the sun's makes an angle 0 on the ground.

20

Now, in ABAC

$$\tan \theta = \frac{BC}{AB}$$

$$\Rightarrow \qquad \tan \theta = \frac{6}{2\sqrt{3}} = \sqrt{3}$$

$$\Rightarrow \qquad \tan \theta = \tan 60^{\circ}$$

$$\therefore \qquad \theta = 60^{\circ}$$

So, sun's elevation is 60°.

19. (a) Reason is clearly true. 100110 100110

Again,
$$34.12345 = \frac{3412345}{100000} = \frac{682469}{20000} = \frac{682469}{2^5 \times 5^4}$$

Its denominator is of the form 2" × 5", where

m = 5, n = 4 are non-negative integers

.: Assertion is true. Since, reason gives assertion

(a) holds. ...

20. (a) Both Assertion and Reason are correct and Reason is the correct explanation of the assertion.

greatest side =
$$\sqrt{(3)^2 + (4)^2} = 5$$
 units.
21. $ax + by = 1$...(i)
 $bx + ay = \frac{2ab}{a^2 + b^2}$...(ii)
On adding (i) and (ii), we get
 $(a + b)x + (a + b)y = 1 + \frac{2ab}{a^2 + b^2}$
 $\Rightarrow (a + b)(x + y) = \frac{(a + b)^2}{a^2 + b^2}$
 $\Rightarrow x + y = \frac{a + b}{a^2 + b^2}$...(iii) [½ Mark]
Subtracting (ii) from (i)
 $(a - b)x + (b - a)y = 1 - \frac{2ab}{2 + b^2}$

$$\Rightarrow (a-b)(x-y) = \frac{(a-b)^2}{a^2+b^2}$$
$$\Rightarrow x-y = \frac{a-b}{a^2+b^2} \qquad \dots (iv) \quad [1 \text{ Mark}]$$

Adding (iii) and (iv), $2x = \frac{a+b}{a^2+b^2} + \frac{a-b}{a^2+b^2} = \frac{2a}{a^2+b^2} \Rightarrow x = \frac{a}{a^2+b^2}$ Subtracting (iv) from (iii) $2y = \frac{a+b}{a^2+b^2} - \frac{a-b}{a^2+b^2} = \frac{2b}{a^2+b^2} \Rightarrow y = \frac{b}{a^2+b^2}$ [1/2 Mark] Therefore, the solution is : $x = \frac{a}{a^2 + b^2}$, $y = \frac{b}{a^2 + b^2}$ LHS = $\tan^2\theta + \cot^2\theta + 2 = (\tan^2\theta + 1) + (\cot^2\theta + 1)$ 22. [1/2 Mark] $= \sec^2\theta + \csc^2\theta$ $[:: \tan^2\theta + 1 = \sec^2\theta \text{ and } 1 + \cot^2\theta = \csc^2\theta]$ $= \frac{1}{\cos^2 \theta} + \frac{1}{\sin^2 \theta} = \frac{\sin^2 \theta + \cos^2 \theta}{\sin^2 \theta \cos^2 \theta}$ [1 Mark] $\frac{1}{\sin^2\theta\cos^2\theta} = \csc^2\theta \sec^2\theta$ [1/2 Mark] = RHS (Hence Proved). OR $\cos\theta - \sin\theta = 1 - \sqrt{3}$ $\cos\theta + \sin\theta = 1 + \sqrt{3}$ Dividing Nr. and Dr. in L.H.S. by cos0 $\frac{1-\tan\theta}{1+\tan\theta} = \frac{1-\sqrt{3}}{1+\sqrt{3}}$ [1 Mark] By comparison, we get $\tan \theta = \sqrt{3}$ [1 Mark] BA PQ BR PQ ⇒ PR CA and PR CO = $\ln \Delta BRD$. BRIPO $\frac{BD}{PD} = \frac{RD}{QD}$ (corr. of Thales) ...(1) ⇒ $\ln \Delta RPD$, PR CO [1 Mark] $\frac{RD}{OD} = \frac{PD}{CD}$ (corr. of Thales) ...(2) ⇒ From (1) and (2), $\frac{BD}{PD} = \frac{PD}{CD}$ $\Rightarrow PD^2 = BD \times CD$:. BD × CD = 144 cm. [1 Mark] 24. CQ=CP=11 [: length of tangents from C to the circle are equal] :: CQ = 11cm [1 Mark] But BC = 7 cm ∴ 7 + BQ = 11 [:: CQ = BC + BQ]: BQ=11-7=4 Since BR = BO = 4

23.

[:: length of tangents from B to the circle are equal] Thus BR = 4 cm. [1 Mark] 25. Let the radius of inner circle be r cm. Then, its circumference = $(2\pi r)$ cm.

22

$$\therefore 2\pi r = 88 \Rightarrow 2 \times \frac{2\pi}{7} \times r = 88$$
$$\Rightarrow r = \left(88 \times \frac{7}{44}\right) = 14 \text{ cm}.$$

:. Radius of the inner circle is, r = 14 cm. [1 Mark] Let the radius of the outer circle be R cm. Then, area of the ring = $(\pi R^2 - \pi r^2)$ cm².

$$= \left(\frac{22}{7}R^2 - 616\right) cm^2$$

$$\therefore \frac{22}{7}R^2 - 616 = 346.5 \Rightarrow \frac{22}{7}R^2 = 962.5$$

$$\Rightarrow R^2 = \left(962.5 \times \frac{7}{22}\right) = 306.25 \Rightarrow R = \sqrt{306.25} = 17.5 cm.$$

[1 Mark]

26.
$$(2m-1)x+3y-5=0$$
 ...(i)
On comparing with $a_1x+b_1y+c_1=0$, we get :
 $a_1=2m-1, b_1=3, c_1=-5$
 $3x+(n-1)y-2=0$...(ii)
On comparing with $a_2x+b_2y+c_2=0$, we get :
 $a_2=3, b_2=n-1, c_2=-2$ [1 Mark]
For a pair of linear equations to have infinite number of

For a pair of linear equations to have infinite number o solutions

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \Rightarrow \frac{2m-1}{3} = \frac{3}{n-1} = \frac{5}{2}$$
[1 Mark]
$$\Rightarrow 2(2m-1) = 15 \text{ and } 5(n-1) = 6 \Rightarrow m = \frac{17}{4}, n = \frac{11}{5}$$
[1 Mark]

 If α and β are the zeroes of the quadratic polynomial x²+4x+3 then, α+β=-4 and αβ=3

Sum of zeroes =
$$1 + \frac{\beta}{\alpha} + 1 + \frac{\alpha}{\beta} = \frac{\alpha\beta + \beta^2 + \alpha\beta + \alpha^2}{\alpha\beta}$$

= $\frac{\alpha^2 + \beta^2 + 2\alpha\beta}{\alpha\beta} = \frac{(\alpha + \beta)^2}{\alpha\beta} = \frac{(-4)^2}{3} = \frac{16}{3}$ [1 Mark]

Product of zeroes = $\left(1 + \frac{\beta}{\alpha}\right)\left(1 + \frac{\alpha}{\beta}\right) = 1 + \frac{\alpha}{\beta} + \frac{\beta}{\alpha} + \frac{\alpha\beta}{\alpha\beta}$

$$=\frac{\alpha^2+\beta^2+2\alpha\beta}{\alpha\beta}=\frac{(\alpha+\beta)^2}{\alpha\beta}=\frac{(-4)^2}{3}=\frac{16}{3}$$
 [1 Mark]

So, required polynomial

= x^2 – (Sum of the zeroes) x + Product of the zeroes

$$= x^{2} - \left(\frac{16}{3}\right)x + \frac{16}{3} = \frac{1}{3}(3x^{2} - 16x + 16)$$
 [1 Mark]

28.
$$\frac{\cos^2\theta - 3\cos\theta + 2}{\sin^2\theta} = 1 \implies \cos^2\theta - 3\cos\theta + 2 = \sin^2\theta$$

 $\Rightarrow \cos^2 \theta - 3\cos \theta + 2 = 1 - \cos^2 \theta$ $\Rightarrow 2\cos^2\theta - 3\cos\theta + 1 = 0$ [1/2 Mark] $\Rightarrow 2\cos^2\theta - 2\cos\theta - \cos\theta + 1 = 0$ $\Rightarrow 2\cos\theta(\cos\theta - 1) - 1(\cos\theta - 1) = 0$ [1/2 Mark] $\Rightarrow (2\cos\theta - 1)(\cos\theta - 1) = 0$ [1/2 Mark] Either $2\cos\theta - 1 = 0 \Rightarrow 2\cos\theta = 1 \Rightarrow \cos\theta = \frac{1}{2}$ $\Rightarrow \cos \theta = \cos 60^{\circ} \Rightarrow \theta = 60^{\circ} \text{ or } \cos \theta - 1 = 0$ or $\cos \theta = 1 = \cos 0^{\circ}$ $\theta = 0^{\circ}$ (impossible) .: θ=60° [1 Mark] 29. Join OT. Let it intersect PQ at the point R. Then Δ TPQ is isosceles triangle and TO is the angle bisector of ∠ PTQ. So, OT \perp PQ therefore, OT bisects PQ which gives PR = RO=4cm. Also, $OR = \sqrt{OP^2 - PR^2} = \sqrt{5^2 - 4^2} \text{ cm} = 3 \text{ cm}$. [1 Mark] Now, $\angle TPR + \angle RPO = 90^\circ = \angle TPR + \angle PTR$ [1 Mark] So, $\angle RPO = \angle PTR$ Therefore, right triangle TRP is similar to the right triangle PRO (by AA similarity).

This gives
$$\frac{TP}{PO} = \frac{RP}{RO}$$
 i.e., $\frac{TP}{5} = \frac{4}{3}$ or $TP = \frac{20}{3}$ cm.
[1 Mark]

$$=52-(26+2)=24$$
 [1 Mark]

Now, favourable number of events = 24

So, required probability =
$$\frac{24}{52} = \frac{6}{13}$$
 [1 Mark]
OR

P(Product = 6) = P[(1, 6), (2, 3), (3, 2), (6, 1)][1½ Marks]

Probability
$$=\frac{4}{6^2} = \frac{4}{36} = \frac{1}{9}$$
 [1½ Marks]

Hence, the probability that the product of the two numbers on the top of the dice is 6 will be $\frac{1}{2}$

on the top of the dice is 6, will be $\frac{1}{9}$. 31. First number divisible by 8 between 200 and 500 is 208. If form an A.P. = 208, 216, 224,, 496. Here, a = 496, a = 208, d = 8 [1 Mark] a = a + (n - 1)d 496 = 208 + (n - 1) 8 (n - 1)8 = 496 - 208 (n - 1) = $\frac{288}{8}$ [1 Mark] a = 1 = 36

[1/2 Mark]

30.

OR
LCM of 18, 24 and 36 is 72.
72)999999(13888
999936

$$\therefore$$
 Required number = 9,99,936. [1 Mark]
32. $\because 4\sqrt{3x^2 + 5x - 2\sqrt{3}} = 0$
 $4\sqrt{3x^2 + 8x - 3x - 2\sqrt{3}} = 0$
 $4\sqrt{3x^2 + 8x - 3x - 2\sqrt{3}} = 0$
 $4x(\sqrt{3x + 2}) - \sqrt{3}(\sqrt{3x + 2}) = 0$

$$(\sqrt{3}x + 2)(4x - \sqrt{3}) = 0$$
 [1½ Marks]
So, $\sqrt{3}x + 2 = 0$ or $4x - \sqrt{3} = 0$

Therefore,
$$x = -\frac{2\sqrt{3}}{3}, \frac{\sqrt{3}}{4}$$
 [1½ Marks]

Hence, the values of x are
$$\frac{-2\sqrt{3}}{3}$$
 and $\frac{\sqrt{3}}{4}$. [1 Mark]
Civen: A *ABC* is right angled at *A*. *DEEC* is a square

33. Given:
$$\triangle ABC$$
 is right-angled at *A*. *DEFG* is a square
[½ Mark]
To prove: $DE^2 = BD \times EC$.
Proof : In $\triangle AGF$ and $\triangle DBG$
 $\angle GAF = \angle BDG = 90^{\circ}$

$$\angle AGF = \angle DBG$$
 (corres. angles)
 $\therefore \Delta AGF \sim \Delta DBG$... (i) (AA similarity)
[1½ Marks]

In
$$\triangle AGF$$
 and $\triangle EFC$,
 $\angle GAF = \angle CEF = 90^{\circ}$
 $\angle AFG = \angle FCE$ (corres. angles)
 $\therefore \ \triangle AFG \sim \triangle EFC$... (ii) (AA similarity)
From (i) and (ii) [1½ Marks]
 $\triangle DBG \sim \triangle EFC$
 $\therefore \ \frac{DB}{EF} = \frac{DG}{EC}$, But $EF = DG = DE$ (sides of a square)

$$\therefore \quad \frac{DB}{DE} = \frac{DE}{EC} \quad \therefore \quad DE^2 = DB \times EC \qquad [1\frac{1}{2} \text{ Marks}]$$

OR
In
$$\triangle AEB$$
, $\angle AEB = 90^{\circ}$
A
B
C
 $\therefore AB^2 = AE^2 + BE^2$... (i) [1 Mark]
In $\triangle AED$, $\angle AED = 90^{\circ}$.
 $\therefore AD^2 = (AE^2 + DE^2)$
 $\Rightarrow AE^2 = (AD^2 - DE^2)$ [½ Mark]
 $\therefore AB^2 = (AD^2 - DE^2) + BE^2$ [using (i)] [1 Mark]
 $= (AD^2 - DE^2) + (BD - DE)^2$ [½ Mark]

$$= (AD^2 - DE^2) + \left(\frac{1}{2}BC - DE\right)^2 \qquad [1 \text{ Mark}]$$

$$= AD^2 + \frac{1}{4}BC^2 - BC \cdot DE \qquad [1 \text{ Mark}]$$

34. We know that
$$\ell = \sqrt{r^2 + h^2}$$
, $v = \frac{1}{3}\pi r^2 h$, $c = \pi r \ell$

[1½ Marks]

LHS. $=3\pi vh^3 - c^2h^2 + 9v^2$

$$= 3\pi \left(\frac{1}{3}\pi r^{2}h\right)h^{3} - (\pi r\ell)^{2}h^{2} + 9\left(\frac{1}{3}\pi r^{2}h\right)^{2} \quad [1 \text{ Mark}]$$

$$= 3\pi \left(\frac{1}{3}\pi r^{2}h\right)h^{3} - \pi^{2}r^{2}\left(r^{2} + h^{2}\right) \times h^{2} + 9 \times \frac{1}{9}\pi^{2}r^{4}h^{2}$$
$$\left(:: \ \ell = \sqrt{h^{2} + r^{2}}\right) \quad [1\frac{1}{2} \text{ Marks}]$$

$$=\pi^{2}r^{2}h^{4}-\pi^{2}r^{4}h^{2}-\pi^{2}r^{2}h^{4}+\pi^{2}r^{4}h^{2}=0=\mathbf{RHS}$$

[1 Mark]

	fidi	Deviation $(d_i) = x_i - A$	Frequency (f_i)	Mid values (x_i)	Class interval
]	-72	-12	6	2	0-4
[2 Marks	-24	-8	3	6	4-8
	-24	-4	6	10	8-12
	0	0	16	14 (A)	12-16
[1 Mark	12	4	3	18	16-20
	112	8	14	22	20-24
	120	12	10	26	24-28
]	128	16	8	30	28-32
1	$\sum f_i d_i = 252$		$\sum f_i = 66$		

Mean =
$$A + \frac{\sum f_i d_i}{\sum f_i} = 14 + \frac{252}{66} = 14 + 3.818 = 17.818$$
 [2 Marks]

	F	۰.	

Class Interval	Mid-value (xi)	fi	$u_i = (x_i - A)/h$	fiui
0-80	40	22	-2	-44
80-160	120	35	-1	-35
160-240	200 (A)	44	0	0
240-320	280	25	1	25
320-400	360	24	2	48
Total		$\Sigma f_i = 150$		$\Sigma f_i u_i = -6$

Mean
$$(\bar{x}) = A + \frac{\sum f_i u_i}{\sum f_i} \times h = 200 + \left(\frac{-6}{150}\right) \times 80$$

= $200 - \frac{2 \times 8}{5} = 200 - \frac{16}{5} = \frac{1000 - 16}{5} = \frac{984}{5} = 196.8$
Remarks : (i) The mean obtained by all the there method

- ods is the same.
 - The assumed mean method and step-(ii) deviation method are just simplified forms of the direct method.
 - If x_i and f_i are sufficiently small, then the direct method is an appropriate choice. If x_i and f_i are numerically large numbers, then we can go for the assumed mean (iii)
 - (iv) method or step-deviation method.
 - If the class sizes are unequal, and x_i are large numberically, then we can go for the (v) step-deviation method.

36. (i)
$$a_n = 51 - (n-1)2 = 31 \Rightarrow n = 11$$
 [1 Mark]

(ii)
$$a_n = 51(n-1)2 = 27 \Rightarrow n = 13$$
 [1 Mark]

(iii)
$$a_{10} = 51 - (10 - 1)2 = 33$$
 [2 Marks]

$$a_{15} = 51 - (15 - 1)2 = 23$$
 [2 Marks]

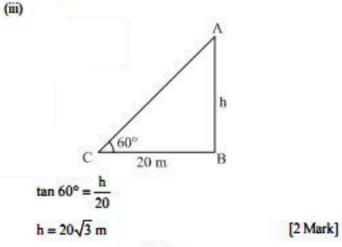
37. (i) (2, 25)
$$\left[\because x = 2, y = \frac{1}{4} \times 100 = 25 \right]$$
 [1 Mark]

(ii) (8, 20)
$$\left[\because x = 8, y = \frac{1}{5} \times 100 = 20\right]$$
 [2 Marks]

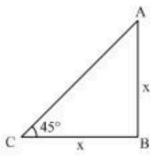
(iii)
$$\sqrt{(8-2)^2 + (25-20)^2} = \sqrt{36+25} = \sqrt{61}$$

OR

$$\begin{pmatrix} \frac{8+2}{2}, \frac{25+20}{2} \end{pmatrix} = (5, 22.5)$$
 [2 Marks]
38. (i)


C

42 m


42 m

В

Since h = 42d=42 $\theta = 45^{\circ}$ So [1 Mark] 42 x (ii) tan 60° 42 $\sqrt{3} = 14\sqrt{3} = 24.24 \text{ m}$ х [1 Mark]

Since ratio of length of a rod: Shadow of rod = 1:1 so Angle = 45° [2 Marks]