Prepare M/20 Ferrous Ammonium Sulphate (Mohr's salt) Solution. Find out the Percentage Purity of Impure KMnO₄ Sample 2.0 g of Which have been Dissolved per Litre

Chemical Equations

Molecular equations

 $\begin{array}{c} 2\mathrm{KMnO_4} + 3\mathrm{H_2SO_4} \longrightarrow \mathrm{K_2SO_4} + 2\mathrm{MnSO_4} + 3\mathrm{H_2O} + 5\mathrm{[O]}\\ 2\mathrm{FeSO_4}(\mathrm{NH_4})_2\mathrm{SO_4}.6\mathrm{H_2O} + \mathrm{H_2SO_4} + \mathrm{[O]} \longrightarrow \mathrm{Fe_2}(\mathrm{SO_4})_3 + 2(\mathrm{NH_4})_2\mathrm{SO_4} + 13\mathrm{H_2O]} \times 5\\ \hline \\ 2\mathrm{KMnO_4} + 8\mathrm{H_2SO_4} + 10\mathrm{FeSO_4}(\mathrm{NH_4})_2\mathrm{SO_4}.6\mathrm{H_2O} \longrightarrow \mathrm{K_2SO_4} + 2\mathrm{MnSO_4} + 5\mathrm{Fe_2}(\mathrm{SO_4})_3 \end{array}$

 $+ 10(NH_4)_2SO_4 + 68H_2O$

Ionic equations

 $\begin{array}{c} \mathrm{MnO_4^-} + 8\mathrm{H^+} + 5\mathrm{e^-} \longrightarrow \mathrm{Mn^{2+}} + 4\mathrm{H_2O} \\ & \mathrm{Fe^{2+}} \longrightarrow \mathrm{Fe^{3+}} + \mathrm{e^-}] \times 5 \end{array}$ $\begin{array}{c} \mathrm{MnO_4^-} + 8\mathrm{H^+} + 5\mathrm{Fe^{2+}} \longrightarrow 5\mathrm{Fe^{3+}} + \mathrm{Mn^{2+}} + 4\mathrm{H_2O} \end{array}$

Indicator

KMnO₄ is a self-indicator.

End Point

Colourless to permanent pink colour (KMnO₄ in burette).

Procedure

1. Prepare 250 ml of M/20 Mohr's salt solution by dissolving 4.9 g of Mohr's salt in water as described in experiment 11.4. Rinse the pipette with the M/20 Mohr's salt solution and pipette out 20.0 ml of it in a washed titration flask.

2. Rinse and fill the burette with the given KMnO₄ solution.

3. Add one test-tube (~ 20 ml) full of dilute sulphuric acid (~ 2 M) to the solution in titration flask.

4. Note the initial reading of the burette.

5. Now add KMnO₄ solution from the burette till a permanent light pink colour is imparted

to the solution in the titration flask on addition of last single drop of KMnO₄ solution.

6. Note the final reading of the burette.

7. Repeat the above steps 4-5 times to get a set of three concordant readings.

Observations

Weight of watch glass =..... g Weight of watch glass + Mohr's salt =.....g Weight of Mohr's salt = 4.9 g Volume of Mohr's salt solution prepared = 250 ml Solution taken in burette = $KMnO_4$ solution Volume of Mohr's salt solution taken for each titration = 20.0 ml

S. No.	Initial reading of the burette	Final reading of the burette	Volume of the KMnO ₄ solution used
1.	_	_	ml
2.	—	—	— ml
3.	—	—	-ml
4.		—	-ml

Concordant volume = x ml (say).

Calculations

Calculation of molarity of KMnO₄ solution

From the overall balanced chemical equation, it is clear that 2 moles of $KMnO_4$ react with 10 moles of Mohr's salt.

$$\therefore \frac{M_{\rm KMnO_4} \times V_{\rm KMnO_4}}{M_{\rm Mohr's \, salt} \times V_{\rm Mohr's \, salt}} = \frac{2}{10}$$

where, $M_{KMnO_4} = Molarity of KMnO_4 solution$ $V_{KMnO_4} = Volume of KMnO_4 solution$ $M_{Mohr's salt} = Molarity of Mohr's salt solution$ $V_{Mohr's salt} = Volume of Mohr's salt solution$

$$\frac{\mathrm{M}_{\mathrm{KMnO_4}} \times x}{1/20 \times 20} = \frac{2}{10}$$

$$M_{\rm KMnO_4} = \frac{2}{10} \times \frac{1}{x} = \frac{2}{10x}$$

Calculation of strength of $KMnO_4$ solutionStrength (in g/litre)= Molarity × Molar of $KMnO_4$

$$= M_{KMnO_4} \times 158$$

$$=\frac{2}{10x}\times 158=a \text{ g/litre (say)}.$$

Calculation of percentage purity of the given sample

Percentage purity $= \frac{a}{2} \times 100$

Instructions for the Preparation of Solutions Provide the following:

1. Crystals of Mohr's salt

2. KMnO₄ solution (1.6 g/litre)

3. 4N H₂SO₄.